Files
Pyclassifiers/pyclfs/PyClassifier.h

62 lines
4.0 KiB
C++

#ifndef PYCLASSIFIER_H
#define PYCLASSIFIER_H
#include <string>
#include <map>
#include <vector>
#include <utility>
#include "boost/python/detail/wrap_python.hpp"
#include <boost/python/numpy.hpp>
#include <torch/torch.h>
#include <nlohmann/json.hpp>
#include "bayesnet/classifiers/Classifier.h"
#include "PyWrap.h"
#include "TypeId.h"
namespace pywrap {
class PyClassifier : public bayesnet::BaseClassifier {
public:
PyClassifier(const std::string& module, const std::string& className, const bool sklearn = false);
virtual ~PyClassifier();
PyClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override { return *this; };
// X is nxm tensor, y is nx1 tensor
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override;
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y);
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override { return *this; };
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override { return *this; };
torch::Tensor predict(torch::Tensor& X) override;
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); }; // Not implemented
torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int >>& X) override { return std::vector<std::vector<double>>(); }; // Not implemented
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override { return 0.0; }; // Not implemented
float score(torch::Tensor& X, torch::Tensor& y) override;
int getClassNumStates() const override { return 0; };
std::string version();
std::string callMethodString(const std::string& method);
int callMethodSumOfItems(const std::string& method) const;
int callMethodInt(const std::string& method) const;
std::string getVersion() override { return this->version(); };
int getNumberOfNodes() const override { return 0; };
int getNumberOfEdges() const override { return 0; };
int getNumberOfStates() const override { return 0; };
std::vector<std::string> show() const override { return std::vector<std::string>(); }
std::vector<std::string> graph(const std::string& title = "") const override { return std::vector<std::string>(); }
bayesnet::status_t getStatus() const override { return bayesnet::NORMAL; };
std::vector<std::string> topological_order() override { return std::vector<std::string>(); }
std::string dump_cpt() const override { return ""; };
std::vector<std::string> getNotes() const override { return notes; };
void setHyperparameters(const nlohmann::json& hyperparameters) override;
protected:
nlohmann::json hyperparameters;
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override {};
std::vector<std::string> notes;
bool xgboost = false;
private:
PyWrap* pyWrap;
std::string module;
std::string className;
bool sklearn;
clfId_t id;
bool fitted;
};
} /* namespace pywrap */
#endif /* PYCLASSIFIER_H */