Files
Pyclassifiers/pyclfs/PyClassifier.cc

307 lines
12 KiB
C++

#include "PyClassifier.h"
namespace pywrap {
namespace bp = boost::python;
namespace np = boost::python::numpy;
PyClassifier::PyClassifier(const std::string& module, const std::string& className, bool sklearn) : module(module), className(className), sklearn(sklearn), fitted(false)
{
// This id allows to have more than one instance of the same module/class
id = reinterpret_cast<clfId_t>(this);
pyWrap = PyWrap::GetInstance();
pyWrap->importClass(id, module, className);
}
PyClassifier::~PyClassifier()
{
pyWrap->clean(id);
}
np::ndarray tensor2numpy(torch::Tensor& X)
{
// Validate tensor dimensions
if (X.dim() != 2) {
throw std::runtime_error("tensor2numpy: Expected 2D tensor, got " + std::to_string(X.dim()) + "D");
}
// Ensure tensor is contiguous and in the expected format
auto X_copy = X.contiguous();
if (X_copy.dtype() != torch::kFloat32) {
throw std::runtime_error("tensor2numpy: Expected float32 tensor");
}
// Transpose from [features, samples] to [samples, features] for Python classifiers
X_copy = X_copy.transpose(0, 1);
int64_t m = X_copy.size(0);
int64_t n = X_copy.size(1);
// Calculate correct strides in bytes
int64_t element_size = X_copy.element_size();
int64_t stride0 = X_copy.stride(0) * element_size;
int64_t stride1 = X_copy.stride(1) * element_size;
auto Xn = np::from_data(X_copy.data_ptr(), np::dtype::get_builtin<float>(),
bp::make_tuple(m, n),
bp::make_tuple(stride0, stride1),
bp::object());
return Xn;
}
np::ndarray tensorInt2numpy(torch::Tensor& X)
{
// Validate tensor dimensions
if (X.dim() != 2) {
throw std::runtime_error("tensorInt2numpy: Expected 2D tensor, got " + std::to_string(X.dim()) + "D");
}
// Ensure tensor is contiguous and in the expected format
auto X_copy = X.contiguous();
if (X_copy.dtype() != torch::kInt32) {
throw std::runtime_error("tensorInt2numpy: Expected int32 tensor");
}
// Transpose from [features, samples] to [samples, features] for Python classifiers
X_copy = X_copy.transpose(0, 1);
int64_t m = X_copy.size(0);
int64_t n = X_copy.size(1);
// Calculate correct strides in bytes
int64_t element_size = X_copy.element_size();
int64_t stride0 = X_copy.stride(0) * element_size;
int64_t stride1 = X_copy.stride(1) * element_size;
auto Xn = np::from_data(X_copy.data_ptr(), np::dtype::get_builtin<int>(),
bp::make_tuple(m, n),
bp::make_tuple(stride0, stride1),
bp::object());
return Xn;
}
std::pair<np::ndarray, np::ndarray> tensors2numpy(torch::Tensor& X, torch::Tensor& y)
{
// Validate y tensor dimensions
if (y.dim() != 1) {
throw std::runtime_error("tensors2numpy: Expected 1D y tensor, got " + std::to_string(y.dim()) + "D");
}
// Validate dimensions match (X is [features, samples], y is [samples])
// X.size(1) is samples, y.size(0) is samples
if (X.size(1) != y.size(0)) {
throw std::runtime_error("tensors2numpy: X and y dimension mismatch: X[" +
std::to_string(X.size(1)) + "], y[" + std::to_string(y.size(0)) + "]");
}
// Ensure y tensor is contiguous
y = y.contiguous();
if (y.dtype() != torch::kInt32) {
throw std::runtime_error("tensors2numpy: Expected int32 y tensor");
}
int64_t n = y.size(0);
int64_t element_size = y.element_size();
int64_t stride = y.stride(0) * element_size;
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(),
bp::make_tuple(n),
bp::make_tuple(stride),
bp::object());
if (X.dtype() == torch::kInt32) {
return { tensorInt2numpy(X), yn };
}
return { tensor2numpy(X), yn };
}
std::string PyClassifier::version()
{
if (sklearn) {
return pyWrap->sklearnVersion();
}
return pyWrap->version(id);
}
std::string PyClassifier::callMethodString(const std::string& method)
{
return pyWrap->callMethodString(id, method);
}
int PyClassifier::callMethodSumOfItems(const std::string& method) const
{
return pyWrap->callMethodSumOfItems(id, method);
}
int PyClassifier::callMethodInt(const std::string& method) const
{
return pyWrap->callMethodInt(id, method);
}
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y)
{
if (!fitted && hyperparameters.size() > 0) {
pyWrap->setHyperparameters(id, hyperparameters);
}
try {
auto [Xn, yn] = tensors2numpy(X, y);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
CPyObject yp = bp::incref(bp::object(yn).ptr());
pyWrap->fit(id, Xp, yp);
fitted = true;
return *this;
}
catch (const std::exception& e) {
// Clear any Python errors before re-throwing
if (PyErr_Occurred()) {
PyErr_Clear();
}
throw;
}
}
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
return fit(X, y);
}
torch::Tensor PyClassifier::predict(torch::Tensor& X)
{
try {
CPyObject Xp;
if (X.dtype() == torch::kInt32) {
auto Xn = tensorInt2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
} else {
auto Xn = tensor2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
}
// Use RAII guard for automatic cleanup
PyObjectGuard incoming(pyWrap->predict(id, Xp));
if (!incoming) {
throw std::runtime_error("predict() returned NULL for " + module + ":" + className);
}
bp::handle<> handle(incoming.release()); // Transfer ownership to boost
bp::object object(handle);
np::ndarray prediction = np::from_object(object);
if (PyErr_Occurred()) {
PyErr_Clear();
throw std::runtime_error("Error creating numpy object for predict in " + module + ":" + className);
}
// Validate numpy array
if (prediction.get_nd() != 1) {
throw std::runtime_error("Expected 1D prediction array, got " + std::to_string(prediction.get_nd()) + "D");
}
// Safe type conversion with validation
std::vector<int> vPrediction;
if (xgboost) {
// Validate data type for XGBoost (typically returns long)
if (prediction.get_dtype() == np::dtype::get_builtin<long>()) {
long* data = reinterpret_cast<long*>(prediction.get_data());
vPrediction.reserve(prediction.shape(0));
for (int i = 0; i < prediction.shape(0); ++i) {
vPrediction.push_back(static_cast<int>(data[i]));
}
} else {
throw std::runtime_error("XGBoost prediction: unexpected data type");
}
} else {
// Validate data type for other classifiers (typically returns int)
if (prediction.get_dtype() == np::dtype::get_builtin<int>()) {
int* data = reinterpret_cast<int*>(prediction.get_data());
vPrediction.assign(data, data + prediction.shape(0));
} else {
throw std::runtime_error("Prediction: unexpected data type");
}
}
return torch::tensor(vPrediction, torch::kInt32);
}
catch (const std::exception& e) {
// Clear any Python errors before re-throwing
if (PyErr_Occurred()) {
PyErr_Clear();
}
throw;
}
}
torch::Tensor PyClassifier::predict_proba(torch::Tensor& X)
{
try {
CPyObject Xp;
if (X.dtype() == torch::kInt32) {
auto Xn = tensorInt2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
} else {
auto Xn = tensor2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
}
// Use RAII guard for automatic cleanup
PyObjectGuard incoming(pyWrap->predict_proba(id, Xp));
if (!incoming) {
throw std::runtime_error("predict_proba() returned NULL for " + module + ":" + className);
}
bp::handle<> handle(incoming.release()); // Transfer ownership to boost
bp::object object(handle);
np::ndarray prediction = np::from_object(object);
if (PyErr_Occurred()) {
PyErr_Clear();
throw std::runtime_error("Error creating numpy object for predict_proba in " + module + ":" + className);
}
// Validate numpy array dimensions
if (prediction.get_nd() != 2) {
throw std::runtime_error("Expected 2D probability array, got " + std::to_string(prediction.get_nd()) + "D");
}
int64_t rows = prediction.shape(0);
int64_t cols = prediction.shape(1);
// Safe type conversion with validation
if (xgboost) {
// Validate data type for XGBoost (typically returns float)
if (prediction.get_dtype() == np::dtype::get_builtin<float>()) {
float* data = reinterpret_cast<float*>(prediction.get_data());
std::vector<float> vPrediction(data, data + rows * cols);
return torch::tensor(vPrediction, torch::kFloat32).reshape({rows, cols});
} else {
throw std::runtime_error("XGBoost predict_proba: unexpected data type");
}
} else {
// Validate data type for other classifiers (typically returns double)
if (prediction.get_dtype() == np::dtype::get_builtin<double>()) {
double* data = reinterpret_cast<double*>(prediction.get_data());
std::vector<double> vPrediction(data, data + rows * cols);
return torch::tensor(vPrediction, torch::kFloat64).reshape({rows, cols});
} else {
throw std::runtime_error("predict_proba: unexpected data type");
}
}
}
catch (const std::exception& e) {
// Clear any Python errors before re-throwing
if (PyErr_Occurred()) {
PyErr_Clear();
}
throw;
}
}
float PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
{
try {
auto [Xn, yn] = tensors2numpy(X, y);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
CPyObject yp = bp::incref(bp::object(yn).ptr());
return pyWrap->score(id, Xp, yp);
}
catch (const std::exception& e) {
// Clear any Python errors before re-throwing
if (PyErr_Occurred()) {
PyErr_Clear();
}
throw;
}
}
void PyClassifier::setHyperparameters(const nlohmann::json& hyperparameters)
{
this->hyperparameters = hyperparameters;
}
} /* namespace pywrap */