#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do #include #include #include #include #include #include #include "STree.h" #include "SVC.h" #include "RandomForest.h" #include "ODTE.h" #include "TestUtils.h" TEST_CASE("Test Python Classifiers score", "[PyClassifiers]") { map , float> scores = { // Diabetes {{"diabetes", "STree"}, 0.81641}, {{"diabetes", "ODTE"}, 0.84635}, {{"diabetes", "SVC"}, 0.76823}, {{"diabetes", "RandomForest"}, 1.0}, // Ecoli {{"ecoli", "STree"}, 0.8125}, {{"ecoli", "ODTE"}, 0.84821}, {{"ecoli", "SVC"}, 0.89583}, {{"ecoli", "RandomForest"}, 1.0}, // Glass {{"glass", "STree"}, 0.57009}, {{"glass", "ODTE"}, 0.77103}, {{"glass", "SVC"}, 0.35514}, {{"glass", "RandomForest"}, 1.0}, // Iris {{"iris", "STree"}, 0.99333}, {{"iris", "ODTE"}, 0.98667}, {{"iris", "SVC"}, 0.97333}, {{"iris", "RandomForest"}, 1.0}, }; std::string file_name = GENERATE("glass", "iris", "ecoli", "diabetes"); auto raw = RawDatasets(file_name, false); SECTION("Test STree classifier (" + file_name + ")") { auto clf = pywrap::STree(); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); auto score = clf.score(raw.Xt, raw.yt); REQUIRE(score == Catch::Approx(scores[{file_name, "STree"}]).epsilon(raw.epsilon)); } SECTION("Test ODTE classifier (" + file_name + ")") { auto clf = pywrap::ODTE(); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); auto score = clf.score(raw.Xt, raw.yt); REQUIRE(score == Catch::Approx(scores[{file_name, "ODTE"}]).epsilon(raw.epsilon)); } SECTION("Test SVC classifier (" + file_name + ")") { auto clf = pywrap::SVC(); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); auto score = clf.score(raw.Xt, raw.yt); REQUIRE(score == Catch::Approx(scores[{file_name, "SVC"}]).epsilon(raw.epsilon)); } SECTION("Test RandomForest classifier (" + file_name + ")") { auto clf = pywrap::RandomForest(); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); auto score = clf.score(raw.Xt, raw.yt); REQUIRE(score == Catch::Approx(scores[{file_name, "RandomForest"}]).epsilon(raw.epsilon)); } } TEST_CASE("Classifiers features", "[PyClassifiers]") { auto raw = RawDatasets("iris", true); auto clf = pywrap::STree(); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); REQUIRE(clf.getNumberOfNodes() == 3); REQUIRE(clf.getNumberOfEdges() == 2); } TEST_CASE("Get num features & num edges", "[PyClassifiers]") { auto raw = RawDatasets("iris", true); auto clf = pywrap::ODTE(); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); REQUIRE(clf.getNumberOfNodes() == 10); REQUIRE(clf.getNumberOfEdges() == 10); }