Compare commits

..

2 Commits

Author SHA1 Message Date
830265d91b Fix xgboost error in predict/predict_proba 2025-04-12 17:48:23 +02:00
761f57be6c Update tests 2025-01-09 11:25:19 +01:00
16 changed files with 263 additions and 71 deletions

7
.gitmodules vendored
View File

@@ -3,11 +3,8 @@
path = lib/json path = lib/json
url = https://github.com/nlohmann/json.git url = https://github.com/nlohmann/json.git
[submodule "lib/catch2"] [submodule "lib/catch2"]
path = tests/lib/catch2 path = lib/catch2
url = https://github.com/catchorg/Catch2.git url = https://github.com/catchorg/Catch2.git
[submodule "lib/mdlp"] [submodule "lib/mdlp"]
path = tests/lib/mdlp path = lib/mdlp
url = https://github.com/rmontanana/mdlp url = https://github.com/rmontanana/mdlp
[submodule "tests/lib/Files"]
path = tests/lib/Files
url = https://github.com/rmontanana/ArffFiles

View File

@@ -78,9 +78,9 @@ add_subdirectory(pyclfs)
# ------- # -------
if (ENABLE_TESTING) if (ENABLE_TESTING)
MESSAGE("Testing enabled") MESSAGE("Testing enabled")
add_git_submodule(tests/lib/catch2) add_git_submodule(lib/catch2)
add_git_submodule(tests/lib/mdlp) add_git_submodule(lib/mdlp)
add_subdirectory(tests/lib/Files) add_subdirectory(lib/Files)
include(CTest) include(CTest)
add_subdirectory(tests) add_subdirectory(tests)
endif (ENABLE_TESTING) endif (ENABLE_TESTING)

168
lib/Files/ArffFiles.cc Normal file
View File

@@ -0,0 +1,168 @@
#include "ArffFiles.h"
#include <fstream>
#include <sstream>
#include <map>
#include <iostream>
ArffFiles::ArffFiles() = default;
std::vector<std::string> ArffFiles::getLines() const
{
return lines;
}
unsigned long int ArffFiles::getSize() const
{
return lines.size();
}
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
{
return attributes;
}
std::string ArffFiles::getClassName() const
{
return className;
}
std::string ArffFiles::getClassType() const
{
return classType;
}
std::vector<std::vector<float>>& ArffFiles::getX()
{
return X;
}
std::vector<int>& ArffFiles::getY()
{
return y;
}
void ArffFiles::loadCommon(std::string fileName)
{
std::ifstream file(fileName);
if (!file.is_open()) {
throw std::invalid_argument("Unable to open file");
}
std::string line;
std::string keyword;
std::string attribute;
std::string type;
std::string type_w;
while (getline(file, line)) {
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
continue;
}
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
std::stringstream ss(line);
ss >> keyword >> attribute;
type = "";
while (ss >> type_w)
type += type_w + " ";
attributes.emplace_back(trim(attribute), trim(type));
continue;
}
if (line[0] == '@') {
continue;
}
lines.push_back(line);
}
file.close();
if (attributes.empty())
throw std::invalid_argument("No attributes found");
}
void ArffFiles::load(const std::string& fileName, bool classLast)
{
int labelIndex;
loadCommon(fileName);
if (classLast) {
className = std::get<0>(attributes.back());
classType = std::get<1>(attributes.back());
attributes.pop_back();
labelIndex = static_cast<int>(attributes.size());
} else {
className = std::get<0>(attributes.front());
classType = std::get<1>(attributes.front());
attributes.erase(attributes.begin());
labelIndex = 0;
}
generateDataset(labelIndex);
}
void ArffFiles::load(const std::string& fileName, const std::string& name)
{
int labelIndex;
loadCommon(fileName);
bool found = false;
for (int i = 0; i < attributes.size(); ++i) {
if (attributes[i].first == name) {
className = std::get<0>(attributes[i]);
classType = std::get<1>(attributes[i]);
attributes.erase(attributes.begin() + i);
labelIndex = i;
found = true;
break;
}
}
if (!found) {
throw std::invalid_argument("Class name not found");
}
generateDataset(labelIndex);
}
void ArffFiles::generateDataset(int labelIndex)
{
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
auto yy = std::vector<std::string>(lines.size(), "");
auto removeLines = std::vector<int>(); // Lines with missing values
for (size_t i = 0; i < lines.size(); i++) {
std::stringstream ss(lines[i]);
std::string value;
int pos = 0;
int xIndex = 0;
while (getline(ss, value, ',')) {
if (pos++ == labelIndex) {
yy[i] = value;
} else {
if (value == "?") {
X[xIndex++][i] = -1;
removeLines.push_back(i);
} else
X[xIndex++][i] = stof(value);
}
}
}
for (auto i : removeLines) {
yy.erase(yy.begin() + i);
for (auto& x : X) {
x.erase(x.begin() + i);
}
}
y = factorize(yy);
}
std::string ArffFiles::trim(const std::string& source)
{
std::string s(source);
s.erase(0, s.find_first_not_of(" '\n\r\t"));
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
return s;
}
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
{
std::vector<int> yy;
yy.reserve(labels_t.size());
std::map<std::string, int> labelMap;
int i = 0;
for (const std::string& label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
}
yy.push_back(labelMap[label]);
}
return yy;
}

32
lib/Files/ArffFiles.h Normal file
View File

@@ -0,0 +1,32 @@
#ifndef ARFFFILES_H
#define ARFFFILES_H
#include <string>
#include <vector>
class ArffFiles {
private:
std::vector<std::string> lines;
std::vector<std::pair<std::string, std::string>> attributes;
std::string className;
std::string classType;
std::vector<std::vector<float>> X;
std::vector<int> y;
void generateDataset(int);
void loadCommon(std::string);
public:
ArffFiles();
void load(const std::string&, bool = true);
void load(const std::string&, const std::string&);
std::vector<std::string> getLines() const;
unsigned long int getSize() const;
std::string getClassName() const;
std::string getClassType() const;
static std::string trim(const std::string&);
std::vector<std::vector<float>>& getX();
std::vector<int>& getY();
std::vector<std::pair<std::string, std::string>> getAttributes() const;
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
};
#endif

1
lib/Files/CMakeLists.txt Normal file
View File

@@ -0,0 +1 @@
add_library(ArffFiles ArffFiles.cc)

View File

@@ -4,5 +4,5 @@ include_directories(
${PyClassifiers_SOURCE_DIR}/lib/json/include ${PyClassifiers_SOURCE_DIR}/lib/json/include
${Bayesnet_INCLUDE_DIRS} ${Bayesnet_INCLUDE_DIRS}
) )
add_library(PyClassifiers ODTE.cc STree.cc SVC.cc RandomForest.cc XGBoost.cc PyClassifier.cc PyWrap.cc PBC4cip.cc) add_library(PyClassifiers ODTE.cc STree.cc SVC.cc RandomForest.cc XGBoost.cc PyClassifier.cc PyWrap.cc)
target_link_libraries(PyClassifiers ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy) target_link_libraries(PyClassifiers ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy)

View File

@@ -1,8 +0,0 @@
#include "PBC4cip.h"
namespace pywrap {
PBC4cip::PBC4cip() : PyClassifier("core.PBC4cip", "PBC4cip", true)
{
validHyperparameters = { "random_state" };
}
} /* namespace pywrap */

View File

@@ -1,13 +0,0 @@
#ifndef PBC4CIP_H
#define PBC4CIP_H
#include "PyClassifier.h"
namespace pywrap {
class PBC4cip : public PyClassifier {
public:
PBC4cip();
~PBC4cip() = default;
};
} /* namespace pywrap */
#endif /* PBC4CIP_H */

View File

@@ -93,11 +93,19 @@ namespace pywrap {
PyErr_Print(); PyErr_Print();
throw std::runtime_error("Error creating object for predict in " + module + " and class " + className); throw std::runtime_error("Error creating object for predict in " + module + " and class " + className);
} }
int* data = reinterpret_cast<int*>(prediction.get_data()); if (xgboost) {
std::vector<int> vPrediction(data, data + prediction.shape(0)); long* data = reinterpret_cast<long*>(prediction.get_data());
auto resultTensor = torch::tensor(vPrediction, torch::kInt32); std::vector<int> vPrediction(data, data + prediction.shape(0));
Py_XDECREF(incoming); auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
return resultTensor; Py_XDECREF(incoming);
return resultTensor;
} else {
int* data = reinterpret_cast<int*>(prediction.get_data());
std::vector<int> vPrediction(data, data + prediction.shape(0));
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
Py_XDECREF(incoming);
return resultTensor;
}
} }
torch::Tensor PyClassifier::predict_proba(torch::Tensor& X) torch::Tensor PyClassifier::predict_proba(torch::Tensor& X)
{ {
@@ -118,11 +126,19 @@ namespace pywrap {
PyErr_Print(); PyErr_Print();
throw std::runtime_error("Error creating object for predict_proba in " + module + " and class " + className); throw std::runtime_error("Error creating object for predict_proba in " + module + " and class " + className);
} }
double* data = reinterpret_cast<double*>(prediction.get_data()); if (xgboost) {
std::vector<double> vPrediction(data, data + prediction.shape(0) * prediction.shape(1)); float* data = reinterpret_cast<float*>(prediction.get_data());
auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) }); std::vector<float> vPrediction(data, data + prediction.shape(0) * prediction.shape(1));
Py_XDECREF(incoming); auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) });
return resultTensor; Py_XDECREF(incoming);
return resultTensor;
} else {
double* data = reinterpret_cast<double*>(prediction.get_data());
std::vector<double> vPrediction(data, data + prediction.shape(0) * prediction.shape(1));
auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) });
Py_XDECREF(incoming);
return resultTensor;
}
} }
float PyClassifier::score(torch::Tensor& X, torch::Tensor& y) float PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
{ {
@@ -135,4 +151,4 @@ namespace pywrap {
{ {
this->hyperparameters = hyperparameters; this->hyperparameters = hyperparameters;
} }
} /* namespace pywrap */ } /* namespace pywrap */

View File

@@ -49,6 +49,7 @@ namespace pywrap {
nlohmann::json hyperparameters; nlohmann::json hyperparameters;
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override {}; void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override {};
std::vector<std::string> notes; std::vector<std::string> notes;
bool xgboost = false;
private: private:
PyWrap* pyWrap; PyWrap* pyWrap;
std::string module; std::string module;

View File

@@ -5,5 +5,6 @@ namespace pywrap {
XGBoost::XGBoost() : PyClassifier("xgboost", "XGBClassifier", true) XGBoost::XGBoost() : PyClassifier("xgboost", "XGBClassifier", true)
{ {
validHyperparameters = { "tree_method", "early_stopping_rounds", "n_jobs" }; validHyperparameters = { "tree_method", "early_stopping_rounds", "n_jobs" };
xgboost = true;
} }
} /* namespace pywrap */ } /* namespace pywrap */

View File

@@ -3,14 +3,15 @@ if(ENABLE_TESTING)
include_directories( include_directories(
${PyClassifiers_SOURCE_DIR} ${PyClassifiers_SOURCE_DIR}
${PyClassifiers_SOURCE_DIR}/lib/Files ${PyClassifiers_SOURCE_DIR}/lib/Files
${PyClassifiers_SOURCE_DIR}/lib/mdlp ${PyClassifiers_SOURCE_DIR}/lib/mdlp/src
${PyClassifiers_SOURCE_DIR}/lib/json/include ${PyClassifiers_SOURCE_DIR}/lib/json/include
${Python3_INCLUDE_DIRS} ${Python3_INCLUDE_DIRS}
${TORCH_INCLUDE_DIRS} ${TORCH_INCLUDE_DIRS}
${CMAKE_BINARY_DIR}/configured_files/include
/usr/local/include /usr/local/include
) )
file(GLOB_RECURSE PyClassifiers_SOURCES "${PyClassifiers_SOURCE_DIR}/pyclfs/*.cc") file(GLOB_RECURSE PyClassifiers_SOURCES "${PyClassifiers_SOURCE_DIR}/pyclfs/*.cc")
set(TEST_SOURCES_PYCLASSIFIERS TestPythonClassifiers.cc TestUtils.cc ${PyClassifiers_SOURCES}) set(TEST_SOURCES_PYCLASSIFIERS TestPythonClassifiers.cc TestUtils.cc ${PyClassifiers_SOURCES})
add_executable(${TEST_PYCLASSIFIERS} ${TEST_SOURCES_PYCLASSIFIERS}) add_executable(${TEST_PYCLASSIFIERS} ${TEST_SOURCES_PYCLASSIFIERS})
target_link_libraries(${TEST_PYCLASSIFIERS} PUBLIC "${TORCH_LIBRARIES}" ${Python3_LIBRARIES} ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy ArffFiles mdlp Catch2::Catch2WithMain) target_link_libraries(${TEST_PYCLASSIFIERS} PUBLIC "${TORCH_LIBRARIES}" ${Python3_LIBRARIES} ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy ArffFiles fimdlp Catch2::Catch2WithMain)
endif(ENABLE_TESTING) endif(ENABLE_TESTING)

View File

@@ -33,8 +33,8 @@ TEST_CASE("Test Python Classifiers score", "[PyClassifiers]")
{"RandomForest", new pywrap::RandomForest()} {"RandomForest", new pywrap::RandomForest()}
}; };
map<std::string, std::string> versions = { map<std::string, std::string> versions = {
{"ODTE", "1.0.0"}, {"ODTE", "1.0.0-1"},
{"STree", "1.3.2"}, {"STree", "1.4.0"},
{"SVC", "1.5.1"}, {"SVC", "1.5.1"},
{"RandomForest", "1.5.1"} {"RandomForest", "1.5.1"}
}; };
@@ -116,33 +116,30 @@ TEST_CASE("XGBoost", "[PyClassifiers]")
clf.setHyperparameters(hyperparameters); clf.setHyperparameters(hyperparameters);
auto score = clf.score(raw.Xt, raw.yt); auto score = clf.score(raw.Xt, raw.yt);
REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon)); REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon));
std::cout << "XGBoost score: " << score << std::endl;
} }
// TEST_CASE("XGBoost predict proba", "[PyClassifiers]") TEST_CASE("XGBoost predict proba", "[PyClassifiers]")
// {
// auto raw = RawDatasets("iris", true);
// auto clf = pywrap::XGBoost();
// clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
// // nlohmann::json hyperparameters = { "n_jobs=1" };
// // clf.setHyperparameters(hyperparameters);
// auto predict = clf.predict(raw.Xt);
// for (int row = 0; row < predict.size(0); row++) {
// auto sum = 0.0;
// for (int col = 0; col < predict.size(1); col++) {
// std::cout << std::setw(12) << std::setprecision(10) << predict[row][col].item<double>() << " ";
// sum += predict[row][col].item<int>();
// }
// std::cout << std::endl;
// // REQUIRE(sum == Catch::Approx(1.0).epsilon(raw.epsilon));
// }
// std::cout << predict << std::endl;
// }
TEST_CASE("PBC4cip", "[PyClassifiers]")
{ {
auto raw = RawDatasets("iris", true); auto raw = RawDatasets("iris", true);
auto clf = pywrap::PBC4cip(); auto clf = pywrap::XGBoost();
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest); clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
nlohmann::json hyperparameters = { }; // nlohmann::json hyperparameters = { "n_jobs=1" };
clf.setHyperparameters(hyperparameters); // clf.setHyperparameters(hyperparameters);
auto score = clf.score(raw.Xt, raw.yt); auto predict_proba = clf.predict_proba(raw.Xt);
REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon)); auto predict = clf.predict(raw.Xt);
// std::cout << "Predict proba: " << predict_proba << std::endl;
// std::cout << "Predict proba size: " << predict_proba.sizes() << std::endl;
// assert(predict.size(0) == predict_proba.size(0));
for (int row = 0; row < predict_proba.size(0); row++) {
// auto sum = 0.0;
// std::cout << "Row " << std::setw(3) << row << ": ";
// for (int col = 0; col < predict_proba.size(1); col++) {
// std::cout << std::setw(9) << std::fixed << std::setprecision(7) << predict_proba[row][col].item<double>() << " ";
// sum += predict_proba[row][col].item<double>();
// }
// std::cout << " -> " << std::setw(9) << std::fixed << std::setprecision(7) << sum << " -> " << torch::argmax(predict_proba[row]).item<int>() << " = " << predict[row].item<int>() << std::endl;
// // REQUIRE(sum == Catch::Approx(1.0).epsilon(raw.epsilon));
REQUIRE(torch::argmax(predict_proba[row]).item<int>() == predict[row].item<int>());
REQUIRE(torch::sum(predict_proba[row]).item<double>() == Catch::Approx(1.0).epsilon(raw.epsilon));
}
} }

Submodule tests/lib/Files deleted from a4329f5f9d