Compare commits
2 Commits
v104
...
830265d91b
Author | SHA1 | Date | |
---|---|---|---|
830265d91b
|
|||
761f57be6c
|
7
.gitmodules
vendored
7
.gitmodules
vendored
@@ -3,11 +3,8 @@
|
|||||||
path = lib/json
|
path = lib/json
|
||||||
url = https://github.com/nlohmann/json.git
|
url = https://github.com/nlohmann/json.git
|
||||||
[submodule "lib/catch2"]
|
[submodule "lib/catch2"]
|
||||||
path = tests/lib/catch2
|
path = lib/catch2
|
||||||
url = https://github.com/catchorg/Catch2.git
|
url = https://github.com/catchorg/Catch2.git
|
||||||
[submodule "lib/mdlp"]
|
[submodule "lib/mdlp"]
|
||||||
path = tests/lib/mdlp
|
path = lib/mdlp
|
||||||
url = https://github.com/rmontanana/mdlp
|
url = https://github.com/rmontanana/mdlp
|
||||||
[submodule "tests/lib/Files"]
|
|
||||||
path = tests/lib/Files
|
|
||||||
url = https://github.com/rmontanana/ArffFiles
|
|
||||||
|
@@ -78,9 +78,9 @@ add_subdirectory(pyclfs)
|
|||||||
# -------
|
# -------
|
||||||
if (ENABLE_TESTING)
|
if (ENABLE_TESTING)
|
||||||
MESSAGE("Testing enabled")
|
MESSAGE("Testing enabled")
|
||||||
add_git_submodule(tests/lib/catch2)
|
add_git_submodule(lib/catch2)
|
||||||
add_git_submodule(tests/lib/mdlp)
|
add_git_submodule(lib/mdlp)
|
||||||
add_subdirectory(tests/lib/Files)
|
add_subdirectory(lib/Files)
|
||||||
include(CTest)
|
include(CTest)
|
||||||
add_subdirectory(tests)
|
add_subdirectory(tests)
|
||||||
endif (ENABLE_TESTING)
|
endif (ENABLE_TESTING)
|
||||||
|
168
lib/Files/ArffFiles.cc
Normal file
168
lib/Files/ArffFiles.cc
Normal file
@@ -0,0 +1,168 @@
|
|||||||
|
#include "ArffFiles.h"
|
||||||
|
#include <fstream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <map>
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
ArffFiles::ArffFiles() = default;
|
||||||
|
|
||||||
|
std::vector<std::string> ArffFiles::getLines() const
|
||||||
|
{
|
||||||
|
return lines;
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned long int ArffFiles::getSize() const
|
||||||
|
{
|
||||||
|
return lines.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
|
||||||
|
{
|
||||||
|
return attributes;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string ArffFiles::getClassName() const
|
||||||
|
{
|
||||||
|
return className;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string ArffFiles::getClassType() const
|
||||||
|
{
|
||||||
|
return classType;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<float>>& ArffFiles::getX()
|
||||||
|
{
|
||||||
|
return X;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<int>& ArffFiles::getY()
|
||||||
|
{
|
||||||
|
return y;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArffFiles::loadCommon(std::string fileName)
|
||||||
|
{
|
||||||
|
std::ifstream file(fileName);
|
||||||
|
if (!file.is_open()) {
|
||||||
|
throw std::invalid_argument("Unable to open file");
|
||||||
|
}
|
||||||
|
std::string line;
|
||||||
|
std::string keyword;
|
||||||
|
std::string attribute;
|
||||||
|
std::string type;
|
||||||
|
std::string type_w;
|
||||||
|
while (getline(file, line)) {
|
||||||
|
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
||||||
|
std::stringstream ss(line);
|
||||||
|
ss >> keyword >> attribute;
|
||||||
|
type = "";
|
||||||
|
while (ss >> type_w)
|
||||||
|
type += type_w + " ";
|
||||||
|
attributes.emplace_back(trim(attribute), trim(type));
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
if (line[0] == '@') {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
lines.push_back(line);
|
||||||
|
}
|
||||||
|
file.close();
|
||||||
|
if (attributes.empty())
|
||||||
|
throw std::invalid_argument("No attributes found");
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArffFiles::load(const std::string& fileName, bool classLast)
|
||||||
|
{
|
||||||
|
int labelIndex;
|
||||||
|
loadCommon(fileName);
|
||||||
|
if (classLast) {
|
||||||
|
className = std::get<0>(attributes.back());
|
||||||
|
classType = std::get<1>(attributes.back());
|
||||||
|
attributes.pop_back();
|
||||||
|
labelIndex = static_cast<int>(attributes.size());
|
||||||
|
} else {
|
||||||
|
className = std::get<0>(attributes.front());
|
||||||
|
classType = std::get<1>(attributes.front());
|
||||||
|
attributes.erase(attributes.begin());
|
||||||
|
labelIndex = 0;
|
||||||
|
}
|
||||||
|
generateDataset(labelIndex);
|
||||||
|
}
|
||||||
|
void ArffFiles::load(const std::string& fileName, const std::string& name)
|
||||||
|
{
|
||||||
|
int labelIndex;
|
||||||
|
loadCommon(fileName);
|
||||||
|
bool found = false;
|
||||||
|
for (int i = 0; i < attributes.size(); ++i) {
|
||||||
|
if (attributes[i].first == name) {
|
||||||
|
className = std::get<0>(attributes[i]);
|
||||||
|
classType = std::get<1>(attributes[i]);
|
||||||
|
attributes.erase(attributes.begin() + i);
|
||||||
|
labelIndex = i;
|
||||||
|
found = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!found) {
|
||||||
|
throw std::invalid_argument("Class name not found");
|
||||||
|
}
|
||||||
|
generateDataset(labelIndex);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArffFiles::generateDataset(int labelIndex)
|
||||||
|
{
|
||||||
|
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
|
||||||
|
auto yy = std::vector<std::string>(lines.size(), "");
|
||||||
|
auto removeLines = std::vector<int>(); // Lines with missing values
|
||||||
|
for (size_t i = 0; i < lines.size(); i++) {
|
||||||
|
std::stringstream ss(lines[i]);
|
||||||
|
std::string value;
|
||||||
|
int pos = 0;
|
||||||
|
int xIndex = 0;
|
||||||
|
while (getline(ss, value, ',')) {
|
||||||
|
if (pos++ == labelIndex) {
|
||||||
|
yy[i] = value;
|
||||||
|
} else {
|
||||||
|
if (value == "?") {
|
||||||
|
X[xIndex++][i] = -1;
|
||||||
|
removeLines.push_back(i);
|
||||||
|
} else
|
||||||
|
X[xIndex++][i] = stof(value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (auto i : removeLines) {
|
||||||
|
yy.erase(yy.begin() + i);
|
||||||
|
for (auto& x : X) {
|
||||||
|
x.erase(x.begin() + i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
y = factorize(yy);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string ArffFiles::trim(const std::string& source)
|
||||||
|
{
|
||||||
|
std::string s(source);
|
||||||
|
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
||||||
|
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
||||||
|
return s;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
|
||||||
|
{
|
||||||
|
std::vector<int> yy;
|
||||||
|
yy.reserve(labels_t.size());
|
||||||
|
std::map<std::string, int> labelMap;
|
||||||
|
int i = 0;
|
||||||
|
for (const std::string& label : labels_t) {
|
||||||
|
if (labelMap.find(label) == labelMap.end()) {
|
||||||
|
labelMap[label] = i++;
|
||||||
|
}
|
||||||
|
yy.push_back(labelMap[label]);
|
||||||
|
}
|
||||||
|
return yy;
|
||||||
|
}
|
32
lib/Files/ArffFiles.h
Normal file
32
lib/Files/ArffFiles.h
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
#ifndef ARFFFILES_H
|
||||||
|
#define ARFFFILES_H
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
class ArffFiles {
|
||||||
|
private:
|
||||||
|
std::vector<std::string> lines;
|
||||||
|
std::vector<std::pair<std::string, std::string>> attributes;
|
||||||
|
std::string className;
|
||||||
|
std::string classType;
|
||||||
|
std::vector<std::vector<float>> X;
|
||||||
|
std::vector<int> y;
|
||||||
|
void generateDataset(int);
|
||||||
|
void loadCommon(std::string);
|
||||||
|
public:
|
||||||
|
ArffFiles();
|
||||||
|
void load(const std::string&, bool = true);
|
||||||
|
void load(const std::string&, const std::string&);
|
||||||
|
std::vector<std::string> getLines() const;
|
||||||
|
unsigned long int getSize() const;
|
||||||
|
std::string getClassName() const;
|
||||||
|
std::string getClassType() const;
|
||||||
|
static std::string trim(const std::string&);
|
||||||
|
std::vector<std::vector<float>>& getX();
|
||||||
|
std::vector<int>& getY();
|
||||||
|
std::vector<std::pair<std::string, std::string>> getAttributes() const;
|
||||||
|
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
1
lib/Files/CMakeLists.txt
Normal file
1
lib/Files/CMakeLists.txt
Normal file
@@ -0,0 +1 @@
|
|||||||
|
add_library(ArffFiles ArffFiles.cc)
|
@@ -4,5 +4,5 @@ include_directories(
|
|||||||
${PyClassifiers_SOURCE_DIR}/lib/json/include
|
${PyClassifiers_SOURCE_DIR}/lib/json/include
|
||||||
${Bayesnet_INCLUDE_DIRS}
|
${Bayesnet_INCLUDE_DIRS}
|
||||||
)
|
)
|
||||||
add_library(PyClassifiers ODTE.cc STree.cc SVC.cc RandomForest.cc XGBoost.cc PyClassifier.cc PyWrap.cc PBC4cip.cc)
|
add_library(PyClassifiers ODTE.cc STree.cc SVC.cc RandomForest.cc XGBoost.cc PyClassifier.cc PyWrap.cc)
|
||||||
target_link_libraries(PyClassifiers ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy)
|
target_link_libraries(PyClassifiers ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy)
|
@@ -1,8 +0,0 @@
|
|||||||
#include "PBC4cip.h"
|
|
||||||
|
|
||||||
namespace pywrap {
|
|
||||||
PBC4cip::PBC4cip() : PyClassifier("core.PBC4cip", "PBC4cip", true)
|
|
||||||
{
|
|
||||||
validHyperparameters = { "random_state" };
|
|
||||||
}
|
|
||||||
} /* namespace pywrap */
|
|
@@ -1,13 +0,0 @@
|
|||||||
#ifndef PBC4CIP_H
|
|
||||||
#define PBC4CIP_H
|
|
||||||
#include "PyClassifier.h"
|
|
||||||
|
|
||||||
namespace pywrap {
|
|
||||||
class PBC4cip : public PyClassifier {
|
|
||||||
public:
|
|
||||||
PBC4cip();
|
|
||||||
~PBC4cip() = default;
|
|
||||||
};
|
|
||||||
|
|
||||||
} /* namespace pywrap */
|
|
||||||
#endif /* PBC4CIP_H */
|
|
@@ -93,11 +93,19 @@ namespace pywrap {
|
|||||||
PyErr_Print();
|
PyErr_Print();
|
||||||
throw std::runtime_error("Error creating object for predict in " + module + " and class " + className);
|
throw std::runtime_error("Error creating object for predict in " + module + " and class " + className);
|
||||||
}
|
}
|
||||||
int* data = reinterpret_cast<int*>(prediction.get_data());
|
if (xgboost) {
|
||||||
std::vector<int> vPrediction(data, data + prediction.shape(0));
|
long* data = reinterpret_cast<long*>(prediction.get_data());
|
||||||
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
|
std::vector<int> vPrediction(data, data + prediction.shape(0));
|
||||||
Py_XDECREF(incoming);
|
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
|
||||||
return resultTensor;
|
Py_XDECREF(incoming);
|
||||||
|
return resultTensor;
|
||||||
|
} else {
|
||||||
|
int* data = reinterpret_cast<int*>(prediction.get_data());
|
||||||
|
std::vector<int> vPrediction(data, data + prediction.shape(0));
|
||||||
|
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
|
||||||
|
Py_XDECREF(incoming);
|
||||||
|
return resultTensor;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
torch::Tensor PyClassifier::predict_proba(torch::Tensor& X)
|
torch::Tensor PyClassifier::predict_proba(torch::Tensor& X)
|
||||||
{
|
{
|
||||||
@@ -118,11 +126,19 @@ namespace pywrap {
|
|||||||
PyErr_Print();
|
PyErr_Print();
|
||||||
throw std::runtime_error("Error creating object for predict_proba in " + module + " and class " + className);
|
throw std::runtime_error("Error creating object for predict_proba in " + module + " and class " + className);
|
||||||
}
|
}
|
||||||
double* data = reinterpret_cast<double*>(prediction.get_data());
|
if (xgboost) {
|
||||||
std::vector<double> vPrediction(data, data + prediction.shape(0) * prediction.shape(1));
|
float* data = reinterpret_cast<float*>(prediction.get_data());
|
||||||
auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) });
|
std::vector<float> vPrediction(data, data + prediction.shape(0) * prediction.shape(1));
|
||||||
Py_XDECREF(incoming);
|
auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) });
|
||||||
return resultTensor;
|
Py_XDECREF(incoming);
|
||||||
|
return resultTensor;
|
||||||
|
} else {
|
||||||
|
double* data = reinterpret_cast<double*>(prediction.get_data());
|
||||||
|
std::vector<double> vPrediction(data, data + prediction.shape(0) * prediction.shape(1));
|
||||||
|
auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) });
|
||||||
|
Py_XDECREF(incoming);
|
||||||
|
return resultTensor;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
float PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
float PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||||
{
|
{
|
||||||
@@ -135,4 +151,4 @@ namespace pywrap {
|
|||||||
{
|
{
|
||||||
this->hyperparameters = hyperparameters;
|
this->hyperparameters = hyperparameters;
|
||||||
}
|
}
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
||||||
|
@@ -49,6 +49,7 @@ namespace pywrap {
|
|||||||
nlohmann::json hyperparameters;
|
nlohmann::json hyperparameters;
|
||||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override {};
|
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override {};
|
||||||
std::vector<std::string> notes;
|
std::vector<std::string> notes;
|
||||||
|
bool xgboost = false;
|
||||||
private:
|
private:
|
||||||
PyWrap* pyWrap;
|
PyWrap* pyWrap;
|
||||||
std::string module;
|
std::string module;
|
||||||
|
@@ -5,5 +5,6 @@ namespace pywrap {
|
|||||||
XGBoost::XGBoost() : PyClassifier("xgboost", "XGBClassifier", true)
|
XGBoost::XGBoost() : PyClassifier("xgboost", "XGBClassifier", true)
|
||||||
{
|
{
|
||||||
validHyperparameters = { "tree_method", "early_stopping_rounds", "n_jobs" };
|
validHyperparameters = { "tree_method", "early_stopping_rounds", "n_jobs" };
|
||||||
|
xgboost = true;
|
||||||
}
|
}
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
@@ -3,14 +3,15 @@ if(ENABLE_TESTING)
|
|||||||
include_directories(
|
include_directories(
|
||||||
${PyClassifiers_SOURCE_DIR}
|
${PyClassifiers_SOURCE_DIR}
|
||||||
${PyClassifiers_SOURCE_DIR}/lib/Files
|
${PyClassifiers_SOURCE_DIR}/lib/Files
|
||||||
${PyClassifiers_SOURCE_DIR}/lib/mdlp
|
${PyClassifiers_SOURCE_DIR}/lib/mdlp/src
|
||||||
${PyClassifiers_SOURCE_DIR}/lib/json/include
|
${PyClassifiers_SOURCE_DIR}/lib/json/include
|
||||||
${Python3_INCLUDE_DIRS}
|
${Python3_INCLUDE_DIRS}
|
||||||
${TORCH_INCLUDE_DIRS}
|
${TORCH_INCLUDE_DIRS}
|
||||||
|
${CMAKE_BINARY_DIR}/configured_files/include
|
||||||
/usr/local/include
|
/usr/local/include
|
||||||
)
|
)
|
||||||
file(GLOB_RECURSE PyClassifiers_SOURCES "${PyClassifiers_SOURCE_DIR}/pyclfs/*.cc")
|
file(GLOB_RECURSE PyClassifiers_SOURCES "${PyClassifiers_SOURCE_DIR}/pyclfs/*.cc")
|
||||||
set(TEST_SOURCES_PYCLASSIFIERS TestPythonClassifiers.cc TestUtils.cc ${PyClassifiers_SOURCES})
|
set(TEST_SOURCES_PYCLASSIFIERS TestPythonClassifiers.cc TestUtils.cc ${PyClassifiers_SOURCES})
|
||||||
add_executable(${TEST_PYCLASSIFIERS} ${TEST_SOURCES_PYCLASSIFIERS})
|
add_executable(${TEST_PYCLASSIFIERS} ${TEST_SOURCES_PYCLASSIFIERS})
|
||||||
target_link_libraries(${TEST_PYCLASSIFIERS} PUBLIC "${TORCH_LIBRARIES}" ${Python3_LIBRARIES} ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy ArffFiles mdlp Catch2::Catch2WithMain)
|
target_link_libraries(${TEST_PYCLASSIFIERS} PUBLIC "${TORCH_LIBRARIES}" ${Python3_LIBRARIES} ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy ArffFiles fimdlp Catch2::Catch2WithMain)
|
||||||
endif(ENABLE_TESTING)
|
endif(ENABLE_TESTING)
|
@@ -33,8 +33,8 @@ TEST_CASE("Test Python Classifiers score", "[PyClassifiers]")
|
|||||||
{"RandomForest", new pywrap::RandomForest()}
|
{"RandomForest", new pywrap::RandomForest()}
|
||||||
};
|
};
|
||||||
map<std::string, std::string> versions = {
|
map<std::string, std::string> versions = {
|
||||||
{"ODTE", "1.0.0"},
|
{"ODTE", "1.0.0-1"},
|
||||||
{"STree", "1.3.2"},
|
{"STree", "1.4.0"},
|
||||||
{"SVC", "1.5.1"},
|
{"SVC", "1.5.1"},
|
||||||
{"RandomForest", "1.5.1"}
|
{"RandomForest", "1.5.1"}
|
||||||
};
|
};
|
||||||
@@ -116,33 +116,30 @@ TEST_CASE("XGBoost", "[PyClassifiers]")
|
|||||||
clf.setHyperparameters(hyperparameters);
|
clf.setHyperparameters(hyperparameters);
|
||||||
auto score = clf.score(raw.Xt, raw.yt);
|
auto score = clf.score(raw.Xt, raw.yt);
|
||||||
REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon));
|
REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||||
|
std::cout << "XGBoost score: " << score << std::endl;
|
||||||
}
|
}
|
||||||
// TEST_CASE("XGBoost predict proba", "[PyClassifiers]")
|
TEST_CASE("XGBoost predict proba", "[PyClassifiers]")
|
||||||
// {
|
|
||||||
// auto raw = RawDatasets("iris", true);
|
|
||||||
// auto clf = pywrap::XGBoost();
|
|
||||||
// clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
|
||||||
// // nlohmann::json hyperparameters = { "n_jobs=1" };
|
|
||||||
// // clf.setHyperparameters(hyperparameters);
|
|
||||||
// auto predict = clf.predict(raw.Xt);
|
|
||||||
// for (int row = 0; row < predict.size(0); row++) {
|
|
||||||
// auto sum = 0.0;
|
|
||||||
// for (int col = 0; col < predict.size(1); col++) {
|
|
||||||
// std::cout << std::setw(12) << std::setprecision(10) << predict[row][col].item<double>() << " ";
|
|
||||||
// sum += predict[row][col].item<int>();
|
|
||||||
// }
|
|
||||||
// std::cout << std::endl;
|
|
||||||
// // REQUIRE(sum == Catch::Approx(1.0).epsilon(raw.epsilon));
|
|
||||||
// }
|
|
||||||
// std::cout << predict << std::endl;
|
|
||||||
// }
|
|
||||||
TEST_CASE("PBC4cip", "[PyClassifiers]")
|
|
||||||
{
|
{
|
||||||
auto raw = RawDatasets("iris", true);
|
auto raw = RawDatasets("iris", true);
|
||||||
auto clf = pywrap::PBC4cip();
|
auto clf = pywrap::XGBoost();
|
||||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||||
nlohmann::json hyperparameters = { };
|
// nlohmann::json hyperparameters = { "n_jobs=1" };
|
||||||
clf.setHyperparameters(hyperparameters);
|
// clf.setHyperparameters(hyperparameters);
|
||||||
auto score = clf.score(raw.Xt, raw.yt);
|
auto predict_proba = clf.predict_proba(raw.Xt);
|
||||||
REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon));
|
auto predict = clf.predict(raw.Xt);
|
||||||
|
// std::cout << "Predict proba: " << predict_proba << std::endl;
|
||||||
|
// std::cout << "Predict proba size: " << predict_proba.sizes() << std::endl;
|
||||||
|
// assert(predict.size(0) == predict_proba.size(0));
|
||||||
|
for (int row = 0; row < predict_proba.size(0); row++) {
|
||||||
|
// auto sum = 0.0;
|
||||||
|
// std::cout << "Row " << std::setw(3) << row << ": ";
|
||||||
|
// for (int col = 0; col < predict_proba.size(1); col++) {
|
||||||
|
// std::cout << std::setw(9) << std::fixed << std::setprecision(7) << predict_proba[row][col].item<double>() << " ";
|
||||||
|
// sum += predict_proba[row][col].item<double>();
|
||||||
|
// }
|
||||||
|
// std::cout << " -> " << std::setw(9) << std::fixed << std::setprecision(7) << sum << " -> " << torch::argmax(predict_proba[row]).item<int>() << " = " << predict[row].item<int>() << std::endl;
|
||||||
|
// // REQUIRE(sum == Catch::Approx(1.0).epsilon(raw.epsilon));
|
||||||
|
REQUIRE(torch::argmax(predict_proba[row]).item<int>() == predict[row].item<int>());
|
||||||
|
REQUIRE(torch::sum(predict_proba[row]).item<double>() == Catch::Approx(1.0).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
}
|
}
|
Submodule tests/lib/Files deleted from a4329f5f9d
Reference in New Issue
Block a user