Add smoothing parameter for compatibility with BayesNet
This commit is contained in:
@@ -17,12 +17,12 @@ namespace pywrap {
|
||||
public:
|
||||
PyClassifier(const std::string& module, const std::string& className, const bool sklearn = false);
|
||||
virtual ~PyClassifier();
|
||||
PyClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override { return *this; };
|
||||
PyClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override { return *this; };
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override;
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y);
|
||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override { return *this; };
|
||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override { return *this; };
|
||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override { return *this; };
|
||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override { return *this; };
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); }; // Not implemented
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override { return torch::zeros({ 0, 0 }); } // Not implemented
|
||||
@@ -47,7 +47,7 @@ namespace pywrap {
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
protected:
|
||||
nlohmann::json hyperparameters;
|
||||
void trainModel(const torch::Tensor& weights) override {};
|
||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE) override {};
|
||||
std::vector<std::string> notes;
|
||||
private:
|
||||
PyWrap* pyWrap;
|
||||
|
Reference in New Issue
Block a user