update to BayesNet 1.0.3
This commit is contained in:
@@ -1,7 +1,7 @@
|
|||||||
cmake_minimum_required(VERSION 3.20)
|
cmake_minimum_required(VERSION 3.20)
|
||||||
|
|
||||||
project(PyClassifiers
|
project(PyClassifiers
|
||||||
VERSION 1.0.0
|
VERSION 1.0.1
|
||||||
DESCRIPTION "Python Classifiers Wrapper."
|
DESCRIPTION "Python Classifiers Wrapper."
|
||||||
HOMEPAGE_URL "https://github.com/rmontanana/pyclassifiers"
|
HOMEPAGE_URL "https://github.com/rmontanana/pyclassifiers"
|
||||||
LANGUAGES CXX
|
LANGUAGES CXX
|
||||||
@@ -68,9 +68,9 @@ add_git_submodule("lib/BayesNet")
|
|||||||
|
|
||||||
# Subdirectories
|
# Subdirectories
|
||||||
# --------------
|
# --------------
|
||||||
file(GLOB PyClassifiers_SOURCES CONFIGURE_DEPENDS ${PyClassifiers_SOURCE_DIR}/src/PyClassifiers/*.cc ${PyClassifiers_SOURCE_DIR}/src/PyClassifiers/*.hpp)
|
file(GLOB PyClassifiers_SOURCES CONFIGURE_DEPENDS ${PyClassifiers_SOURCE_DIR}/src/*.cc ${PyClassifiers_SOURCE_DIR}/src/*.hpp)
|
||||||
add_subdirectory(config)
|
add_subdirectory(config)
|
||||||
add_subdirectory(src/PyClassifiers)
|
add_subdirectory(src)
|
||||||
|
|
||||||
# Testing
|
# Testing
|
||||||
# -------
|
# -------
|
||||||
|
Submodule lib/BayesNet updated: f3b8150e2c...b8589bcd0a
@@ -1,7 +1,7 @@
|
|||||||
include_directories(
|
include_directories(
|
||||||
${PyClassifiers_SOURCE_DIR}/lib/Files
|
${PyClassifiers_SOURCE_DIR}/lib/Files
|
||||||
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/lib/json/include
|
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/lib/json/include
|
||||||
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/src/BayesNet
|
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/src
|
||||||
${CMAKE_BINARY_DIR}/configured_files/include
|
${CMAKE_BINARY_DIR}/configured_files/include
|
||||||
${Python3_INCLUDE_DIRS}
|
${Python3_INCLUDE_DIRS}
|
||||||
${TORCH_INCLUDE_DIRS}
|
${TORCH_INCLUDE_DIRS}
|
@@ -24,9 +24,12 @@ namespace pywrap {
|
|||||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override { return *this; };
|
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override { return *this; };
|
||||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override { return *this; };
|
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override { return *this; };
|
||||||
torch::Tensor predict(torch::Tensor& X) override;
|
torch::Tensor predict(torch::Tensor& X) override;
|
||||||
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); };
|
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); }; // Not implemented
|
||||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override { return 0.0; };
|
torch::Tensor predict_proba(torch::Tensor& X) override { return torch::zeros({ 0, 0 }); } // Not implemented
|
||||||
|
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int >>& X) override { return std::vector<std::vector<double>>(); }; // Not implemented
|
||||||
|
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override { return 0.0; }; // Not implemented
|
||||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||||
|
int getClassNumStates() const override { return 0; };
|
||||||
std::string version();
|
std::string version();
|
||||||
std::string callMethodString(const std::string& method);
|
std::string callMethodString(const std::string& method);
|
||||||
int callMethodSumOfItems(const std::string& method) const;
|
int callMethodSumOfItems(const std::string& method) const;
|
@@ -1,11 +1,11 @@
|
|||||||
if(ENABLE_TESTING)
|
if(ENABLE_TESTING)
|
||||||
set(TEST_PYCLASSIFIERS "unit_tests_pyclassifiers")
|
set(TEST_PYCLASSIFIERS "unit_tests_pyclassifiers")
|
||||||
include_directories(
|
include_directories(
|
||||||
${PyClassifiers_SOURCE_DIR}/src/PyClassifiers
|
${PyClassifiers_SOURCE_DIR}/src/
|
||||||
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/lib/json/include
|
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/lib/json/include
|
||||||
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/lib/Files
|
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/lib/Files
|
||||||
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/lib/mdlp
|
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/lib/mdlp
|
||||||
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/src/BayesNet
|
${PyClassifiers_SOURCE_DIR}/lib/BayesNet/src
|
||||||
${Python3_INCLUDE_DIRS}
|
${Python3_INCLUDE_DIRS}
|
||||||
${TORCH_INCLUDE_DIRS}
|
${TORCH_INCLUDE_DIRS}
|
||||||
${CMAKE_BINARY_DIR}/configured_files/include
|
${CMAKE_BINARY_DIR}/configured_files/include
|
||||||
|
@@ -26,36 +26,22 @@ TEST_CASE("Test Python Classifiers score", "[PyClassifiers]")
|
|||||||
{{"iris", "STree"}, 0.99333}, {{"iris", "ODTE"}, 0.98667}, {{"iris", "SVC"}, 0.97333}, {{"iris", "RandomForest"}, 1.0},
|
{{"iris", "STree"}, 0.99333}, {{"iris", "ODTE"}, 0.98667}, {{"iris", "SVC"}, 0.97333}, {{"iris", "RandomForest"}, 1.0},
|
||||||
};
|
};
|
||||||
|
|
||||||
std::string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
std::string name = GENERATE("ODTE", "STree", "SVC", "RandomForest");
|
||||||
auto raw = RawDatasets(file_name, false);
|
map<std::string, pywrap::PyClassifier*> models = {
|
||||||
|
{"ODTE", new pywrap::ODTE()},
|
||||||
SECTION("Test STree classifier (" + file_name + ")")
|
{"STree", new pywrap::STree()},
|
||||||
|
{"SVC", new pywrap::SVC()},
|
||||||
|
{"RandomForest", new pywrap::RandomForest()}
|
||||||
|
};
|
||||||
|
SECTION("Test Python Classifier " + name + " score ")
|
||||||
{
|
{
|
||||||
auto clf = pywrap::STree();
|
for (auto file_name : { "glass", "iris", "ecoli", "diabetes" }) {
|
||||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
auto raw = RawDatasets(file_name, false);
|
||||||
auto score = clf.score(raw.Xt, raw.yt);
|
auto clf = models[name];
|
||||||
REQUIRE(score == Catch::Approx(scores[{file_name, "STree"}]).epsilon(raw.epsilon));
|
clf->fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||||
}
|
auto score = clf->score(raw.Xt, raw.yt);
|
||||||
SECTION("Test ODTE classifier (" + file_name + ")")
|
REQUIRE(score == Catch::Approx(scores[{file_name, name}]).epsilon(raw.epsilon));
|
||||||
{
|
}
|
||||||
auto clf = pywrap::ODTE();
|
|
||||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
|
||||||
auto score = clf.score(raw.Xt, raw.yt);
|
|
||||||
REQUIRE(score == Catch::Approx(scores[{file_name, "ODTE"}]).epsilon(raw.epsilon));
|
|
||||||
}
|
|
||||||
SECTION("Test SVC classifier (" + file_name + ")")
|
|
||||||
{
|
|
||||||
auto clf = pywrap::SVC();
|
|
||||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
|
||||||
auto score = clf.score(raw.Xt, raw.yt);
|
|
||||||
REQUIRE(score == Catch::Approx(scores[{file_name, "SVC"}]).epsilon(raw.epsilon));
|
|
||||||
}
|
|
||||||
SECTION("Test RandomForest classifier (" + file_name + ")")
|
|
||||||
{
|
|
||||||
auto clf = pywrap::RandomForest();
|
|
||||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
|
||||||
auto score = clf.score(raw.Xt, raw.yt);
|
|
||||||
REQUIRE(score == Catch::Approx(scores[{file_name, "RandomForest"}]).epsilon(raw.epsilon));
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
TEST_CASE("Classifiers features", "[PyClassifiers]")
|
TEST_CASE("Classifiers features", "[PyClassifiers]")
|
||||||
@@ -74,13 +60,13 @@ TEST_CASE("Get num features & num edges", "[PyClassifiers]")
|
|||||||
REQUIRE(clf.getNumberOfNodes() == 10);
|
REQUIRE(clf.getNumberOfNodes() == 10);
|
||||||
REQUIRE(clf.getNumberOfEdges() == 10);
|
REQUIRE(clf.getNumberOfEdges() == 10);
|
||||||
}
|
}
|
||||||
TEST_CASE("XGBoost", "[PyClassifiers]")
|
// TEST_CASE("XGBoost", "[PyClassifiers]")
|
||||||
{
|
// {
|
||||||
auto raw = RawDatasets("iris", true);
|
// auto raw = RawDatasets("iris", true);
|
||||||
auto clf = pywrap::XGBoost();
|
// auto clf = pywrap::XGBoost();
|
||||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
// clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||||
nlohmann::json hyperparameters = { "n_jobs=1" };
|
// nlohmann::json hyperparameters = { "n_jobs=1" };
|
||||||
clf.setHyperparameters(hyperparameters);
|
// clf.setHyperparameters(hyperparameters);
|
||||||
auto score = clf.score(raw.Xt, raw.yt);
|
// auto score = clf.score(raw.Xt, raw.yt);
|
||||||
REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon));
|
// REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||||
}
|
// }
|
Reference in New Issue
Block a user