Fix memory management vulnerabilities

This commit is contained in:
2025-07-03 19:53:00 +02:00
parent 2fcef1a0de
commit 91225207f2
7 changed files with 731 additions and 130 deletions

View File

@@ -15,25 +15,91 @@ namespace pywrap {
}
np::ndarray tensor2numpy(torch::Tensor& X)
{
int m = X.size(0);
int n = X.size(1);
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), bp::make_tuple(m, n), bp::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), bp::object());
Xn = Xn.transpose();
// Validate tensor dimensions
if (X.dim() != 2) {
throw std::runtime_error("tensor2numpy: Expected 2D tensor, got " + std::to_string(X.dim()) + "D");
}
// Ensure tensor is contiguous and in the expected format
X = X.contiguous();
if (X.dtype() != torch::kFloat32) {
throw std::runtime_error("tensor2numpy: Expected float32 tensor");
}
int64_t m = X.size(0);
int64_t n = X.size(1);
// Calculate correct strides in bytes
int64_t element_size = X.element_size();
int64_t stride0 = X.stride(0) * element_size;
int64_t stride1 = X.stride(1) * element_size;
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(),
bp::make_tuple(m, n),
bp::make_tuple(stride0, stride1),
bp::object());
// Don't transpose - tensor is already in correct [samples, features] format
return Xn;
}
np::ndarray tensorInt2numpy(torch::Tensor& X)
{
int m = X.size(0);
int n = X.size(1);
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<int>(), bp::make_tuple(m, n), bp::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), bp::object());
Xn = Xn.transpose();
//std::cout << "Transposed array:\n" << boost::python::extract<char const*>(boost::python::str(Xn)) << std::endl;
// Validate tensor dimensions
if (X.dim() != 2) {
throw std::runtime_error("tensorInt2numpy: Expected 2D tensor, got " + std::to_string(X.dim()) + "D");
}
// Ensure tensor is contiguous and in the expected format
X = X.contiguous();
if (X.dtype() != torch::kInt32) {
throw std::runtime_error("tensorInt2numpy: Expected int32 tensor");
}
int64_t m = X.size(0);
int64_t n = X.size(1);
// Calculate correct strides in bytes
int64_t element_size = X.element_size();
int64_t stride0 = X.stride(0) * element_size;
int64_t stride1 = X.stride(1) * element_size;
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<int>(),
bp::make_tuple(m, n),
bp::make_tuple(stride0, stride1),
bp::object());
// Don't transpose - tensor is already in correct [samples, features] format
return Xn;
}
std::pair<np::ndarray, np::ndarray> tensors2numpy(torch::Tensor& X, torch::Tensor& y)
{
int n = X.size(1);
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), bp::make_tuple(n), bp::make_tuple(sizeof(y.dtype()) * 2), bp::object());
// Validate y tensor dimensions
if (y.dim() != 1) {
throw std::runtime_error("tensors2numpy: Expected 1D y tensor, got " + std::to_string(y.dim()) + "D");
}
// Validate dimensions match
if (X.size(0) != y.size(0)) {
throw std::runtime_error("tensors2numpy: X and y dimension mismatch: X[" +
std::to_string(X.size(0)) + "], y[" + std::to_string(y.size(0)) + "]");
}
// Ensure y tensor is contiguous
y = y.contiguous();
if (y.dtype() != torch::kInt32) {
throw std::runtime_error("tensors2numpy: Expected int32 y tensor");
}
int64_t n = y.size(0);
int64_t element_size = y.element_size();
int64_t stride = y.stride(0) * element_size;
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(),
bp::make_tuple(n),
bp::make_tuple(stride),
bp::object());
if (X.dtype() == torch::kInt32) {
return { tensorInt2numpy(X), yn };
}
@@ -63,12 +129,21 @@ namespace pywrap {
if (!fitted && hyperparameters.size() > 0) {
pyWrap->setHyperparameters(id, hyperparameters);
}
auto [Xn, yn] = tensors2numpy(X, y);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
CPyObject yp = bp::incref(bp::object(yn).ptr());
pyWrap->fit(id, Xp, yp);
fitted = true;
return *this;
try {
auto [Xn, yn] = tensors2numpy(X, y);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
CPyObject yp = bp::incref(bp::object(yn).ptr());
pyWrap->fit(id, Xp, yp);
fitted = true;
return *this;
}
catch (const std::exception& e) {
// Clear any Python errors before re-throwing
if (PyErr_Occurred()) {
PyErr_Clear();
}
throw;
}
}
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const bayesnet::Smoothing_t smoothing)
{
@@ -76,76 +151,148 @@ namespace pywrap {
}
torch::Tensor PyClassifier::predict(torch::Tensor& X)
{
int dimension = X.size(1);
CPyObject Xp;
if (X.dtype() == torch::kInt32) {
auto Xn = tensorInt2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
} else {
auto Xn = tensor2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
try {
CPyObject Xp;
if (X.dtype() == torch::kInt32) {
auto Xn = tensorInt2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
} else {
auto Xn = tensor2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
}
// Use RAII guard for automatic cleanup
PyObjectGuard incoming(pyWrap->predict(id, Xp));
if (!incoming) {
throw std::runtime_error("predict() returned NULL for " + module + ":" + className);
}
bp::handle<> handle(incoming.release()); // Transfer ownership to boost
bp::object object(handle);
np::ndarray prediction = np::from_object(object);
if (PyErr_Occurred()) {
PyErr_Clear();
throw std::runtime_error("Error creating numpy object for predict in " + module + ":" + className);
}
// Validate numpy array
if (prediction.get_nd() != 1) {
throw std::runtime_error("Expected 1D prediction array, got " + std::to_string(prediction.get_nd()) + "D");
}
// Safe type conversion with validation
std::vector<int> vPrediction;
if (xgboost) {
// Validate data type for XGBoost (typically returns long)
if (prediction.get_dtype() == np::dtype::get_builtin<long>()) {
long* data = reinterpret_cast<long*>(prediction.get_data());
vPrediction.reserve(prediction.shape(0));
for (int i = 0; i < prediction.shape(0); ++i) {
vPrediction.push_back(static_cast<int>(data[i]));
}
} else {
throw std::runtime_error("XGBoost prediction: unexpected data type");
}
} else {
// Validate data type for other classifiers (typically returns int)
if (prediction.get_dtype() == np::dtype::get_builtin<int>()) {
int* data = reinterpret_cast<int*>(prediction.get_data());
vPrediction.assign(data, data + prediction.shape(0));
} else {
throw std::runtime_error("Prediction: unexpected data type");
}
}
return torch::tensor(vPrediction, torch::kInt32);
}
PyObject* incoming = pyWrap->predict(id, Xp);
bp::handle<> handle(incoming);
bp::object object(handle);
np::ndarray prediction = np::from_object(object);
if (PyErr_Occurred()) {
PyErr_Print();
throw std::runtime_error("Error creating object for predict in " + module + " and class " + className);
}
if (xgboost) {
long* data = reinterpret_cast<long*>(prediction.get_data());
std::vector<int> vPrediction(data, data + prediction.shape(0));
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
Py_XDECREF(incoming);
return resultTensor;
} else {
int* data = reinterpret_cast<int*>(prediction.get_data());
std::vector<int> vPrediction(data, data + prediction.shape(0));
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
Py_XDECREF(incoming);
return resultTensor;
catch (const std::exception& e) {
// Clear any Python errors before re-throwing
if (PyErr_Occurred()) {
PyErr_Clear();
}
throw;
}
}
torch::Tensor PyClassifier::predict_proba(torch::Tensor& X)
{
int dimension = X.size(1);
CPyObject Xp;
if (X.dtype() == torch::kInt32) {
auto Xn = tensorInt2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
} else {
auto Xn = tensor2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
try {
CPyObject Xp;
if (X.dtype() == torch::kInt32) {
auto Xn = tensorInt2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
} else {
auto Xn = tensor2numpy(X);
Xp = bp::incref(bp::object(Xn).ptr());
}
// Use RAII guard for automatic cleanup
PyObjectGuard incoming(pyWrap->predict_proba(id, Xp));
if (!incoming) {
throw std::runtime_error("predict_proba() returned NULL for " + module + ":" + className);
}
bp::handle<> handle(incoming.release()); // Transfer ownership to boost
bp::object object(handle);
np::ndarray prediction = np::from_object(object);
if (PyErr_Occurred()) {
PyErr_Clear();
throw std::runtime_error("Error creating numpy object for predict_proba in " + module + ":" + className);
}
// Validate numpy array dimensions
if (prediction.get_nd() != 2) {
throw std::runtime_error("Expected 2D probability array, got " + std::to_string(prediction.get_nd()) + "D");
}
int64_t rows = prediction.shape(0);
int64_t cols = prediction.shape(1);
// Safe type conversion with validation
if (xgboost) {
// Validate data type for XGBoost (typically returns float)
if (prediction.get_dtype() == np::dtype::get_builtin<float>()) {
float* data = reinterpret_cast<float*>(prediction.get_data());
std::vector<float> vPrediction(data, data + rows * cols);
return torch::tensor(vPrediction, torch::kFloat32).reshape({rows, cols});
} else {
throw std::runtime_error("XGBoost predict_proba: unexpected data type");
}
} else {
// Validate data type for other classifiers (typically returns double)
if (prediction.get_dtype() == np::dtype::get_builtin<double>()) {
double* data = reinterpret_cast<double*>(prediction.get_data());
std::vector<double> vPrediction(data, data + rows * cols);
return torch::tensor(vPrediction, torch::kFloat64).reshape({rows, cols});
} else {
throw std::runtime_error("predict_proba: unexpected data type");
}
}
}
PyObject* incoming = pyWrap->predict_proba(id, Xp);
bp::handle<> handle(incoming);
bp::object object(handle);
np::ndarray prediction = np::from_object(object);
if (PyErr_Occurred()) {
PyErr_Print();
throw std::runtime_error("Error creating object for predict_proba in " + module + " and class " + className);
}
if (xgboost) {
float* data = reinterpret_cast<float*>(prediction.get_data());
std::vector<float> vPrediction(data, data + prediction.shape(0) * prediction.shape(1));
auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) });
Py_XDECREF(incoming);
return resultTensor;
} else {
double* data = reinterpret_cast<double*>(prediction.get_data());
std::vector<double> vPrediction(data, data + prediction.shape(0) * prediction.shape(1));
auto resultTensor = torch::tensor(vPrediction, torch::kFloat64).reshape({ prediction.shape(0), prediction.shape(1) });
Py_XDECREF(incoming);
return resultTensor;
catch (const std::exception& e) {
// Clear any Python errors before re-throwing
if (PyErr_Occurred()) {
PyErr_Clear();
}
throw;
}
}
float PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
{
auto [Xn, yn] = tensors2numpy(X, y);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
CPyObject yp = bp::incref(bp::object(yn).ptr());
return pyWrap->score(id, Xp, yp);
try {
auto [Xn, yn] = tensors2numpy(X, y);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
CPyObject yp = bp::incref(bp::object(yn).ptr());
return pyWrap->score(id, Xp, yp);
}
catch (const std::exception& e) {
// Clear any Python errors before re-throwing
if (PyErr_Occurred()) {
PyErr_Clear();
}
throw;
}
}
void PyClassifier::setHyperparameters(const nlohmann::json& hyperparameters)
{

View File

@@ -27,13 +27,28 @@ namespace pywrap {
private:
PyObject* p;
public:
CPyObject() : p(NULL)
CPyObject() : p(nullptr)
{
}
CPyObject(PyObject* _p) : p(_p)
{
}
// Copy constructor
CPyObject(const CPyObject& other) : p(other.p)
{
if (p) {
Py_INCREF(p);
}
}
// Move constructor
CPyObject(CPyObject&& other) noexcept : p(other.p)
{
other.p = nullptr;
}
~CPyObject()
{
Release();
@@ -44,7 +59,11 @@ namespace pywrap {
}
PyObject* setObject(PyObject* _p)
{
return (p = _p);
if (p != _p) {
Release(); // Release old reference
p = _p;
}
return p;
}
PyObject* AddRef()
{
@@ -57,31 +76,157 @@ namespace pywrap {
{
if (p) {
Py_XDECREF(p);
p = nullptr;
}
p = NULL;
}
PyObject* operator ->()
{
return p;
}
bool is()
bool is() const
{
return p ? true : false;
return p != nullptr;
}
// Check if object is valid
bool isValid() const
{
return p != nullptr;
}
operator PyObject* ()
{
return p;
}
PyObject* operator = (PyObject* pp)
// Copy assignment operator
CPyObject& operator=(const CPyObject& other)
{
p = pp;
if (this != &other) {
Release(); // Release current reference
p = other.p;
if (p) {
Py_INCREF(p); // Add reference to new object
}
}
return *this;
}
// Move assignment operator
CPyObject& operator=(CPyObject&& other) noexcept
{
if (this != &other) {
Release(); // Release current reference
p = other.p;
other.p = nullptr;
}
return *this;
}
// Assignment from PyObject* - DEPRECATED, use setObject() instead
PyObject* operator=(PyObject* pp)
{
setObject(pp);
return p;
}
operator bool()
explicit operator bool() const
{
return p ? true : false;
return p != nullptr;
}
};
// RAII guard for PyObject* - safer alternative to manual reference management
class PyObjectGuard {
private:
PyObject* obj_;
bool owns_reference_;
public:
// Constructor takes ownership of a new reference
explicit PyObjectGuard(PyObject* obj = nullptr) : obj_(obj), owns_reference_(true) {}
// Constructor for borrowed references
PyObjectGuard(PyObject* obj, bool borrow) : obj_(obj), owns_reference_(!borrow) {
if (borrow && obj_) {
Py_INCREF(obj_);
owns_reference_ = true;
}
}
// Non-copyable to prevent accidental reference issues
PyObjectGuard(const PyObjectGuard&) = delete;
PyObjectGuard& operator=(const PyObjectGuard&) = delete;
// Movable
PyObjectGuard(PyObjectGuard&& other) noexcept
: obj_(other.obj_), owns_reference_(other.owns_reference_) {
other.obj_ = nullptr;
other.owns_reference_ = false;
}
PyObjectGuard& operator=(PyObjectGuard&& other) noexcept {
if (this != &other) {
reset();
obj_ = other.obj_;
owns_reference_ = other.owns_reference_;
other.obj_ = nullptr;
other.owns_reference_ = false;
}
return *this;
}
~PyObjectGuard() {
reset();
}
// Reset to nullptr, releasing current reference if owned
void reset(PyObject* new_obj = nullptr) {
if (owns_reference_ && obj_) {
Py_DECREF(obj_);
}
obj_ = new_obj;
owns_reference_ = (new_obj != nullptr);
}
// Release ownership and return the object
PyObject* release() {
PyObject* result = obj_;
obj_ = nullptr;
owns_reference_ = false;
return result;
}
// Get the raw pointer (does not transfer ownership)
PyObject* get() const {
return obj_;
}
// Check if valid
bool isValid() const {
return obj_ != nullptr;
}
explicit operator bool() const {
return obj_ != nullptr;
}
// Access operators
PyObject* operator->() const {
return obj_;
}
// Implicit conversion to PyObject* for API calls (does not transfer ownership)
operator PyObject*() const {
return obj_;
}
};
// Helper function to create a PyObjectGuard from a borrowed reference
inline PyObjectGuard borrowReference(PyObject* obj) {
return PyObjectGuard(obj, true);
}
// Helper function to create a PyObjectGuard from a new reference
inline PyObjectGuard newReference(PyObject* obj) {
return PyObjectGuard(obj);
}
} /* namespace pywrap */
#endif

View File

@@ -237,12 +237,12 @@ namespace pywrap {
CPyObject method = PyUnicode_FromString(name.c_str());
try {
if (!(result = PyObject_CallMethodObjArgs(instance, method.getObject(), X.getObject(), NULL)))
errorAbort("Couldn't call method predict");
errorAbort("Couldn't call method " + name);
}
catch (const std::exception& e) {
errorAbort(e.what());
}
Py_INCREF(result);
// PyObject_CallMethodObjArgs already returns a new reference, no need for Py_INCREF
return result; // Caller must free this object
}
double PyWrap::score(const clfId_t id, CPyObject& X, CPyObject& y)