Add be_hyperparams hyperparameter to ODTE
This commit is contained in:
@@ -3,7 +3,7 @@
|
|||||||
namespace pywrap {
|
namespace pywrap {
|
||||||
ODTE::ODTE() : PyClassifier("odte", "Odte")
|
ODTE::ODTE() : PyClassifier("odte", "Odte")
|
||||||
{
|
{
|
||||||
validHyperparameters = { "n_jobs", "n_estimators", "random_state" };
|
validHyperparameters = { "n_jobs", "n_estimators", "random_state", "be_hyperparams" };
|
||||||
}
|
}
|
||||||
int ODTE::getNumberOfNodes() const
|
int ODTE::getNumberOfNodes() const
|
||||||
{
|
{
|
||||||
|
@@ -115,3 +115,22 @@ TEST_CASE("XGBoost", "[PyClassifiers]")
|
|||||||
auto score = clf.score(raw.Xt, raw.yt);
|
auto score = clf.score(raw.Xt, raw.yt);
|
||||||
REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon));
|
REQUIRE(score == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||||
}
|
}
|
||||||
|
TEST_CASE("XGBoost predict proba", "[PyClassifiers]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
auto clf = pywrap::XGBoost();
|
||||||
|
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||||
|
nlohmann::json hyperparameters = { "n_jobs=1" };
|
||||||
|
clf.setHyperparameters(hyperparameters);
|
||||||
|
auto predict = clf.predict(raw.Xt);
|
||||||
|
// for (int row = 0; row < predict.size(0); row++) {
|
||||||
|
// auto sum = 0.0;
|
||||||
|
// for (int col = 0; col < predict.size(1); col++) {
|
||||||
|
// std::cout << std::setw(12) << std::setprecision(10) << predict[row][col].item<double>() << " ";
|
||||||
|
// sum += predict[row][col].item<int>();
|
||||||
|
// }
|
||||||
|
// std::cout << std::endl;
|
||||||
|
// // REQUIRE(sum == Catch::Approx(1.0).epsilon(raw.epsilon));
|
||||||
|
// }
|
||||||
|
std::cout << predict << std::endl;
|
||||||
|
}
|
Reference in New Issue
Block a user