Refactor library structure

This commit is contained in:
2024-03-08 22:20:38 +01:00
parent 5bec9d4d2f
commit 7534cba7e6
23 changed files with 22 additions and 152 deletions

96
pyclfs/PyClassifier.cc Normal file
View File

@@ -0,0 +1,96 @@
#include "PyClassifier.h"
namespace pywrap {
namespace bp = boost::python;
namespace np = boost::python::numpy;
PyClassifier::PyClassifier(const std::string& module, const std::string& className, bool sklearn) : module(module), className(className), sklearn(sklearn), fitted(false)
{
// This id allows to have more than one instance of the same module/class
id = reinterpret_cast<clfId_t>(this);
pyWrap = PyWrap::GetInstance();
pyWrap->importClass(id, module, className);
}
PyClassifier::~PyClassifier()
{
pyWrap->clean(id);
}
np::ndarray tensor2numpy(torch::Tensor& X)
{
int m = X.size(0);
int n = X.size(1);
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), bp::make_tuple(m, n), bp::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), bp::object());
Xn = Xn.transpose();
return Xn;
}
std::pair<np::ndarray, np::ndarray> tensors2numpy(torch::Tensor& X, torch::Tensor& y)
{
int n = X.size(1);
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), bp::make_tuple(n), bp::make_tuple(sizeof(y.dtype()) * 2), bp::object());
return { tensor2numpy(X), yn };
}
std::string PyClassifier::version()
{
if (sklearn) {
return pyWrap->sklearnVersion();
}
return pyWrap->version(id);
}
std::string PyClassifier::callMethodString(const std::string& method)
{
return pyWrap->callMethodString(id, method);
}
int PyClassifier::callMethodSumOfItems(const std::string& method) const
{
return pyWrap->callMethodSumOfItems(id, method);
}
int PyClassifier::callMethodInt(const std::string& method) const
{
return pyWrap->callMethodInt(id, method);
}
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y)
{
if (!fitted && hyperparameters.size() > 0) {
pyWrap->setHyperparameters(id, hyperparameters);
}
auto [Xn, yn] = tensors2numpy(X, y);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
CPyObject yp = bp::incref(bp::object(yn).ptr());
pyWrap->fit(id, Xp, yp);
fitted = true;
return *this;
}
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
return fit(X, y);
}
torch::Tensor PyClassifier::predict(torch::Tensor& X)
{
int dimension = X.size(1);
auto Xn = tensor2numpy(X);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
PyObject* incoming = pyWrap->predict(id, Xp);
bp::handle<> handle(incoming);
bp::object object(handle);
np::ndarray prediction = np::from_object(object);
if (PyErr_Occurred()) {
PyErr_Print();
throw std::runtime_error("Error creating object for predict in " + module + " and class " + className);
}
int* data = reinterpret_cast<int*>(prediction.get_data());
std::vector<int> vPrediction(data, data + prediction.shape(0));
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
Py_XDECREF(incoming);
return resultTensor;
}
float PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
{
auto [Xn, yn] = tensors2numpy(X, y);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
CPyObject yp = bp::incref(bp::object(yn).ptr());
float result = pyWrap->score(id, Xp, yp);
return result;
}
void PyClassifier::setHyperparameters(const nlohmann::json& hyperparameters)
{
this->hyperparameters = hyperparameters;
}
} /* namespace pywrap */