Fix fit & predict with discretized datasets
This commit is contained in:
Submodule lib/catch2 updated: cd8f97e6c7...4e8d92bf02
2
lib/json
2
lib/json
Submodule lib/json updated: 377c767aa1...8c391e04fe
2
lib/mdlp
2
lib/mdlp
Submodule lib/mdlp updated: 5708dc3de9...236d1b2f8b
@@ -21,10 +21,22 @@ namespace pywrap {
|
|||||||
Xn = Xn.transpose();
|
Xn = Xn.transpose();
|
||||||
return Xn;
|
return Xn;
|
||||||
}
|
}
|
||||||
|
np::ndarray tensorInt2numpy(torch::Tensor& X)
|
||||||
|
{
|
||||||
|
int m = X.size(0);
|
||||||
|
int n = X.size(1);
|
||||||
|
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<int>(), bp::make_tuple(m, n), bp::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), bp::object());
|
||||||
|
Xn = Xn.transpose();
|
||||||
|
//std::cout << "Transposed array:\n" << boost::python::extract<char const*>(boost::python::str(Xn)) << std::endl;
|
||||||
|
return Xn;
|
||||||
|
}
|
||||||
std::pair<np::ndarray, np::ndarray> tensors2numpy(torch::Tensor& X, torch::Tensor& y)
|
std::pair<np::ndarray, np::ndarray> tensors2numpy(torch::Tensor& X, torch::Tensor& y)
|
||||||
{
|
{
|
||||||
int n = X.size(1);
|
int n = X.size(1);
|
||||||
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), bp::make_tuple(n), bp::make_tuple(sizeof(y.dtype()) * 2), bp::object());
|
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), bp::make_tuple(n), bp::make_tuple(sizeof(y.dtype()) * 2), bp::object());
|
||||||
|
if (X.dtype() == torch::kInt32) {
|
||||||
|
return { tensorInt2numpy(X), yn };
|
||||||
|
}
|
||||||
return { tensor2numpy(X), yn };
|
return { tensor2numpy(X), yn };
|
||||||
}
|
}
|
||||||
std::string PyClassifier::version()
|
std::string PyClassifier::version()
|
||||||
@@ -65,8 +77,14 @@ namespace pywrap {
|
|||||||
torch::Tensor PyClassifier::predict(torch::Tensor& X)
|
torch::Tensor PyClassifier::predict(torch::Tensor& X)
|
||||||
{
|
{
|
||||||
int dimension = X.size(1);
|
int dimension = X.size(1);
|
||||||
auto Xn = tensor2numpy(X);
|
CPyObject Xp;
|
||||||
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
|
if (X.dtype() == torch::kInt32) {
|
||||||
|
auto Xn = tensorInt2numpy(X);
|
||||||
|
Xp = bp::incref(bp::object(Xn).ptr());
|
||||||
|
} else {
|
||||||
|
auto Xn = tensor2numpy(X);
|
||||||
|
Xp = bp::incref(bp::object(Xn).ptr());
|
||||||
|
}
|
||||||
PyObject* incoming = pyWrap->predict(id, Xp);
|
PyObject* incoming = pyWrap->predict(id, Xp);
|
||||||
bp::handle<> handle(incoming);
|
bp::handle<> handle(incoming);
|
||||||
bp::object object(handle);
|
bp::object object(handle);
|
||||||
|
@@ -13,7 +13,7 @@
|
|||||||
#include "pyclfs/ODTE.h"
|
#include "pyclfs/ODTE.h"
|
||||||
#include "TestUtils.h"
|
#include "TestUtils.h"
|
||||||
|
|
||||||
const std::string ACTUAL_VERSION = "1.0.4";
|
const std::string ACTUAL_VERSION = "1.0.5";
|
||||||
|
|
||||||
TEST_CASE("Test Python Classifiers score", "[PyClassifiers]")
|
TEST_CASE("Test Python Classifiers score", "[PyClassifiers]")
|
||||||
{
|
{
|
||||||
@@ -60,19 +60,27 @@ TEST_CASE("Test Python Classifiers score", "[PyClassifiers]")
|
|||||||
}
|
}
|
||||||
TEST_CASE("Classifiers features", "[PyClassifiers]")
|
TEST_CASE("Classifiers features", "[PyClassifiers]")
|
||||||
{
|
{
|
||||||
auto raw = RawDatasets("iris", true);
|
auto raw = RawDatasets("iris", false);
|
||||||
auto clf = pywrap::STree();
|
auto clf = pywrap::STree();
|
||||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||||
REQUIRE(clf.getNumberOfNodes() == 3);
|
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||||
REQUIRE(clf.getNumberOfEdges() == 2);
|
REQUIRE(clf.getNumberOfEdges() == 3);
|
||||||
}
|
}
|
||||||
TEST_CASE("Get num features & num edges", "[PyClassifiers]")
|
TEST_CASE("Get num features & num edges", "[PyClassifiers]")
|
||||||
{
|
{
|
||||||
auto raw = RawDatasets("iris", true);
|
auto raw = RawDatasets("iris", false);
|
||||||
auto clf = pywrap::ODTE();
|
auto clf = pywrap::ODTE();
|
||||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||||
REQUIRE(clf.getNumberOfNodes() == 10);
|
REQUIRE(clf.getNumberOfNodes() == 50);
|
||||||
REQUIRE(clf.getNumberOfEdges() == 10);
|
REQUIRE(clf.getNumberOfEdges() == 30);
|
||||||
|
}
|
||||||
|
TEST_CASE("Classifier with discretized dataset", "[PyClassifiers]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
auto clf = pywrap::SVC();
|
||||||
|
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||||
|
auto score = clf.score(raw.Xt, raw.yt);
|
||||||
|
REQUIRE(score == Catch::Approx(0.96667f).epsilon(raw.epsilon));
|
||||||
}
|
}
|
||||||
// TEST_CASE("XGBoost", "[PyClassifiers]")
|
// TEST_CASE("XGBoost", "[PyClassifiers]")
|
||||||
// {
|
// {
|
||||||
|
Reference in New Issue
Block a user