Files
PyWrap/src/PyClassifier.cc

73 lines
2.9 KiB
C++

#include "PyClassifier.h"
#include "numpy/arrayobject.h"
namespace pywrap {
namespace bp = boost::python;
namespace np = boost::python::numpy;
PyClassifier::PyClassifier(const std::string& module, const std::string& className) : module(module), className(className)
{
pyWrap = PyWrap::GetInstance();
pyWrap->importClass(module, className);
}
PyClassifier::~PyClassifier()
{
pyWrap->clean(module, className);
}
np::ndarray tensor2numpy(torch::Tensor& X)
{
int m = X.size(0);
int n = X.size(1);
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), bp::make_tuple(m, n), bp::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), bp::object());
Xn = Xn.transpose();
return Xn;
}
std::pair<np::ndarray, np::ndarray> tensors2numpy(torch::Tensor& X, torch::Tensor& y)
{
int n = X.size(1);
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), bp::make_tuple(n), bp::make_tuple(sizeof(y.dtype()) * 2), bp::object());
return { tensor2numpy(X), yn };
}
std::string PyClassifier::version()
{
return pyWrap->version(module, className);
}
std::string PyClassifier::callMethodString(const std::string& method)
{
return pyWrap->callMethodString(module, className, method);
}
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
auto [Xn, yn] = tensors2numpy(X, y);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
CPyObject yp = bp::incref(bp::object(yn).ptr());
pyWrap->fit(module, this->className, Xp, yp);
return *this;
}
torch::Tensor PyClassifier::predict(torch::Tensor& X)
{
int dimension = X.size(1);
auto Xn = tensor2numpy(X);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
PyObject* incoming = pyWrap->predict(module, className, Xp);
bp::handle<> handle(incoming);
bp::object object(handle);
np::ndarray prediction = np::from_object(object);
if (PyErr_Occurred()) {
PyErr_Print();
throw std::runtime_error("Error creating object for predict in " + module + " and class " + className);
}
int* data = reinterpret_cast<int*>(prediction.get_data());
std::vector<int> v1(data, data + prediction.shape(0));
auto resultTensor = torch::tensor(v1, torch::kInt32);
Py_XDECREF(incoming);
return resultTensor;
}
double PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
{
auto [Xn, yn] = tensors2numpy(X, y);
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
CPyObject yp = bp::incref(bp::object(yn).ptr());
auto result = pyWrap->score(module, className, Xp, yp);
return result;
}
} /* namespace pywrap */