Begin predict
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
#include "PyClassifier.h"
|
||||
|
||||
#include "numpy/arrayobject.h"
|
||||
#include <iostream>
|
||||
|
||||
namespace pywrap {
|
||||
@@ -16,11 +16,6 @@ namespace pywrap {
|
||||
pyWrap->clean(module, className);
|
||||
std::cout << "Classifier cleaned" << std::endl;
|
||||
}
|
||||
void print_array(np::ndarray& array)
|
||||
{
|
||||
std::cout << "Array: " << std::endl;
|
||||
std::cout << p::extract<char const*>(p::str(array)) << std::endl;
|
||||
}
|
||||
np::ndarray tensor2numpy(torch::Tensor& X)
|
||||
{
|
||||
int m = X.size(0);
|
||||
@@ -33,51 +28,63 @@ namespace pywrap {
|
||||
{
|
||||
int n = X.size(1);
|
||||
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), p::make_tuple(n), p::make_tuple(sizeof(y.dtype()) * 2), p::object());
|
||||
//std::cout << "Printing from within tensors2numpy" << std::endl;
|
||||
// print_array(yn);
|
||||
return { tensor2numpy(X), yn };
|
||||
}
|
||||
std::string PyClassifier::version()
|
||||
{
|
||||
return pyWrap->version(module, className);
|
||||
}
|
||||
std::string PyClassifier::graph()
|
||||
{
|
||||
return pyWrap->graph(module, className);
|
||||
}
|
||||
std::string PyClassifier::callMethodString(const std::string& method)
|
||||
{
|
||||
return pyWrap->callMethodString(module, className, method);
|
||||
}
|
||||
|
||||
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
std::cout << "PyClassifier:fit:Converting X to PyObject" << std::endl;
|
||||
auto [Xn, yn] = tensors2numpy(X, y);
|
||||
CPyObject Xp = boost::python::incref(boost::python::object(Xn).ptr());
|
||||
std::cout << "PyClassifier:fit:Converting y to PyObject" << std::endl;
|
||||
print_array(yn);
|
||||
CPyObject yp = boost::python::incref(boost::python::object(yn).ptr());
|
||||
std::cout << "PyClassifier:fit:Calling fit" << std::endl;
|
||||
CPyObject Xp = p::incref(p::object(Xn).ptr());
|
||||
CPyObject yp = p::incref(p::object(yn).ptr());
|
||||
pyWrap->fit(module, this->className, Xp, yp);
|
||||
return *this;
|
||||
}
|
||||
void print_array(np::ndarray& array)
|
||||
{
|
||||
std::cout << "Array: " << std::endl;
|
||||
std::cout << p::extract<char const*>(p::str(array)) << std::endl;
|
||||
}
|
||||
torch::Tensor PyClassifier::predict(torch::Tensor& X)
|
||||
{
|
||||
int dimension = X.size(1);
|
||||
auto Xn = tensor2numpy(X);
|
||||
CPyObject Xp = boost::python::incref(boost::python::object(Xn).ptr());
|
||||
auto PyResult = pyWrap->predict(module, className, Xp);
|
||||
auto result = torch::tensor({ 1,2,3 });
|
||||
CPyObject Xp = p::incref(p::object(Xn).ptr());
|
||||
PyObject* incoming = pyWrap->predict(module, className, Xp);
|
||||
std::cout << "Return from predict" << std::endl;
|
||||
p::handle<> handle(incoming);
|
||||
p::object object(handle);
|
||||
np::ndarray prediction = np::from_object(object);
|
||||
print_array(prediction);
|
||||
// import_array();
|
||||
// if (!PyArray_Check(incoming)) {
|
||||
// throw std::logic_error("Returned value is not array");
|
||||
// }
|
||||
// std::cout << "Returned value is array" << std::endl;
|
||||
// PyArrayObject* np_ret = (PyArrayObject*)incoming;
|
||||
// if (PyArray_NDIM(np_ret) != dimension - 1) {
|
||||
// throw std::logic_error("Returned array has wrong dimension" + std::to_string(PyArray_NDIM(np_ret)) + "!=" + std::to_string(dimension - 1));
|
||||
// }
|
||||
// std::cout << "Returned array has correct dimension" << PyArray_NDIM(np_ret) << std::endl;
|
||||
// int len{ PyArray_SHAPE(np_ret)[0] };
|
||||
// int* data = reinterpret_cast<int*>(PyArray_DATA(np_ret));
|
||||
|
||||
return result;
|
||||
// int* data = reinterpret_cast<int*>(prediction.get_data());
|
||||
// auto resultTensor = torch::tensor({ data }, torch::kInt32);
|
||||
auto resultTensor = torch::zeros({ prediction.shape(0) }, torch::kInt32);
|
||||
return resultTensor;
|
||||
}
|
||||
double PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
std::cout << "PyClassifier::Score:Converting X to PyObject" << std::endl;
|
||||
auto [Xn, yn] = tensors2numpy(X, y);
|
||||
CPyObject Xp = boost::python::incref(boost::python::object(Xn).ptr());
|
||||
CPyObject yp = boost::python::incref(boost::python::object(yn).ptr());
|
||||
print_array(yn);
|
||||
CPyObject Xp = p::incref(p::object(Xn).ptr());
|
||||
CPyObject yp = p::incref(p::object(yn).ptr());
|
||||
auto result = pyWrap->score(module, className, Xp, yp);
|
||||
return result;
|
||||
}
|
||||
|
Reference in New Issue
Block a user