refactor importClass and valgrind
This commit is contained in:
@@ -1,10 +1,10 @@
|
||||
#include <torch/torch.h>
|
||||
#include "ArffFiles.h"
|
||||
#include <random>
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <tuple>
|
||||
#include "STree.h"
|
||||
#include "SVC.h"
|
||||
#include "RandomForest.h"
|
||||
@@ -36,21 +36,42 @@ tuple<Tensor, Tensor> loadDataset(const string& name, bool class_last)
|
||||
return { Xd, torch::tensor(y, torch::kInt32) };
|
||||
}
|
||||
|
||||
pair<torch::Tensor, torch::Tensor> get_train_test_indices(int size)
|
||||
{
|
||||
int seed = 17;
|
||||
float train_size_p = 0.7;
|
||||
int train_size = static_cast<int>(size * train_size_p);
|
||||
int test_size = size - train_size;
|
||||
std::vector<int> indices(size);
|
||||
std::iota(indices.begin(), indices.end(), 0);
|
||||
shuffle(indices.begin(), indices.end(), std::default_random_engine(seed));
|
||||
auto train_indices = torch::zeros({ train_size }, torch::kInt32);
|
||||
auto test_indices = torch::zeros({ test_size }, torch::kInt32);
|
||||
for (auto i = 0; i < size; ++i) {
|
||||
if (i < train_size) {
|
||||
train_indices[i] = indices[i];
|
||||
} else if (i < size) {
|
||||
test_indices[i - train_size] = indices[i];
|
||||
}
|
||||
}
|
||||
return { train_indices, test_indices };
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
using json = nlohmann::json;
|
||||
cout << "* Begin." << endl;
|
||||
{
|
||||
using namespace torch::indexing;
|
||||
auto datasetName = "iris";
|
||||
auto datasetName = "wine";
|
||||
bool class_last = true;
|
||||
auto [X, y] = loadDataset(datasetName, class_last);
|
||||
auto m = y.size(0);
|
||||
int train_split = m * .7;
|
||||
auto Xtrain = X.index({ "...", Slice(0, train_split) });
|
||||
auto ytrain = y.index({ Slice(0, train_split) });
|
||||
auto Xtest = X.index({ "...", Slice(train_split, m) });
|
||||
auto ytest = y.index({ Slice(train_split, m) });
|
||||
// Split train/test
|
||||
auto [train_indices, test_indices] = get_train_test_indices(X.size(1));
|
||||
auto Xtrain = X.index({ "...", train_indices });
|
||||
auto ytrain = y.index({ train_indices });
|
||||
auto Xtest = X.index({ "...", test_indices });
|
||||
auto ytest = y.index({ test_indices });
|
||||
cout << "Dataset: " << datasetName << endl;
|
||||
cout << "X: " << X.sizes() << endl;
|
||||
cout << "y: " << y.sizes() << endl;
|
||||
@@ -62,36 +83,36 @@ int main(int argc, char* argv[])
|
||||
// STree
|
||||
//
|
||||
auto clf = pywrap::STree();
|
||||
clf.fit(X, y);
|
||||
double clf_score = clf.score(X, y);
|
||||
auto stree = pywrap::STree();
|
||||
auto hyperparameters = json::parse("{\"C\": 0.7, \"max_iter\": 10000, \"kernel\": \"rbf\", \"random_state\": 17}");
|
||||
stree.setHyperparameters(hyperparameters);
|
||||
cout << "STree Version: " << clf.version() << endl;
|
||||
auto prediction = clf.predict(X);
|
||||
cout << "Prediction: " << endl << "{";
|
||||
for (int i = 0; i < prediction.size(0); ++i) {
|
||||
cout << prediction[i].item<int>() << ", ";
|
||||
}
|
||||
cout << "}" << endl;
|
||||
clf.fit(Xtrain, ytest);
|
||||
double clf_score = clf.score(Xtest, ytest);
|
||||
// auto stree = pywrap::STree();
|
||||
// auto hyperparameters = json::parse("{\"C\": 0.7, \"max_iter\": 10000, \"kernel\": \"rbf\", \"random_state\": 17}");
|
||||
// stree.setHyperparameters(hyperparameters);
|
||||
// cout << "STree Version: " << clf.version() << endl;
|
||||
// auto prediction = clf.predict(X);
|
||||
// cout << "Prediction: " << endl << "{";
|
||||
// for (int i = 0; i < prediction.size(0); ++i) {
|
||||
// cout << prediction[i].item<int>() << ", ";
|
||||
// }
|
||||
// cout << "}" << endl;
|
||||
//
|
||||
// SVC
|
||||
//
|
||||
auto svc = pywrap::SVC();
|
||||
cout << "SVC with hyperparameters" << endl;
|
||||
svc.fit(X, y);
|
||||
// auto svc = pywrap::SVC();
|
||||
// cout << "SVC with hyperparameters" << endl;
|
||||
// svc.fit(Xtrain, ytrain);
|
||||
//
|
||||
// Random Forest
|
||||
//
|
||||
cout << "Building Random Forest" << endl;
|
||||
auto rf = pywrap::RandomForest();
|
||||
rf.fit(Xtrain, ytrain);
|
||||
// cout << "Building Random Forest" << endl;
|
||||
// auto rf = pywrap::RandomForest();
|
||||
// rf.fit(Xtrain, ytrain);
|
||||
//
|
||||
// XGBoost
|
||||
//
|
||||
cout << "Building XGBoost" << endl;
|
||||
auto xg = pywrap::XGBoost();
|
||||
cout << "Fitting XGBoost" << endl;
|
||||
// cout << "Building XGBoost" << endl;
|
||||
// auto xg = pywrap::XGBoost();
|
||||
// cout << "Fitting XGBoost" << endl;
|
||||
// xg.fit(Xtrain, ytrain);
|
||||
// double xg_score = xg.score(Xtest, ytest);
|
||||
//
|
||||
@@ -100,10 +121,10 @@ int main(int argc, char* argv[])
|
||||
cout << "Scoring dataset: " << datasetName << endl;
|
||||
cout << "Scores:" << endl;
|
||||
cout << "STree Score ......: " << clf_score << endl;
|
||||
cout << "STree train/test .: " << clf.fit(Xtrain, ytrain).score(Xtest, ytest) << endl;
|
||||
cout << "STree hyper score : " << stree.fit(Xtrain, ytrain).score(Xtest, ytest) << endl;
|
||||
cout << "RandomForest Score: " << rf.score(Xtest, ytest) << endl;
|
||||
cout << "SVC Score ........: " << svc.score(X, y) << endl;
|
||||
// cout << "STree train/test .: " << clf.fit(Xtrain, ytrain).score(Xtest, ytest) << endl;
|
||||
// cout << "STree hyper score : " << stree.fit(Xtrain, ytrain).score(Xtest, ytest) << endl;
|
||||
// cout << "RandomForest Score: " << rf.score(Xtest, ytest) << endl;
|
||||
// cout << "SVC Score ........: " << svc.score(Xtest, ytest) << endl;
|
||||
// cout << "XGBoost Score ....: " << xg_score << endl;
|
||||
}
|
||||
cout << "* End." << endl;
|
||||
|
Reference in New Issue
Block a user