Refactor Classifier classes
This commit is contained in:
@@ -23,6 +23,7 @@ include(AddGitSubmodule)
|
||||
find_package(Python3 3.11...3.11.9 COMPONENTS Interpreter Development REQUIRED)
|
||||
find_package(Torch REQUIRED)
|
||||
find_package(Boost REQUIRED COMPONENTS python3 numpy3)
|
||||
# find_package(xgboost REQUIRED)
|
||||
|
||||
# Temporary patch while find_package(Torch) is not fixed
|
||||
file(
|
||||
|
@@ -5,7 +5,9 @@
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include "Classifier.h"
|
||||
#include "STree.h"
|
||||
#include "ODTE.h"
|
||||
#include "SVC.h"
|
||||
#include "RandomForest.h"
|
||||
#include "XGBoost.h"
|
||||
@@ -47,11 +49,22 @@ pair<torch::Tensor, torch::Tensor> get_train_test_indices(int size)
|
||||
shuffle(indices.begin(), indices.end(), std::default_random_engine(seed));
|
||||
auto train_indices = torch::zeros({ train_size }, torch::kInt32);
|
||||
auto test_indices = torch::zeros({ test_size }, torch::kInt32);
|
||||
int ti = 0, ei = 0;
|
||||
cout << "Train indices [";
|
||||
for (auto i = 0; i < train_size; ++i) {
|
||||
cout << indices.at(i) << ", ";
|
||||
}
|
||||
cout << "]" << endl;
|
||||
cout << "Test indices [";
|
||||
for (auto i = train_size; i < size; ++i) {
|
||||
cout << indices.at(i) << ", ";
|
||||
}
|
||||
cout << "]" << endl;
|
||||
for (auto i = 0; i < size; ++i) {
|
||||
if (i < train_size) {
|
||||
train_indices[i] = indices[i];
|
||||
train_indices[ti++] = indices.at(i);
|
||||
} else if (i < size) {
|
||||
test_indices[i - train_size] = indices[i];
|
||||
test_indices[ei++] = indices.at(i);
|
||||
}
|
||||
}
|
||||
return { train_indices, test_indices };
|
||||
@@ -61,12 +74,21 @@ int main(int argc, char* argv[])
|
||||
{
|
||||
using json = nlohmann::json;
|
||||
cout << "* Begin." << endl;
|
||||
{
|
||||
using namespace torch::indexing;
|
||||
map<string, pywrap::Classifier*> classifiers = {
|
||||
{"STree", new pywrap::STree()}, {"SVC", new pywrap::SVC()},
|
||||
{"RandomForest", new pywrap::RandomForest()},// {"XGBoost", new XGBoost()},
|
||||
{"ODTE", new pywrap::ODTE()}
|
||||
};
|
||||
//
|
||||
// Load dataset
|
||||
//
|
||||
auto datasetName = "wine";
|
||||
bool class_last = true;
|
||||
bool class_last = false;
|
||||
auto [X, y] = loadDataset(datasetName, class_last);
|
||||
//
|
||||
// Split train/test
|
||||
//
|
||||
auto [train_indices, test_indices] = get_train_test_indices(X.size(1));
|
||||
auto Xtrain = X.index({ "...", train_indices });
|
||||
auto ytrain = y.index({ train_indices });
|
||||
@@ -80,52 +102,24 @@ int main(int argc, char* argv[])
|
||||
cout << "Xtest : " << Xtest.sizes() << endl;
|
||||
cout << "ytest : " << ytest.sizes() << endl;
|
||||
//
|
||||
// STree
|
||||
// Train classifiers
|
||||
//
|
||||
auto clf = pywrap::STree();
|
||||
clf.fit(Xtrain, ytest);
|
||||
double clf_score = clf.score(Xtest, ytest);
|
||||
// auto stree = pywrap::STree();
|
||||
// auto hyperparameters = json::parse("{\"C\": 0.7, \"max_iter\": 10000, \"kernel\": \"rbf\", \"random_state\": 17}");
|
||||
// stree.setHyperparameters(hyperparameters);
|
||||
// cout << "STree Version: " << clf.version() << endl;
|
||||
// auto prediction = clf.predict(X);
|
||||
// cout << "Prediction: " << endl << "{";
|
||||
// for (int i = 0; i < prediction.size(0); ++i) {
|
||||
// cout << prediction[i].item<int>() << ", ";
|
||||
// }
|
||||
// cout << "}" << endl;
|
||||
for (auto& [name, clf] : classifiers) {
|
||||
cout << "Training " << name << endl;
|
||||
clf->fit(Xtrain, ytrain);
|
||||
}
|
||||
//
|
||||
// SVC
|
||||
// Show scores
|
||||
//
|
||||
// auto svc = pywrap::SVC();
|
||||
// cout << "SVC with hyperparameters" << endl;
|
||||
// svc.fit(Xtrain, ytrain);
|
||||
for (auto& [name, clf] : classifiers) {
|
||||
cout << "Score " << setw(10) << name << "(Ver. " << clf->version() << "): "
|
||||
<< clf->score(Xtest, ytest) << endl;
|
||||
}
|
||||
//
|
||||
// Random Forest
|
||||
// Free classifiers
|
||||
//
|
||||
// cout << "Building Random Forest" << endl;
|
||||
// auto rf = pywrap::RandomForest();
|
||||
// rf.fit(Xtrain, ytrain);
|
||||
//
|
||||
// XGBoost
|
||||
//
|
||||
// cout << "Building XGBoost" << endl;
|
||||
// auto xg = pywrap::XGBoost();
|
||||
// cout << "Fitting XGBoost" << endl;
|
||||
// xg.fit(Xtrain, ytrain);
|
||||
// double xg_score = xg.score(Xtest, ytest);
|
||||
//
|
||||
// Scoring
|
||||
//
|
||||
cout << "Scoring dataset: " << datasetName << endl;
|
||||
cout << "Scores:" << endl;
|
||||
cout << "STree Score ......: " << clf_score << endl;
|
||||
// cout << "STree train/test .: " << clf.fit(Xtrain, ytrain).score(Xtest, ytest) << endl;
|
||||
// cout << "STree hyper score : " << stree.fit(Xtrain, ytrain).score(Xtest, ytest) << endl;
|
||||
// cout << "RandomForest Score: " << rf.score(Xtest, ytest) << endl;
|
||||
// cout << "SVC Score ........: " << svc.score(Xtest, ytest) << endl;
|
||||
// cout << "XGBoost Score ....: " << xg_score << endl;
|
||||
for (auto& [name, clf] : classifiers) {
|
||||
delete clf;
|
||||
}
|
||||
cout << "* End." << endl;
|
||||
}
|
@@ -3,5 +3,6 @@ include_directories(${PyWrap_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
include_directories(${TORCH_INCLUDE_DIRS})
|
||||
|
||||
add_library(PyWrap SHARED PyWrap.cc STree.cc SVC.cc RandomForest.cc PyClassifier.cc)
|
||||
add_library(PyWrap SHARED PyWrap.cc STree.cc ODTE.cc SVC.cc RandomForest.cc PyClassifier.cc)
|
||||
#target_link_libraries(PyWrap ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy xgboost::xgboost ArffFiles)
|
||||
target_link_libraries(PyWrap ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy ArffFiles)
|
@@ -1,13 +1,25 @@
|
||||
#ifndef CLASSIFER_H
|
||||
#define CLASSIFER_H
|
||||
#ifndef CLASSIFIER_H
|
||||
#define CLASSIFIER_H
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
namespace pywrap {
|
||||
class Classifier {
|
||||
public:
|
||||
Classifier() = default;
|
||||
virtual ~Classifier() = default;
|
||||
virtual Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual Classifier& fit(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
virtual torch::Tensor predict(torch::Tensor& X) = 0;
|
||||
virtual double score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
virtual std::string version() = 0;
|
||||
virtual std::string sklearnVersion() = 0;
|
||||
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||
protected:
|
||||
virtual void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters) = 0;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* CLASSIFER_H */
|
||||
#endif /* CLASSIFIER_H */
|
15
src/ODTE.cc
Normal file
15
src/ODTE.cc
Normal file
@@ -0,0 +1,15 @@
|
||||
#include "ODTE.h"
|
||||
|
||||
namespace pywrap {
|
||||
std::string ODTE::graph()
|
||||
{
|
||||
return callMethodString("graph");
|
||||
}
|
||||
void ODTE::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "n_jobs", "n_estimators", "random_state" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
this->hyperparameters = hyperparameters;
|
||||
}
|
||||
} /* namespace pywrap */
|
15
src/ODTE.h
Normal file
15
src/ODTE.h
Normal file
@@ -0,0 +1,15 @@
|
||||
#ifndef ODTE_H
|
||||
#define ODTE_H
|
||||
#include "nlohmann/json.hpp"
|
||||
#include "PyClassifier.h"
|
||||
|
||||
namespace pywrap {
|
||||
class ODTE : public PyClassifier {
|
||||
public:
|
||||
ODTE() : PyClassifier("odte", "Odte") {};
|
||||
~ODTE() = default;
|
||||
std::string graph();
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* ODTE_H */
|
@@ -31,6 +31,10 @@ namespace pywrap {
|
||||
{
|
||||
return pyWrap->version(id);
|
||||
}
|
||||
std::string PyClassifier::sklearnVersion()
|
||||
{
|
||||
return pyWrap->sklearnVersion();
|
||||
}
|
||||
std::string PyClassifier::callMethodString(const std::string& method)
|
||||
{
|
||||
return pyWrap->callMethodString(id, method);
|
||||
|
@@ -1,5 +1,5 @@
|
||||
#ifndef PYCLASSIFER_H
|
||||
#define PYCLASSIFER_H
|
||||
#ifndef PYCLASSIFIER_H
|
||||
#define PYCLASSIFIER_H
|
||||
#include "boost/python/detail/wrap_python.hpp"
|
||||
#include <boost/python/numpy.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
@@ -17,15 +17,16 @@ namespace pywrap {
|
||||
public:
|
||||
PyClassifier(const std::string& module, const std::string& className);
|
||||
virtual ~PyClassifier();
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states);
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y);
|
||||
torch::Tensor predict(torch::Tensor& X);
|
||||
double score(torch::Tensor& X, torch::Tensor& y);
|
||||
std::string version();
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y) override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
double score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
std::string version() override;
|
||||
std::string sklearnVersion() override;
|
||||
std::string callMethodString(const std::string& method);
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
protected:
|
||||
void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters);
|
||||
void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters) override;
|
||||
nlohmann::json hyperparameters;
|
||||
private:
|
||||
PyWrap* pyWrap;
|
||||
@@ -35,4 +36,4 @@ namespace pywrap {
|
||||
bool fitted;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* PYCLASSIFER_H */
|
||||
#endif /* PYCLASSIFIER_H */
|
@@ -42,7 +42,6 @@ namespace pywrap {
|
||||
if (result != moduleClassMap.end()) {
|
||||
return;
|
||||
}
|
||||
std::cout << "1a" << std::endl;
|
||||
PyObject* module = PyImport_ImportModule(moduleName.c_str());
|
||||
if (PyErr_Occurred()) {
|
||||
errorAbort("Couldn't import module " + moduleName);
|
||||
@@ -107,6 +106,13 @@ namespace pywrap {
|
||||
Py_XDECREF(result);
|
||||
return value;
|
||||
}
|
||||
std::string PyWrap::sklearnVersion()
|
||||
{
|
||||
return "1.0";
|
||||
// CPyObject data = PyRun_SimpleString("import sklearn;return sklearn.__version__");
|
||||
// std::string result = PyUnicode_AsUTF8(data);
|
||||
// return result;
|
||||
}
|
||||
std::string PyWrap::version(const clfId_t id)
|
||||
{
|
||||
return callMethodString(id, "version");
|
||||
|
@@ -24,6 +24,7 @@ namespace pywrap {
|
||||
void operator=(const PyWrap&) = delete;
|
||||
~PyWrap() = default;
|
||||
std::string callMethodString(const clfId_t id, const std::string& method);
|
||||
std::string sklearnVersion();
|
||||
std::string version(const clfId_t id);
|
||||
void setHyperparameters(const clfId_t id, const json& hyperparameters);
|
||||
void fit(const clfId_t id, CPyObject& X, CPyObject& y);
|
||||
|
@@ -3,6 +3,6 @@
|
||||
namespace pywrap {
|
||||
std::string RandomForest::version()
|
||||
{
|
||||
return callMethodString("1.0");
|
||||
return sklearnVersion();
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -3,7 +3,7 @@
|
||||
namespace pywrap {
|
||||
std::string SVC::version()
|
||||
{
|
||||
return callMethodString("1.0");
|
||||
return sklearnVersion();
|
||||
}
|
||||
void SVC::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
|
Reference in New Issue
Block a user