Refactor Classifier classes
This commit is contained in:
@@ -3,5 +3,6 @@ include_directories(${PyWrap_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
include_directories(${TORCH_INCLUDE_DIRS})
|
||||
|
||||
add_library(PyWrap SHARED PyWrap.cc STree.cc SVC.cc RandomForest.cc PyClassifier.cc)
|
||||
add_library(PyWrap SHARED PyWrap.cc STree.cc ODTE.cc SVC.cc RandomForest.cc PyClassifier.cc)
|
||||
#target_link_libraries(PyWrap ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy xgboost::xgboost ArffFiles)
|
||||
target_link_libraries(PyWrap ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy ArffFiles)
|
@@ -1,13 +1,25 @@
|
||||
#ifndef CLASSIFER_H
|
||||
#define CLASSIFER_H
|
||||
#ifndef CLASSIFIER_H
|
||||
#define CLASSIFIER_H
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
namespace pywrap {
|
||||
class Classifier {
|
||||
public:
|
||||
Classifier() = default;
|
||||
virtual ~Classifier() = default;
|
||||
virtual Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual Classifier& fit(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
virtual torch::Tensor predict(torch::Tensor& X) = 0;
|
||||
virtual double score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
virtual std::string version() = 0;
|
||||
virtual std::string sklearnVersion() = 0;
|
||||
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||
protected:
|
||||
virtual void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters) = 0;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* CLASSIFER_H */
|
||||
#endif /* CLASSIFIER_H */
|
15
src/ODTE.cc
Normal file
15
src/ODTE.cc
Normal file
@@ -0,0 +1,15 @@
|
||||
#include "ODTE.h"
|
||||
|
||||
namespace pywrap {
|
||||
std::string ODTE::graph()
|
||||
{
|
||||
return callMethodString("graph");
|
||||
}
|
||||
void ODTE::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "n_jobs", "n_estimators", "random_state" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
this->hyperparameters = hyperparameters;
|
||||
}
|
||||
} /* namespace pywrap */
|
15
src/ODTE.h
Normal file
15
src/ODTE.h
Normal file
@@ -0,0 +1,15 @@
|
||||
#ifndef ODTE_H
|
||||
#define ODTE_H
|
||||
#include "nlohmann/json.hpp"
|
||||
#include "PyClassifier.h"
|
||||
|
||||
namespace pywrap {
|
||||
class ODTE : public PyClassifier {
|
||||
public:
|
||||
ODTE() : PyClassifier("odte", "Odte") {};
|
||||
~ODTE() = default;
|
||||
std::string graph();
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* ODTE_H */
|
@@ -31,6 +31,10 @@ namespace pywrap {
|
||||
{
|
||||
return pyWrap->version(id);
|
||||
}
|
||||
std::string PyClassifier::sklearnVersion()
|
||||
{
|
||||
return pyWrap->sklearnVersion();
|
||||
}
|
||||
std::string PyClassifier::callMethodString(const std::string& method)
|
||||
{
|
||||
return pyWrap->callMethodString(id, method);
|
||||
|
@@ -1,5 +1,5 @@
|
||||
#ifndef PYCLASSIFER_H
|
||||
#define PYCLASSIFER_H
|
||||
#ifndef PYCLASSIFIER_H
|
||||
#define PYCLASSIFIER_H
|
||||
#include "boost/python/detail/wrap_python.hpp"
|
||||
#include <boost/python/numpy.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
@@ -17,15 +17,16 @@ namespace pywrap {
|
||||
public:
|
||||
PyClassifier(const std::string& module, const std::string& className);
|
||||
virtual ~PyClassifier();
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states);
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y);
|
||||
torch::Tensor predict(torch::Tensor& X);
|
||||
double score(torch::Tensor& X, torch::Tensor& y);
|
||||
std::string version();
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y) override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
double score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
std::string version() override;
|
||||
std::string sklearnVersion() override;
|
||||
std::string callMethodString(const std::string& method);
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
protected:
|
||||
void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters);
|
||||
void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters) override;
|
||||
nlohmann::json hyperparameters;
|
||||
private:
|
||||
PyWrap* pyWrap;
|
||||
@@ -35,4 +36,4 @@ namespace pywrap {
|
||||
bool fitted;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* PYCLASSIFER_H */
|
||||
#endif /* PYCLASSIFIER_H */
|
@@ -42,7 +42,6 @@ namespace pywrap {
|
||||
if (result != moduleClassMap.end()) {
|
||||
return;
|
||||
}
|
||||
std::cout << "1a" << std::endl;
|
||||
PyObject* module = PyImport_ImportModule(moduleName.c_str());
|
||||
if (PyErr_Occurred()) {
|
||||
errorAbort("Couldn't import module " + moduleName);
|
||||
@@ -107,6 +106,13 @@ namespace pywrap {
|
||||
Py_XDECREF(result);
|
||||
return value;
|
||||
}
|
||||
std::string PyWrap::sklearnVersion()
|
||||
{
|
||||
return "1.0";
|
||||
// CPyObject data = PyRun_SimpleString("import sklearn;return sklearn.__version__");
|
||||
// std::string result = PyUnicode_AsUTF8(data);
|
||||
// return result;
|
||||
}
|
||||
std::string PyWrap::version(const clfId_t id)
|
||||
{
|
||||
return callMethodString(id, "version");
|
||||
|
@@ -24,6 +24,7 @@ namespace pywrap {
|
||||
void operator=(const PyWrap&) = delete;
|
||||
~PyWrap() = default;
|
||||
std::string callMethodString(const clfId_t id, const std::string& method);
|
||||
std::string sklearnVersion();
|
||||
std::string version(const clfId_t id);
|
||||
void setHyperparameters(const clfId_t id, const json& hyperparameters);
|
||||
void fit(const clfId_t id, CPyObject& X, CPyObject& y);
|
||||
|
@@ -3,6 +3,6 @@
|
||||
namespace pywrap {
|
||||
std::string RandomForest::version()
|
||||
{
|
||||
return callMethodString("1.0");
|
||||
return sklearnVersion();
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -3,7 +3,7 @@
|
||||
namespace pywrap {
|
||||
std::string SVC::version()
|
||||
{
|
||||
return callMethodString("1.0");
|
||||
return sklearnVersion();
|
||||
}
|
||||
void SVC::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
|
Reference in New Issue
Block a user