Refactor Classifier classes
This commit is contained in:
@@ -5,7 +5,9 @@
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include "Classifier.h"
|
||||
#include "STree.h"
|
||||
#include "ODTE.h"
|
||||
#include "SVC.h"
|
||||
#include "RandomForest.h"
|
||||
#include "XGBoost.h"
|
||||
@@ -47,11 +49,22 @@ pair<torch::Tensor, torch::Tensor> get_train_test_indices(int size)
|
||||
shuffle(indices.begin(), indices.end(), std::default_random_engine(seed));
|
||||
auto train_indices = torch::zeros({ train_size }, torch::kInt32);
|
||||
auto test_indices = torch::zeros({ test_size }, torch::kInt32);
|
||||
int ti = 0, ei = 0;
|
||||
cout << "Train indices [";
|
||||
for (auto i = 0; i < train_size; ++i) {
|
||||
cout << indices.at(i) << ", ";
|
||||
}
|
||||
cout << "]" << endl;
|
||||
cout << "Test indices [";
|
||||
for (auto i = train_size; i < size; ++i) {
|
||||
cout << indices.at(i) << ", ";
|
||||
}
|
||||
cout << "]" << endl;
|
||||
for (auto i = 0; i < size; ++i) {
|
||||
if (i < train_size) {
|
||||
train_indices[i] = indices[i];
|
||||
train_indices[ti++] = indices.at(i);
|
||||
} else if (i < size) {
|
||||
test_indices[i - train_size] = indices[i];
|
||||
test_indices[ei++] = indices.at(i);
|
||||
}
|
||||
}
|
||||
return { train_indices, test_indices };
|
||||
@@ -61,71 +74,52 @@ int main(int argc, char* argv[])
|
||||
{
|
||||
using json = nlohmann::json;
|
||||
cout << "* Begin." << endl;
|
||||
{
|
||||
using namespace torch::indexing;
|
||||
auto datasetName = "wine";
|
||||
bool class_last = true;
|
||||
auto [X, y] = loadDataset(datasetName, class_last);
|
||||
// Split train/test
|
||||
auto [train_indices, test_indices] = get_train_test_indices(X.size(1));
|
||||
auto Xtrain = X.index({ "...", train_indices });
|
||||
auto ytrain = y.index({ train_indices });
|
||||
auto Xtest = X.index({ "...", test_indices });
|
||||
auto ytest = y.index({ test_indices });
|
||||
cout << "Dataset: " << datasetName << endl;
|
||||
cout << "X: " << X.sizes() << endl;
|
||||
cout << "y: " << y.sizes() << endl;
|
||||
cout << "Xtrain: " << Xtrain.sizes() << endl;
|
||||
cout << "ytrain: " << ytrain.sizes() << endl;
|
||||
cout << "Xtest : " << Xtest.sizes() << endl;
|
||||
cout << "ytest : " << ytest.sizes() << endl;
|
||||
//
|
||||
// STree
|
||||
//
|
||||
auto clf = pywrap::STree();
|
||||
clf.fit(Xtrain, ytest);
|
||||
double clf_score = clf.score(Xtest, ytest);
|
||||
// auto stree = pywrap::STree();
|
||||
// auto hyperparameters = json::parse("{\"C\": 0.7, \"max_iter\": 10000, \"kernel\": \"rbf\", \"random_state\": 17}");
|
||||
// stree.setHyperparameters(hyperparameters);
|
||||
// cout << "STree Version: " << clf.version() << endl;
|
||||
// auto prediction = clf.predict(X);
|
||||
// cout << "Prediction: " << endl << "{";
|
||||
// for (int i = 0; i < prediction.size(0); ++i) {
|
||||
// cout << prediction[i].item<int>() << ", ";
|
||||
// }
|
||||
// cout << "}" << endl;
|
||||
//
|
||||
// SVC
|
||||
//
|
||||
// auto svc = pywrap::SVC();
|
||||
// cout << "SVC with hyperparameters" << endl;
|
||||
// svc.fit(Xtrain, ytrain);
|
||||
//
|
||||
// Random Forest
|
||||
//
|
||||
// cout << "Building Random Forest" << endl;
|
||||
// auto rf = pywrap::RandomForest();
|
||||
// rf.fit(Xtrain, ytrain);
|
||||
//
|
||||
// XGBoost
|
||||
//
|
||||
// cout << "Building XGBoost" << endl;
|
||||
// auto xg = pywrap::XGBoost();
|
||||
// cout << "Fitting XGBoost" << endl;
|
||||
// xg.fit(Xtrain, ytrain);
|
||||
// double xg_score = xg.score(Xtest, ytest);
|
||||
//
|
||||
// Scoring
|
||||
//
|
||||
cout << "Scoring dataset: " << datasetName << endl;
|
||||
cout << "Scores:" << endl;
|
||||
cout << "STree Score ......: " << clf_score << endl;
|
||||
// cout << "STree train/test .: " << clf.fit(Xtrain, ytrain).score(Xtest, ytest) << endl;
|
||||
// cout << "STree hyper score : " << stree.fit(Xtrain, ytrain).score(Xtest, ytest) << endl;
|
||||
// cout << "RandomForest Score: " << rf.score(Xtest, ytest) << endl;
|
||||
// cout << "SVC Score ........: " << svc.score(Xtest, ytest) << endl;
|
||||
// cout << "XGBoost Score ....: " << xg_score << endl;
|
||||
using namespace torch::indexing;
|
||||
map<string, pywrap::Classifier*> classifiers = {
|
||||
{"STree", new pywrap::STree()}, {"SVC", new pywrap::SVC()},
|
||||
{"RandomForest", new pywrap::RandomForest()},// {"XGBoost", new XGBoost()},
|
||||
{"ODTE", new pywrap::ODTE()}
|
||||
};
|
||||
//
|
||||
// Load dataset
|
||||
//
|
||||
auto datasetName = "wine";
|
||||
bool class_last = false;
|
||||
auto [X, y] = loadDataset(datasetName, class_last);
|
||||
//
|
||||
// Split train/test
|
||||
//
|
||||
auto [train_indices, test_indices] = get_train_test_indices(X.size(1));
|
||||
auto Xtrain = X.index({ "...", train_indices });
|
||||
auto ytrain = y.index({ train_indices });
|
||||
auto Xtest = X.index({ "...", test_indices });
|
||||
auto ytest = y.index({ test_indices });
|
||||
cout << "Dataset: " << datasetName << endl;
|
||||
cout << "X: " << X.sizes() << endl;
|
||||
cout << "y: " << y.sizes() << endl;
|
||||
cout << "Xtrain: " << Xtrain.sizes() << endl;
|
||||
cout << "ytrain: " << ytrain.sizes() << endl;
|
||||
cout << "Xtest : " << Xtest.sizes() << endl;
|
||||
cout << "ytest : " << ytest.sizes() << endl;
|
||||
//
|
||||
// Train classifiers
|
||||
//
|
||||
for (auto& [name, clf] : classifiers) {
|
||||
cout << "Training " << name << endl;
|
||||
clf->fit(Xtrain, ytrain);
|
||||
}
|
||||
//
|
||||
// Show scores
|
||||
//
|
||||
for (auto& [name, clf] : classifiers) {
|
||||
cout << "Score " << setw(10) << name << "(Ver. " << clf->version() << "): "
|
||||
<< clf->score(Xtest, ytest) << endl;
|
||||
}
|
||||
//
|
||||
// Free classifiers
|
||||
//
|
||||
for (auto& [name, clf] : classifiers) {
|
||||
delete clf;
|
||||
}
|
||||
cout << "* End." << endl;
|
||||
}
|
Reference in New Issue
Block a user