#include #include #include "common/DotEnv.h" #include "common/Paths.h" #include "common/DotEnv.h" #include "GridBase.h" namespace platform { GridBase::GridBase(struct ConfigGrid& config) { this->config = config; auto env = platform::DotEnv(); this->config.platform = env.get("platform"); } void GridBase::validate_config() { if (config.smooth_strategy == "ORIGINAL") smooth_type = bayesnet::Smoothing_t::ORIGINAL; else if (config.smooth_strategy == "LAPLACE") smooth_type = bayesnet::Smoothing_t::LAPLACE; else if (config.smooth_strategy == "CESTNIK") smooth_type = bayesnet::Smoothing_t::CESTNIK; else { std::cerr << "GridBase: Unknown smoothing strategy: " << config.smooth_strategy << std::endl; exit(1); } } std::string GridBase::get_color_rank(int rank) { auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN(), Colors::YELLOW(), Colors::BLACK() }; std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; auto idx = rank % id.size(); return *(colors.begin() + rank % colors.size()) + id[idx]; } void GridBase::shuffle_and_progress_bar(json& tasks) { // Shuffle the array so heavy datasets are eas ier spread across the workers std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle std::shuffle(tasks.begin(), tasks.end(), g); std::cout << "* Number of tasks: " << tasks.size() << std::endl; std::cout << separator << std::flush; for (int i = 0; i < tasks.size(); ++i) { if ((i + 1) % 10 == 0) std::cout << separator; else std::cout << (i + 1) % 10; } std::cout << separator << std::endl << separator << std::flush; } json GridBase::build_tasks(Datasets& datasets) { /* * Each task is a json object with the following structure: * { * "dataset": "dataset_name", * "idx_dataset": idx_dataset, // used to identify the dataset in the results * // this index is relative to the list of used datasets in the actual run not to the whole datasets list * "seed": # of seed to use, * "fold": # of fold to process * } * This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold */ auto tasks = json::array(); auto grid = GridData(Paths::grid_input(config.model)); auto all_datasets = datasets.getNames(); auto datasets_names = filterDatasets(datasets); for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) { auto dataset = datasets_names[idx_dataset]; for (const auto& seed : config.seeds) { auto combinations = grid.getGrid(dataset); for (int n_fold = 0; n_fold < config.n_folds; n_fold++) { json task = { { "dataset", dataset }, { "idx_dataset", idx_dataset}, { "seed", seed }, { "fold", n_fold}, }; tasks.push_back(task); } } } shuffle_and_progress_bar(tasks); return tasks; } void GridBase::summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi) { // Report the tasks done by each worker, showing dataset number, seed, fold and time spent // The format I want to show is: // worker, dataset, seed, fold, time // with headers std::cout << Colors::RESET() << "* Summary of tasks done by each worker" << std::endl; json worker_tasks = json::array(); for (int i = 0; i < config_mpi.n_procs; ++i) { worker_tasks.push_back(json::array()); } int max_dataset = 7; for (const auto& [key, results] : all_results.items()) { auto dataset = key; if (dataset.size() > max_dataset) max_dataset = dataset.size(); for (const auto& result : results) { int n_task = result["task"].get(); json task = tasks[n_task]; auto seed = task["seed"].get(); auto fold = task["fold"].get(); auto time = result["time"].get(); auto worker = result["process"].get(); json line = { { "dataset", dataset }, { "seed", seed }, { "fold", fold }, { "time", time } }; worker_tasks[worker].push_back(line); } } std::cout << Colors::MAGENTA() << " W " << setw(max_dataset) << std::left << "Dataset"; std::cout << " Seed Fold Time" << std::endl; std::cout << "=== " << std::string(max_dataset, '=') << " ==== ==== " << std::string(15, '=') << std::endl; for (int worker = 0; worker < config_mpi.n_procs; ++worker) { auto color = (worker % 2) ? Colors::CYAN() : Colors::BLUE(); std::cout << color << std::right << setw(3) << worker << " "; if (worker == config_mpi.manager) { std::cout << "Manager" << std::endl; continue; } if (worker_tasks[worker].empty()) { std::cout << "No tasks" << std::endl; continue; } bool first = true; double total = 0.0; int num_tasks = 0; for (const auto& task : worker_tasks[worker]) { num_tasks++; if (!first) std::cout << std::string(4, ' '); else first = false; std::cout << std::left << setw(max_dataset) << task["dataset"].get(); std::cout << " " << setw(4) << std::right << task["seed"].get(); std::cout << " " << setw(4) << task["fold"].get(); std::cout << " " << setw(15) << std::setprecision(7) << std::fixed << task["time"].get() << std::endl; total += task["time"].get(); } if (num_tasks > 1) { std::cout << Colors::MAGENTA() << " "; std::cout << setw(max_dataset) << "Total (" << setw(2) << std::right << num_tasks << ")" << std::string(7, '.'); std::cout << " " << setw(15) << std::setprecision(7) << std::fixed << total << std::endl; } } } void GridBase::go(struct ConfigMPI& config_mpi) { /* * Each task is a json object with the data needed by the process * * The overall process consists in these steps: * 0. Validate config, create the MPI result type & tasks * 0.1 Create the MPI result type * 0.2 Manager creates the tasks * 1. Manager will broadcast the tasks to all the processes * 1.1 Broadcast the number of tasks * 1.2 Broadcast the length of the following string * 1.2 Broadcast the tasks as a char* string * 2a. Producer delivers the tasks to the consumers * 2a.1 Producer will loop to send all the tasks to the consumers and receive the results * 2a.2 Producer will send the end message to all the consumers * 2b. Consumers process the tasks and send the results to the producer * 2b.1 Consumers announce to the producer that they are ready to receive a task * 2b.2 Consumers receive the task from the producer and process it * 2b.3 Consumers send the result to the producer * 3. Manager compile results for each dataset * 3.1 Loop thru all the results obtained from each outer fold (task) and select the best * 3.2 Save the results * 3.3 Summary of jobs done */ // // 0.1 Create the MPI result type // validate_config(); Task_Result result; int tasks_size; MPI_Datatype MPI_Result; MPI_Datatype type[11] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_INT, MPI_INT }; int blocklen[11] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; MPI_Aint disp[11]; disp[0] = offsetof(Task_Result, idx_dataset); disp[1] = offsetof(Task_Result, idx_combination); disp[2] = offsetof(Task_Result, n_fold); disp[3] = offsetof(Task_Result, score); disp[4] = offsetof(Task_Result, time); disp[5] = offsetof(Task_Result, time_train); disp[6] = offsetof(Task_Result, nodes); disp[7] = offsetof(Task_Result, leaves); disp[8] = offsetof(Task_Result, depth); disp[9] = offsetof(Task_Result, process); disp[10] = offsetof(Task_Result, task); MPI_Type_create_struct(11, blocklen, disp, type, &MPI_Result); MPI_Type_commit(&MPI_Result); // // 0.2 Manager creates the tasks // char* msg; json tasks; auto env = platform::DotEnv(); auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo")); if (config_mpi.rank == config_mpi.manager) { timer.start(); tasks = build_tasks(datasets); auto tasks_str = tasks.dump(); tasks_size = tasks_str.size(); msg = new char[tasks_size + 1]; strcpy(msg, tasks_str.c_str()); } // // 1. Manager will broadcast the tasks to all the processes // MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD); if (config_mpi.rank != config_mpi.manager) { msg = new char[tasks_size + 1]; } MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD); tasks = json::parse(msg); delete[] msg; if (config_mpi.rank == config_mpi.manager) { // // 2a. Producer delivers the tasks to the consumers // auto datasets_names = filterDatasets(datasets); json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result); std::cout << separator << std::endl; // // 3. Manager compile results for each dataset // auto results = initializeResults(); compile_results(results, all_results, config.model); // // 3.2 Save the results // save(results); // // 3.3 Summary of jobs done // if (!config.quiet) summary(all_results, tasks, config_mpi); } else { // // 2b. Consumers process the tasks and send the results to the producer // consumer(datasets, tasks, config, config_mpi, MPI_Result); } } json GridBase::producer(std::vector& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) { Task_Result result; json results; int num_tasks = tasks.size(); // // 2a.1 Producer will loop to send all the tasks to the consumers and receive the results // for (int i = 0; i < num_tasks; ++i) { MPI_Status status; MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status); if (status.MPI_TAG == TAG_RESULT) { //Store result store_result(names, result, results); } MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD); } // // 2a.2 Producer will send the end message to all the consumers // for (int i = 0; i < config_mpi.n_procs - 1; ++i) { MPI_Status status; MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status); if (status.MPI_TAG == TAG_RESULT) { //Store result store_result(names, result, results); } MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD); } return results; } void GridBase::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) { Task_Result result; // // 2b.1 Consumers announce to the producer that they are ready to receive a task // MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD); int task; while (true) { MPI_Status status; // // 2b.2 Consumers receive the task from the producer and process it // MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status); if (status.MPI_TAG == TAG_END) { break; } consumer_go(config, config_mpi, tasks, task, datasets, &result); // // 2b.3 Consumers send the result to the producer // MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD); } } }