Initial commit
This commit is contained in:
197
src/main/java/com/testpbc4/App.java
Normal file
197
src/main/java/com/testpbc4/App.java
Normal file
@@ -0,0 +1,197 @@
|
||||
package com.testpbc4;
|
||||
|
||||
import weka.core.*;
|
||||
import java.util.Random;
|
||||
import java.io.File;
|
||||
import java.io.FileWriter;
|
||||
import java.io.PrintWriter;
|
||||
import java.util.Scanner;
|
||||
|
||||
import weka.classifiers.trees.PBC4cip;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Iterator;
|
||||
|
||||
import weka.core.converters.ConverterUtils.DataSource;
|
||||
|
||||
public class App {
|
||||
static int numFolds = 5;
|
||||
static String path = "data/";
|
||||
static String datasetsFile = path + "datasets.txt";
|
||||
static String outputFile = "results_pbc4.txt";
|
||||
static boolean debug = true;
|
||||
static boolean stratify = false;
|
||||
static boolean normalizeData = false;
|
||||
|
||||
public static void printAndExit(String s) {
|
||||
System.out.println(s);
|
||||
System.exit(0);
|
||||
}
|
||||
|
||||
private static Instances getInstances(String fileName) {
|
||||
DataSource source = null;
|
||||
System.out.println(String.format("Reading file " + path + "%s.arff", fileName));
|
||||
try {
|
||||
source = new DataSource(String.format(path + "%s.arff", fileName));
|
||||
System.out.println("File read.");
|
||||
return source.getDataSet();
|
||||
} catch (Exception e) {
|
||||
printAndExit(
|
||||
String.format("*** Error trying to read " + path + "%s.arff file... (%s)", fileName,
|
||||
e.getMessage()));
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
private static void validation(Instances instancesIn, int seed, ArrayList<Double> accuracy,
|
||||
ArrayList<Double> timeSpent, ArrayList<Double> complexity) throws Exception {
|
||||
PBC4cip pb4 = new PBC4cip();
|
||||
Random rand = new Random(seed);
|
||||
pb4.setSeed(seed);
|
||||
Instances instances;
|
||||
Instances training = null;
|
||||
Instances test = null;
|
||||
long startTime;
|
||||
// Normalize normalize = new Normalize();
|
||||
|
||||
// normalize.setInputFormat(instancesIn);
|
||||
// if (normalizeData) {
|
||||
// instances = Filter.useFilter(instancesIn, normalize);
|
||||
// } else {
|
||||
instances = instancesIn;
|
||||
// }
|
||||
instances.randomize(rand);
|
||||
if (stratify) {
|
||||
instances.stratify(numFolds);
|
||||
}
|
||||
for (int i = 0; i < numFolds; i++) {
|
||||
startTime = System.currentTimeMillis();
|
||||
training = instances.trainCV(numFolds, i);
|
||||
test = instances.testCV(numFolds, i);
|
||||
pb4.buildClassifier(training);
|
||||
// let's classify
|
||||
int aciertos = 0;
|
||||
for (int j = 0; j < test.numInstances(); j++) {
|
||||
double v = pb4.classifyInstance(test.instance(j));
|
||||
double trueValue = test.instance(j).value(test.classIndex());
|
||||
if (trueValue == v)
|
||||
aciertos++;
|
||||
}
|
||||
double acc = aciertos / (double) test.numInstances();
|
||||
double tspent = (System.currentTimeMillis() - startTime) / 1000.0;
|
||||
if (debug) {
|
||||
System.err.println(String.format("%f, %f", acc, tspent));
|
||||
}
|
||||
accuracy.add(acc);
|
||||
timeSpent.add(tspent);
|
||||
complexity.add(0.0);
|
||||
}
|
||||
}
|
||||
|
||||
private static double[] meanAndDeviation(ArrayList<Double> input) {
|
||||
double sum = 0.0;
|
||||
int i = 0;
|
||||
double[] results = new double[4]; // 0 -> mean, 1 -> std
|
||||
Iterator it = input.iterator();
|
||||
// Compute mean
|
||||
while (it.hasNext()) {
|
||||
i++;
|
||||
sum += (double) it.next();
|
||||
}
|
||||
results[0] = i != 0 ? sum / (double) i : 0;
|
||||
it = input.iterator();
|
||||
sum = 0.0;
|
||||
while (it.hasNext()) {
|
||||
sum += Math.pow((double) it.next() - results[0], 2);
|
||||
}
|
||||
results[1] = i != 0 ? Math.sqrt(sum / (double) i) : 0;
|
||||
return results;
|
||||
}
|
||||
|
||||
private static void initializeOutput() {
|
||||
try {
|
||||
File f = new File(outputFile);
|
||||
f.delete();
|
||||
} catch (Exception e) {
|
||||
printAndExit(
|
||||
String.format("*** Error trying to delete the output file %s... (%s)", outputFile, e.getMessage()));
|
||||
}
|
||||
}
|
||||
|
||||
private static void store(String dataset, double[] accuracy, double[] timeSpent, double[] complexity)
|
||||
throws Exception {
|
||||
// Append output
|
||||
FileWriter file = new FileWriter(outputFile, true);
|
||||
PrintWriter linePrint = new PrintWriter(file);
|
||||
linePrint.printf("%s; %f; %f; %f; %f; %f; %f%n", dataset, accuracy[0], accuracy[1], timeSpent[0], timeSpent[1],
|
||||
complexity[0], complexity[1]);
|
||||
linePrint.close();
|
||||
}
|
||||
|
||||
public static void main(String[] args) throws Exception {
|
||||
Instances instances = null;
|
||||
Scanner sc;
|
||||
File file = null;
|
||||
Random gen;
|
||||
double[] accuracyStat = new double[2];
|
||||
double[] timeStat = new double[2];
|
||||
double[] complexityStat = new double[2];
|
||||
int[] seeds = { 57, 31, 1714, 17, 23, 79, 83, 97, 7, 1 };
|
||||
String dataset;
|
||||
String debugMsg, stratMsg, normMsg;
|
||||
ArrayList<Double> timeSpent;
|
||||
ArrayList<Double> accuracy;
|
||||
ArrayList<Double> complexity;
|
||||
|
||||
debugMsg = debug ? "With debug output" : "";
|
||||
stratMsg = stratify ? "stratified" : "without stratification";
|
||||
normMsg = normalizeData ? " with normalization" : " without normalization";
|
||||
try {
|
||||
file = new File(datasetsFile);
|
||||
} catch (Exception e) {
|
||||
printAndExit(String.format("*** Error trying to read datasets file... (%s)",
|
||||
e.getMessage()));
|
||||
}
|
||||
System.out.println(String.format("%d fold cross validation %s %s %s",
|
||||
numFolds, stratMsg, debugMsg, normMsg));
|
||||
initializeOutput();
|
||||
sc = new Scanner(file);
|
||||
while (sc.hasNextLine()) {
|
||||
dataset = sc.nextLine();
|
||||
if (debug && dataset.equals("balloons")) {
|
||||
printAndExit("* Check error output. Debug End.");
|
||||
}
|
||||
timeSpent = new ArrayList<>();
|
||||
accuracy = new ArrayList<>();
|
||||
complexity = new ArrayList<>();
|
||||
for (int seed : seeds) {
|
||||
// Establece la semilla
|
||||
gen = new Random(seed);
|
||||
// Obtiene los datos
|
||||
instances = getInstances(dataset);
|
||||
instances.randomize(gen);
|
||||
instances.setClassIndex(instances.numAttributes() - 1);
|
||||
System.out.println("Instances:");
|
||||
System.out.println(instances.toString());
|
||||
try {
|
||||
validation(instances, seed, accuracy, timeSpent, complexity);
|
||||
} catch (Exception e) {
|
||||
printAndExit(String.format("*** Error training dataset %s... (%s)", dataset,
|
||||
e.getMessage()));
|
||||
}
|
||||
|
||||
}
|
||||
accuracyStat = meanAndDeviation(accuracy);
|
||||
timeStat = meanAndDeviation(timeSpent);
|
||||
complexityStat = meanAndDeviation(complexity);
|
||||
try {
|
||||
store(dataset, accuracyStat, timeStat, complexityStat);
|
||||
} catch (Exception e) {
|
||||
printAndExit(String.format("*** Error storing results of dataset %s... (%s)",
|
||||
dataset, e.getMessage()));
|
||||
}
|
||||
}
|
||||
sc.close();
|
||||
printAndExit("* End.");
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user