189 lines
8.6 KiB
C++
189 lines
8.6 KiB
C++
// ***************************************************************
|
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
// SPDX-FileType: SOURCE
|
|
// SPDX-License-Identifier: MIT
|
|
// ***************************************************************
|
|
|
|
#include <catch2/catch_test_macros.hpp>
|
|
#include <catch2/catch_approx.hpp>
|
|
#include <catch2/generators/catch_generators.hpp>
|
|
#include "TestUtils.h"
|
|
#include "folding.hpp"
|
|
|
|
TEST_CASE("Version Test", "[Folding]")
|
|
{
|
|
std::string actual_version = { folding_project_version.begin(), folding_project_version.end() };
|
|
auto data = std::vector<int>(100);
|
|
folding::StratifiedKFold stratified_kfold(5, data, 17);
|
|
REQUIRE(stratified_kfold.version() == actual_version);
|
|
folding::KFold kfold(5, 100, 19);
|
|
REQUIRE(kfold.version() == actual_version);
|
|
}
|
|
|
|
TEST_CASE("KFold Test", "[Folding]")
|
|
{
|
|
// Initialize a KFold object with k=3,5,7,10 and a seed of 19.
|
|
std::string file_name = GENERATE("iris", "diabetes", "glass", "mfeat-fourier");
|
|
auto raw = RawDatasets(file_name, true);
|
|
INFO("File Name: " << file_name);
|
|
int nFolds = GENERATE(3, 5, 7, 10);
|
|
INFO("Number of Folds: " << nFolds);
|
|
folding::KFold kfold(nFolds, raw.nSamples, 19);
|
|
int number = raw.nSamples * (kfold.getNumberOfFolds() - 1) / kfold.getNumberOfFolds();
|
|
|
|
SECTION("Number of Folds")
|
|
{
|
|
REQUIRE(kfold.getNumberOfFolds() == nFolds);
|
|
}
|
|
SECTION("Fold Test counts")
|
|
{
|
|
// Test each fold's size and contents.
|
|
for (int fold = 0; fold < nFolds; ++fold) {
|
|
auto [train_indices, test_indices] = kfold.getFold(fold);
|
|
// Store the indices
|
|
auto fname = "kfold_" + file_name + "_" + std::to_string(nFolds) + "_" + std::to_string(fold) + ".csv";
|
|
auto indices = train_indices;
|
|
indices.insert(indices.end(), test_indices.begin(), test_indices.end());
|
|
// CSVFiles::write_csv(fname, indices);
|
|
auto expected_indices = CSVFiles::read_csv(fname);
|
|
CHECK(indices == expected_indices);
|
|
bool result = train_indices.size() == number || train_indices.size() == number + 1;
|
|
REQUIRE(result);
|
|
REQUIRE(train_indices.size() + test_indices.size() == raw.nSamples);
|
|
}
|
|
}
|
|
SECTION("Duplicates & overlappings")
|
|
{
|
|
// Check that there are not duplicate samples in the training and test sets.
|
|
for (int fold = 0; fold < nFolds; ++fold) {
|
|
auto [train, test] = kfold.getFold(fold);
|
|
auto train_ = train;
|
|
auto test_ = test;
|
|
sort(train.begin(), train.end());
|
|
train.erase(unique(train.begin(), train.end()), train.end());
|
|
sort(test.begin(), test.end());
|
|
test.erase(unique(test.begin(), test.end()), test.end());
|
|
REQUIRE(train.size() == train_.size());
|
|
REQUIRE(test.size() == test_.size());
|
|
for (int i = 0; i < train.size(); i++) {
|
|
for (int j = 0; j < test.size(); j++) {
|
|
REQUIRE(train[i] != test[j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("StratifiedKFold Test", "[Folding]")
|
|
{
|
|
// Initialize a StratifiedKFold object with k=3, using the y std::vector, and a seed of 17.
|
|
std::string file_name = GENERATE("iris", "diabetes", "glass", "mfeat-fourier");
|
|
INFO("File Name: " << file_name);
|
|
int nFolds = GENERATE(3, 5, 7, 10);
|
|
INFO("Number of Folds: " << nFolds);
|
|
auto raw = RawDatasets(file_name, true);
|
|
folding::StratifiedKFold stratified_kfoldt(nFolds, raw.yt, 17);
|
|
folding::StratifiedKFold stratified_kfoldv(nFolds, raw.yv, 17);
|
|
int number = raw.nSamples * (stratified_kfoldt.getNumberOfFolds() - 1) / stratified_kfoldt.getNumberOfFolds();
|
|
|
|
SECTION("Stratified Number of Folds")
|
|
{
|
|
REQUIRE(stratified_kfoldt.getNumberOfFolds() == nFolds);
|
|
}
|
|
SECTION("Stratified Fold samples counting")
|
|
{
|
|
// Test each fold's size and contents.
|
|
for (int fold = 0; fold < nFolds; ++fold) {
|
|
auto [train_indicest, test_indicest] = stratified_kfoldt.getFold(fold);
|
|
auto [train_indicesv, test_indicesv] = stratified_kfoldv.getFold(fold);
|
|
REQUIRE(train_indicest == train_indicesv);
|
|
REQUIRE(test_indicest == test_indicesv);
|
|
// Store the indices
|
|
auto fname = "stratkfold_" + file_name + "_" + std::to_string(nFolds) + "_" + std::to_string(fold) + ".csv";
|
|
auto indices = train_indicesv;
|
|
indices.insert(indices.end(), test_indicesv.begin(), test_indicesv.end());
|
|
// CSVFiles::write_csv(fname, indices);
|
|
auto expected_indices = CSVFiles::read_csv(fname);
|
|
// CHECK(indices == expected_indices);
|
|
// In the worst case scenario, the number of samples in the training set is number + raw.classNumStates
|
|
// because in that fold can come one remainder sample from each class.
|
|
REQUIRE(train_indicest.size() <= number + raw.classNumStates);
|
|
// If the number of samples in any class is less than the number of folds, then the fold is faulty.
|
|
// and the number of samples in the training set + test set will be less than nSamples
|
|
if (!stratified_kfoldt.isFaulty()) {
|
|
REQUIRE(train_indicest.size() + test_indicest.size() == raw.nSamples);
|
|
} else {
|
|
REQUIRE(train_indicest.size() + test_indicest.size() <= raw.nSamples);
|
|
}
|
|
}
|
|
}
|
|
SECTION("Stratified Fold label counting")
|
|
{
|
|
auto counts = std::vector<int>(raw.classNumStates, 0);
|
|
for (auto i = 0; i < raw.nSamples; ++i) {
|
|
counts[raw.yt[i].item<int>()]++;
|
|
}
|
|
auto counts_train = map<int, std::vector<int>>();
|
|
auto counts_test = map<int, std::vector<int>>();
|
|
// Initialize the counts per Fold
|
|
for (int i = 0; i < nFolds; ++i) {
|
|
counts_train[i] = std::vector<int>(raw.classNumStates, 0);
|
|
counts_test[i] = std::vector<int>(raw.classNumStates, 0);
|
|
}
|
|
// Check fold and compute counts of each fold
|
|
for (int fold = 0; fold < nFolds; ++fold) {
|
|
auto [train_indicest, test_indicest] = stratified_kfoldt.getFold(fold);
|
|
auto [train_indicesv, test_indicesv] = stratified_kfoldv.getFold(fold);
|
|
auto train_t = torch::tensor(train_indicest);
|
|
auto ytrain = raw.yt.index({ train_t });
|
|
for (const auto& idx : train_indicest) {
|
|
counts_train[fold][raw.yt[idx].item<int>()]++;
|
|
}
|
|
for (const auto& idx : test_indicest) {
|
|
counts_test[fold][raw.yt[idx].item<int>()]++;
|
|
}
|
|
}
|
|
// Check that the different folds have the same number of samples of each class in train
|
|
for (int fold = 0; fold < nFolds - 1; ++fold) {
|
|
for (int j = fold + 1; j < nFolds; ++j) {
|
|
for (int k = 0; k < raw.classNumStates; ++k) {
|
|
REQUIRE(std::abs(counts_train.at(fold).at(k) - counts_train.at(j).at(k)) <= 1);
|
|
}
|
|
}
|
|
}
|
|
// Check that the different folds have the same number of samples of each class in tests
|
|
for (int fold = 0; fold < nFolds - 1; ++fold) {
|
|
for (int j = fold + 1; j < nFolds; ++j) {
|
|
for (int k = 0; k < raw.classNumStates; ++k) {
|
|
REQUIRE(std::abs(counts_test.at(fold).at(k) - counts_test.at(j).at(k)) <= 1);
|
|
}
|
|
}
|
|
}
|
|
// Check that the sum of the counts of each class in the training and test sets is equal to the total count of that class.
|
|
for (int fold = 0; fold < nFolds; ++fold) {
|
|
for (int k = 0; k < raw.classNumStates; ++k) {
|
|
REQUIRE(counts.at(k) == (counts_train.at(fold).at(k) + counts_test.at(fold).at(k)));
|
|
}
|
|
}
|
|
}
|
|
SECTION("Duplicates & overlappings")
|
|
{
|
|
// Check that there are not duplicate samples in the training and test sets.
|
|
for (int fold = 0; fold < nFolds; ++fold) {
|
|
auto [train, test] = stratified_kfoldt.getFold(fold);
|
|
auto train_ = train;
|
|
auto test_ = test;
|
|
sort(train.begin(), train.end());
|
|
train.erase(unique(train.begin(), train.end()), train.end());
|
|
sort(test.begin(), test.end());
|
|
test.erase(unique(test.begin(), test.end()), test.end());
|
|
REQUIRE(train.size() == train_.size());
|
|
REQUIRE(test.size() == test_.size());
|
|
for (int i = 0; i < train.size(); i++) {
|
|
for (int j = 0; j < test.size(); j++) {
|
|
REQUIRE(train[i] != test[j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} |