136 lines
5.5 KiB
C++
136 lines
5.5 KiB
C++
// ***************************************************************
|
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
// SPDX-FileType: SOURCE
|
|
// SPDX-License-Identifier: MIT
|
|
// ***************************************************************
|
|
|
|
#pragma once
|
|
#include <torch/torch.h>
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <random>
|
|
#include <vector>
|
|
#include <folding_config.h>
|
|
namespace folding {
|
|
class Fold {
|
|
public:
|
|
inline Fold(int k, int n, int seed = -1) : k(k), n(n), seed(seed)
|
|
{
|
|
std::random_device rd;
|
|
random_seed = std::mt19937(seed == -1 ? rd() : seed);
|
|
std::srand(seed == -1 ? time(0) : seed);
|
|
}
|
|
virtual std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) = 0;
|
|
virtual ~Fold() = default;
|
|
std::string version() { return FOLDING_VERSION; }
|
|
int getNumberOfFolds() { return k; }
|
|
protected:
|
|
int k;
|
|
int n;
|
|
int seed;
|
|
std::mt19937 random_seed;
|
|
};
|
|
class KFold : public Fold {
|
|
public:
|
|
inline KFold(int k, int n, int seed = -1) : Fold(k, n, seed), indices(std::vector<int>(n))
|
|
{
|
|
std::iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
|
|
shuffle(indices.begin(), indices.end(), random_seed);
|
|
}
|
|
inline std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) override
|
|
{
|
|
if (nFold >= k || nFold < 0) {
|
|
throw std::out_of_range("nFold (" + std::to_string(nFold) + ") must be less than k (" + std::to_string(k) + ")");
|
|
}
|
|
int nTest = n / k;
|
|
auto train = std::vector<int>();
|
|
auto test = std::vector<int>();
|
|
for (int i = 0; i < n; i++) {
|
|
if (i >= nTest * nFold && i < nTest * (nFold + 1)) {
|
|
test.push_back(indices[i]);
|
|
} else {
|
|
train.push_back(indices[i]);
|
|
}
|
|
}
|
|
return { train, test };
|
|
}
|
|
private:
|
|
std::vector<int> indices;
|
|
};
|
|
class StratifiedKFold : public Fold {
|
|
public:
|
|
inline StratifiedKFold(int k, const std::vector<int>& y, int seed = -1, bool quiet = true) : Fold(k, y.size(), seed)
|
|
{
|
|
this->y = y;
|
|
n = y.size();
|
|
this->quiet = quiet;
|
|
build();
|
|
}
|
|
inline StratifiedKFold(int k, torch::Tensor& y, int seed = -1, bool quiet = true) : Fold(k, y.numel(), seed)
|
|
{
|
|
n = y.numel();
|
|
this->y = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + n);
|
|
this->quiet = quiet;
|
|
build();
|
|
}
|
|
|
|
inline std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) override
|
|
{
|
|
if (nFold >= k || nFold < 0) {
|
|
throw std::out_of_range("nFold (" + std::to_string(nFold) + ") must be less than k (" + std::to_string(k) + ")");
|
|
}
|
|
std::vector<int> test_indices = stratified_indices[nFold];
|
|
std::vector<int> train_indices;
|
|
for (int i = 0; i < k; ++i) {
|
|
if (i == nFold) continue;
|
|
train_indices.insert(train_indices.end(), stratified_indices[i].begin(), stratified_indices[i].end());
|
|
}
|
|
return { train_indices, test_indices };
|
|
}
|
|
inline bool isFaulty() { return faulty; }
|
|
private:
|
|
std::vector<int> y;
|
|
std::vector<std::vector<int>> stratified_indices;
|
|
bool faulty = false; // Only true if the number of samples of any class is less than the number of folds.
|
|
bool quiet = true; // Enable or disable warning messages
|
|
void build()
|
|
{
|
|
stratified_indices = std::vector<std::vector<int>>(k);
|
|
// Compute class counts and indices
|
|
auto class_indices = std::map<int, std::vector<int>>();
|
|
for (auto i = 0; i < n; ++i) {
|
|
class_indices[y[i]].push_back(i);
|
|
}
|
|
// Assign indices to folds
|
|
for (auto& [label, indices] : class_indices) {
|
|
shuffle(indices.begin(), indices.end(), random_seed);
|
|
int num_samples = indices.size();
|
|
int num_samples_to_take = num_samples / k;
|
|
int remainder_samples_to_take = num_samples % k;
|
|
if (num_samples_to_take == 0) {
|
|
if (!quiet)
|
|
std::cerr << "Warning! The number of samples in class " << label << " (" << num_samples
|
|
<< ") is less than the number of folds (" << k << ")." << std::endl;
|
|
faulty = true;
|
|
}
|
|
int start = 0;
|
|
if (num_samples_to_take > 0) {
|
|
for (auto fold = 0; fold < k; ++fold) {
|
|
auto it = next(class_indices[label].begin() + start, num_samples_to_take);
|
|
move(indices.begin() + start, it, back_inserter(stratified_indices[fold]));
|
|
start += num_samples_to_take;
|
|
}
|
|
}
|
|
if (remainder_samples_to_take > 0) {
|
|
auto chosen = std::vector<int>(k);
|
|
std::iota(chosen.begin(), chosen.end(), 0);
|
|
std::shuffle(chosen.begin(), chosen.end(), random_seed);
|
|
chosen.resize(remainder_samples_to_take);
|
|
for (auto fold : chosen) {
|
|
stratified_indices[fold].push_back(indices.at(start++));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
} |