Files
BayesNet_vcpkg/bayesnet/classifiers/XSPODE.cc

451 lines
15 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <algorithm>
#include <cmath>
#include <limits>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include "XSPODE.h"
#include "bayesnet/utils/TensorUtils.h"
namespace bayesnet {
// --------------------------------------
// Constructor
// --------------------------------------
XSpode::XSpode(int spIndex)
: superParent_{ spIndex }, nFeatures_{ 0 }, statesClass_{ 0 }, alpha_{ 1.0 },
initializer_{ 1.0 }, semaphore_{ CountingSemaphore::getInstance() },
Classifier(Network())
{
validHyperparameters = { "parent" };
}
void XSpode::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("parent")) {
superParent_ = hyperparameters["parent"];
hyperparameters.erase("parent");
}
Classifier::setHyperparameters(hyperparameters);
}
void XSpode::fitx(torch::Tensor & X, torch::Tensor& y, torch::Tensor& weights_, const Smoothing_t smoothing)
{
m = X.size(1);
n = X.size(0);
dataset = X;
buildDataset(y);
buildModel(weights_);
trainModel(weights_, smoothing);
fitted = true;
}
// --------------------------------------
// trainModel
// --------------------------------------
// Initialize storage needed for the super-parent and child features counts and
// probs.
// --------------------------------------
void XSpode::buildModel(const torch::Tensor& weights)
{
int numInstances = m;
nFeatures_ = n;
// Derive the number of states for each feature and for the class.
// (This is just one approach; adapt to match your environment.)
// Here, we assume the user also gave us the total #states per feature in e.g.
// statesMap. We'll simply reconstruct the integer states_ array. The last
// entry is statesClass_.
states_.resize(nFeatures_);
for (int f = 0; f < nFeatures_; f++) {
// Suppose you look up in “statesMap” by the feature name, or read directly
// from X. We'll assume states_[f] = max value in X[f] + 1.
states_[f] = dataset[f].max().item<int>() + 1;
}
// For the class: states_.back() = max(y)+1
statesClass_ = dataset[-1].max().item<int>() + 1;
// Initialize counts
classCounts_.resize(statesClass_, 0.0);
// p(x_sp = spVal | c)
// We'll store these counts in spFeatureCounts_[spVal * statesClass_ + c].
spFeatureCounts_.resize(states_[superParent_] * statesClass_, 0.0);
// For each child ≠ sp, we store p(childVal| c, spVal) in a separate block of
// childCounts_. childCounts_ will be sized as sum_{child≠sp} (states_[child]
// * statesClass_ * states_[sp]). We also need an offset for each child to
// index into childCounts_.
childOffsets_.resize(nFeatures_, -1);
int totalSize = 0;
for (int f = 0; f < nFeatures_; f++) {
if (f == superParent_)
continue; // skip sp
childOffsets_[f] = totalSize;
// block size for this child's counts: states_[f] * statesClass_ *
// states_[superParent_]
totalSize += (states_[f] * statesClass_ * states_[superParent_]);
}
childCounts_.resize(totalSize, 0.0);
}
// --------------------------------------
// buildModel
// --------------------------------------
//
// We only store conditional probabilities for:
// p(x_sp| c) (the super-parent feature)
// p(x_child| c, x_sp) for all child ≠ sp
//
// --------------------------------------
void XSpode::trainModel(const torch::Tensor& weights,
const bayesnet::Smoothing_t smoothing)
{
// Accumulate raw counts
for (int i = 0; i < m; i++) {
std::vector<int> instance(nFeatures_ + 1);
for (int f = 0; f < nFeatures_; f++) {
instance[f] = dataset[f][i].item<int>();
}
instance[nFeatures_] = dataset[-1][i].item<int>();
addSample(instance, weights[i].item<double>());
}
switch (smoothing) {
case bayesnet::Smoothing_t::ORIGINAL:
alpha_ = 1.0 / m;
break;
case bayesnet::Smoothing_t::LAPLACE:
alpha_ = 1.0;
break;
default:
alpha_ = 0.0; // No smoothing
}
initializer_ = std::numeric_limits<double>::max() /
(nFeatures_ * nFeatures_); // for numerical stability
// Convert raw counts to probabilities
computeProbabilities();
}
// --------------------------------------
// addSample
// --------------------------------------
//
// instance has size nFeatures_ + 1, with the class at the end.
// We add 1 to the appropriate counters for each (c, superParentVal, childVal).
//
void XSpode::addSample(const std::vector<int>& instance, double weight)
{
if (weight <= 0.0)
return;
int c = instance.back();
// (A) increment classCounts
classCounts_[c] += weight;
// (B) increment super-parent counts => p(x_sp | c)
int spVal = instance[superParent_];
spFeatureCounts_[spVal * statesClass_ + c] += weight;
// (C) increment child counts => p(childVal | c, x_sp)
for (int f = 0; f < nFeatures_; f++) {
if (f == superParent_)
continue;
int childVal = instance[f];
int offset = childOffsets_[f];
// Compute index in childCounts_.
// Layout: [ offset + (spVal * states_[f] + childVal) * statesClass_ + c ]
int blockSize = states_[f] * statesClass_;
int idx = offset + spVal * blockSize + childVal * statesClass_ + c;
childCounts_[idx] += weight;
}
}
// --------------------------------------
// computeProbabilities
// --------------------------------------
//
// Once all samples are added in COUNTS mode, call this to:
// p(c)
// p(x_sp = spVal | c)
// p(x_child = v | c, x_sp = s_sp)
//
// --------------------------------------
void XSpode::computeProbabilities()
{
double totalCount =
std::accumulate(classCounts_.begin(), classCounts_.end(), 0.0);
// p(c) => classPriors_
classPriors_.resize(statesClass_, 0.0);
if (totalCount <= 0.0) {
// fallback => uniform
double unif = 1.0 / static_cast<double>(statesClass_);
for (int c = 0; c < statesClass_; c++) {
classPriors_[c] = unif;
}
} else {
for (int c = 0; c < statesClass_; c++) {
classPriors_[c] =
(classCounts_[c] + alpha_) / (totalCount + alpha_ * statesClass_);
}
}
// p(x_sp | c)
spFeatureProbs_.resize(spFeatureCounts_.size());
// denominator for spVal * statesClass_ + c is just classCounts_[c] + alpha_ *
// (#states of sp)
int spCard = states_[superParent_];
for (int spVal = 0; spVal < spCard; spVal++) {
for (int c = 0; c < statesClass_; c++) {
double denom = classCounts_[c] + alpha_ * spCard;
double num = spFeatureCounts_[spVal * statesClass_ + c] + alpha_;
spFeatureProbs_[spVal * statesClass_ + c] = (denom <= 0.0 ? 0.0 : num / denom);
}
}
// p(x_child | c, x_sp)
childProbs_.resize(childCounts_.size());
for (int f = 0; f < nFeatures_; f++) {
if (f == superParent_)
continue;
int offset = childOffsets_[f];
int childCard = states_[f];
// For each spVal, c, childVal in childCounts_:
for (int spVal = 0; spVal < spCard; spVal++) {
for (int childVal = 0; childVal < childCard; childVal++) {
for (int c = 0; c < statesClass_; c++) {
int idx = offset + spVal * (childCard * statesClass_) +
childVal * statesClass_ + c;
double num = childCounts_[idx] + alpha_;
// denominator = spFeatureCounts_[spVal * statesClass_ + c] + alpha_ *
// (#states of child)
double denom =
spFeatureCounts_[spVal * statesClass_ + c] + alpha_ * childCard;
childProbs_[idx] = (denom <= 0.0 ? 0.0 : num / denom);
}
}
}
}
}
// --------------------------------------
// predict_proba
// --------------------------------------
//
// For a single instance x of dimension nFeatures_:
// P(c | x) ∝ p(c) × p(x_sp | c) × ∏(child ≠ sp) p(x_child | c, x_sp).
//
// --------------------------------------
std::vector<double> XSpode::predict_proba(const std::vector<int>& instance) const
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
std::vector<double> probs(statesClass_, 0.0);
// Multiply p(c) × p(x_sp | c)
int spVal = instance[superParent_];
for (int c = 0; c < statesClass_; c++) {
double pc = classPriors_[c];
double pSpC = spFeatureProbs_[spVal * statesClass_ + c];
probs[c] = pc * pSpC * initializer_;
}
// Multiply by each childs probability p(x_child | c, x_sp)
for (int feature = 0; feature < nFeatures_; feature++) {
if (feature == superParent_)
continue; // skip sp
int sf = instance[feature];
int offset = childOffsets_[feature];
int childCard = states_[feature]; // not used directly, but for clarity
// Index into childProbs_ = offset + spVal*(childCard*statesClass_) +
// childVal*statesClass_ + c
int base = offset + spVal * (childCard * statesClass_) + sf * statesClass_;
for (int c = 0; c < statesClass_; c++) {
probs[c] *= childProbs_[base + c];
}
}
// Normalize
normalize(probs);
return probs;
}
std::vector<std::vector<double>> XSpode::predict_proba(std::vector<std::vector<int>>& test_data)
{
int test_size = test_data[0].size();
int sample_size = test_data.size();
auto probabilities = std::vector<std::vector<double>>(
test_size, std::vector<double>(statesClass_));
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
std::vector<std::thread> threads;
auto worker = [&](const std::vector<std::vector<int>>& samples, int begin,
int chunk, int sample_size,
std::vector<std::vector<double>>& predictions) {
std::string threadName =
"(V)PWorker-" + std::to_string(begin) + "-" + std::to_string(chunk);
#if defined(__linux__)
pthread_setname_np(pthread_self(), threadName.c_str());
#else
pthread_setname_np(threadName.c_str());
#endif
std::vector<int> instance(sample_size);
for (int sample = begin; sample < begin + chunk; ++sample) {
for (int feature = 0; feature < sample_size; ++feature) {
instance[feature] = samples[feature][sample];
}
predictions[sample] = predict_proba(instance);
}
semaphore_.release();
};
for (int begin = 0; begin < test_size; begin += chunk_size) {
int chunk = std::min(chunk_size, test_size - begin);
semaphore_.acquire();
threads.emplace_back(worker, test_data, begin, chunk, sample_size, std::ref(probabilities));
}
for (auto& thread : threads) {
thread.join();
}
return probabilities;
}
// --------------------------------------
// Utility: normalize
// --------------------------------------
void XSpode::normalize(std::vector<double>& v) const
{
double sum = 0.0;
for (auto val : v) {
sum += val;
}
if (sum <= 0.0) {
return;
}
for (auto& val : v) {
val /= sum;
}
}
// --------------------------------------
// representation of the model
// --------------------------------------
std::string XSpode::to_string() const
{
std::ostringstream oss;
oss << "----- XSpode Model -----" << std::endl
<< "nFeatures_ = " << nFeatures_ << std::endl
<< "superParent_ = " << superParent_ << std::endl
<< "statesClass_ = " << statesClass_ << std::endl
<< std::endl;
oss << "States: [";
for (int s : states_)
oss << s << " ";
oss << "]" << std::endl;
oss << "classCounts_: [";
for (double c : classCounts_)
oss << c << " ";
oss << "]" << std::endl;
oss << "classPriors_: [";
for (double c : classPriors_)
oss << c << " ";
oss << "]" << std::endl;
oss << "spFeatureCounts_: size = " << spFeatureCounts_.size() << std::endl
<< "[";
for (double c : spFeatureCounts_)
oss << c << " ";
oss << "]" << std::endl;
oss << "spFeatureProbs_: size = " << spFeatureProbs_.size() << std::endl
<< "[";
for (double c : spFeatureProbs_)
oss << c << " ";
oss << "]" << std::endl;
oss << "childCounts_: size = " << childCounts_.size() << std::endl << "[";
for (double cc : childCounts_)
oss << cc << " ";
oss << "]" << std::endl;
for (double cp : childProbs_)
oss << cp << " ";
oss << "]" << std::endl;
oss << "childOffsets_: [";
for (int co : childOffsets_)
oss << co << " ";
oss << "]" << std::endl;
oss << std::string(40,'-') << std::endl;
return oss.str();
}
int XSpode::getNumberOfNodes() const { return nFeatures_ + 1; }
int XSpode::getClassNumStates() const { return statesClass_; }
int XSpode::getNFeatures() const { return nFeatures_; }
int XSpode::getNumberOfStates() const
{
return std::accumulate(states_.begin(), states_.end(), 0) * nFeatures_;
}
int XSpode::getNumberOfEdges() const
{
return 2 * nFeatures_ + 1;
}
// ------------------------------------------------------
// Predict overrides (classifier interface)
// ------------------------------------------------------
int XSpode::predict(const std::vector<int>& instance) const
{
auto p = predict_proba(instance);
return static_cast<int>(std::distance(p.begin(), std::max_element(p.begin(), p.end())));
}
std::vector<int> XSpode::predict(std::vector<std::vector<int>>& test_data)
{
auto probabilities = predict_proba(test_data);
std::vector<int> predictions(probabilities.size(), 0);
for (size_t i = 0; i < probabilities.size(); i++) {
predictions[i] = std::distance(
probabilities[i].begin(),
std::max_element(probabilities[i].begin(), probabilities[i].end()));
}
return predictions;
}
torch::Tensor XSpode::predict(torch::Tensor& X)
{
auto X_ = TensorUtils::to_matrix(X);
auto result_v = predict(X_);
return torch::tensor(result_v, torch::kInt32);
}
torch::Tensor XSpode::predict_proba(torch::Tensor& X)
{
auto X_ = TensorUtils::to_matrix(X);
auto result_v = predict_proba(X_);
int n_samples = X.size(1);
torch::Tensor result =
torch::zeros({ n_samples, statesClass_ }, torch::kDouble);
for (int i = 0; i < result_v.size(); ++i) {
result.index_put_({ i, "..." }, torch::tensor(result_v[i]));
}
return result;
}
float XSpode::score(torch::Tensor& X, torch::Tensor& y)
{
torch::Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
float XSpode::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
{
auto y_pred = this->predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == y[i]) {
correct++;
}
}
return (double)correct / y_pred.size();
}
} // namespace bayesnet