commit inicial

This commit is contained in:
2025-04-30 11:11:49 +02:00
commit e144d65e11
121 changed files with 53649 additions and 0 deletions

View File

@@ -0,0 +1,260 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <map>
#include <unordered_map>
#include <tuple>
#include "Mst.h"
#include "BayesMetrics.h"
namespace bayesnet {
//samples is n+1xm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
: samples(samples)
, className(className)
, features(features)
, classNumStates(classNumStates)
{
}
//samples is n+1xm std::vector used to fit the model
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
: samples(torch::zeros({ static_cast<int>(vsamples.size() + 1), static_cast<int>(vsamples[0].size()) }, torch::kInt32))
, className(className)
, features(features)
, classNumStates(classNumStates)
{
for (int i = 0; i < vsamples.size(); ++i) {
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
}
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
}
std::vector<std::pair<int, int>> Metrics::SelectKPairs(const torch::Tensor& weights, std::vector<int>& featuresExcluded, bool ascending, unsigned k)
{
// Return the K Best features
auto n = features.size();
// compute scores
scoresKPairs.clear();
pairsKBest.clear();
auto labels = samples.index({ -1, "..." });
for (int i = 0; i < n - 1; ++i) {
if (std::find(featuresExcluded.begin(), featuresExcluded.end(), i) != featuresExcluded.end()) {
continue;
}
for (int j = i + 1; j < n; ++j) {
if (std::find(featuresExcluded.begin(), featuresExcluded.end(), j) != featuresExcluded.end()) {
continue;
}
auto key = std::make_pair(i, j);
auto value = conditionalMutualInformation(samples.index({ i, "..." }), samples.index({ j, "..." }), labels, weights);
scoresKPairs.push_back({ key, value });
}
}
// sort scores
if (ascending) {
sort(scoresKPairs.begin(), scoresKPairs.end(), [](auto& a, auto& b)
{ return a.second < b.second; });
} else {
sort(scoresKPairs.begin(), scoresKPairs.end(), [](auto& a, auto& b)
{ return a.second > b.second; });
}
for (auto& [pairs, score] : scoresKPairs) {
pairsKBest.push_back(pairs);
}
if (k != 0 && k < pairsKBest.size()) {
if (ascending) {
int limit = pairsKBest.size() - k;
for (int i = 0; i < limit; i++) {
pairsKBest.erase(pairsKBest.begin());
scoresKPairs.erase(scoresKPairs.begin());
}
} else {
pairsKBest.resize(k);
scoresKPairs.resize(k);
}
}
return pairsKBest;
}
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
{
// Return the K Best features
auto n = features.size();
if (k == 0) {
k = n;
}
// compute scores
scoresKBest.clear();
featuresKBest.clear();
auto label = samples.index({ -1, "..." });
for (int i = 0; i < n; ++i) {
scoresKBest.push_back(mutualInformation(label, samples.index({ i, "..." }), weights));
featuresKBest.push_back(i);
}
// sort & reduce scores and features
if (ascending) {
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
{ return scoresKBest[i] < scoresKBest[j]; });
sort(scoresKBest.begin(), scoresKBest.end(), std::less<double>());
if (k < n) {
for (int i = 0; i < n - k; ++i) {
featuresKBest.erase(featuresKBest.begin());
scoresKBest.erase(scoresKBest.begin());
}
}
} else {
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
{ return scoresKBest[i] > scoresKBest[j]; });
sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
featuresKBest.resize(k);
scoresKBest.resize(k);
}
return featuresKBest;
}
std::vector<double> Metrics::getScoresKBest() const
{
return scoresKBest;
}
std::vector<std::pair<std::pair<int, int>, double>> Metrics::getScoresKPairs() const
{
return scoresKPairs;
}
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
{
auto result = std::vector<double>();
auto source = std::vector<std::string>(features);
source.push_back(className);
auto combinations = doCombinations(source);
// Compute class prior
auto margin = torch::zeros({ classNumStates }, torch::kFloat);
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ -1, "..." }) == value;
margin[value] = mask.sum().item<double>() / samples.size(1);
}
for (auto [first, second] : combinations) {
int index_first = find(features.begin(), features.end(), first) - features.begin();
int index_second = find(features.begin(), features.end(), second) - features.begin();
double accumulated = 0;
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ -1, "..." }) == value;
auto first_dataset = samples.index({ index_first, mask });
auto second_dataset = samples.index({ index_second, mask });
auto weights_dataset = weights.index({ mask });
auto mi = mutualInformation(first_dataset, second_dataset, weights_dataset);
auto pb = margin[value].item<double>();
accumulated += pb * mi;
}
result.push_back(accumulated);
}
long n_vars = source.size();
auto matrix = torch::zeros({ n_vars, n_vars });
auto indices = torch::triu_indices(n_vars, n_vars, 1);
for (auto i = 0; i < result.size(); ++i) {
auto x = indices[0][i];
auto y = indices[1][i];
matrix[x][y] = result[i];
matrix[y][x] = result[i];
}
return matrix;
}
// Measured in nats (natural logarithm (log) base e)
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
{
torch::Tensor counts = feature.bincount(weights);
double totalWeight = counts.sum().item<double>();
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
torch::Tensor logProbs = torch::log(probs);
torch::Tensor entropy = -probs * logProbs;
return entropy.nansum().item<double>();
}
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount(weights);
std::unordered_map<int, std::unordered_map<int, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
totalWeight += weights[i].item<float>();
}
if (totalWeight == 0)
return 0;
double entropyValue = 0;
for (int value = 0; value < featureCounts.sizes()[0]; ++value) {
double p_f = featureCounts[value].item<double>() / totalWeight;
double entropy_f = 0;
for (auto& [label, jointCount] : jointCounts[value]) {
double p_l_f = jointCount / featureCounts[value].item<double>();
if (p_l_f > 0) {
entropy_f -= p_l_f * log(p_l_f);
} else {
entropy_f = 0;
}
}
entropyValue += p_f * entropy_f;
}
return entropyValue;
}
// H(X|Y,C) = sum_{y in Y, c in C} p(x,c) H(X|Y=y,C=c)
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
{
// Ensure the tensors are of the same length
assert(firstFeature.size(0) == secondFeature.size(0) && firstFeature.size(0) == labels.size(0) && firstFeature.size(0) == weights.size(0));
// Convert tensors to vectors for easier processing
auto firstFeatureData = firstFeature.accessor<int, 1>();
auto secondFeatureData = secondFeature.accessor<int, 1>();
auto labelsData = labels.accessor<int, 1>();
auto weightsData = weights.accessor<double, 1>();
int numSamples = firstFeature.size(0);
// Maps for joint and marginal probabilities
std::map<std::tuple<int, int, int>, double> jointCount;
std::map<std::tuple<int, int>, double> marginalCount;
// Compute joint and marginal counts
for (int i = 0; i < numSamples; ++i) {
auto keyJoint = std::make_tuple(firstFeatureData[i], labelsData[i], secondFeatureData[i]);
auto keyMarginal = std::make_tuple(firstFeatureData[i], labelsData[i]);
jointCount[keyJoint] += weightsData[i];
marginalCount[keyMarginal] += weightsData[i];
}
// Total weight sum
double totalWeight = torch::sum(weights).item<double>();
if (totalWeight == 0)
return 0;
// Compute the conditional entropy
double conditionalEntropy = 0.0;
for (const auto& [keyJoint, jointFreq] : jointCount) {
auto [x, c, y] = keyJoint;
auto keyMarginal = std::make_tuple(x, c);
//double p_xc = marginalCount[keyMarginal] / totalWeight;
double p_y_given_xc = jointFreq / marginalCount[keyMarginal];
if (p_y_given_xc > 0) {
conditionalEntropy -= (jointFreq / totalWeight) * std::log(p_y_given_xc);
}
}
return conditionalEntropy;
}
// I(X;Y) = H(Y) - H(Y|X) ; I(X;Y) >= 0
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{
return std::max(entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights), 0.0);
}
// I(X;Y|C) = H(X|C) - H(X|Y,C) >= 0
double Metrics::conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
{
return std::max(conditionalEntropy(firstFeature, labels, weights) - conditionalEntropy(firstFeature, secondFeature, labels, weights), 0.0);
}
/*
Compute the maximum spanning tree considering the weights as distances
and the indices of the weights as nodes of this square matrix using
Kruskal algorithm
*/
std::vector<std::pair<int, int>> Metrics::maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root)
{
auto mst = MST(features, weights, root);
return mst.maximumSpanningTree();
}
}

View File

@@ -0,0 +1,62 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef BAYESNET_METRICS_H
#define BAYESNET_METRICS_H
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class Metrics {
public:
Metrics() = default;
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
std::vector<std::pair<int, int>> SelectKPairs(const torch::Tensor& weights, std::vector<int>& featuresExcluded, bool ascending = false, unsigned k = 0);
std::vector<double> getScoresKBest() const;
std::vector<std::pair<std::pair<int, int>, double>> getScoresKPairs() const;
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
double conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
torch::Tensor conditionalEdge(const torch::Tensor& weights);
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
// Measured in nats (natural logarithm (log) base e)
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
protected:
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
std::string className;
std::vector<std::string> features;
template <class T>
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
{
std::vector<std::pair<T, T>> result;
for (int i = 0; i < source.size() - 1; ++i) {
T temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
template <class T>
T pop_first(std::vector<T>& v)
{
T temp = v[0];
v.erase(v.begin());
return temp;
}
private:
int classNumStates = 0;
std::vector<double> scoresKBest;
std::vector<int> featuresKBest; // sorted indices of the features
std::vector<std::pair<int, int>> pairsKBest; // sorted indices of the pairs
std::vector<std::pair<std::pair<int, int>, double>> scoresKPairs;
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
};
}
#endif

View File

@@ -0,0 +1,54 @@
#ifndef COUNTING_SEMAPHORE_H
#define COUNTING_SEMAPHORE_H
#include <mutex>
#include <condition_variable>
#include <algorithm>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <thread>
class CountingSemaphore {
public:
static CountingSemaphore& getInstance()
{
static CountingSemaphore instance;
return instance;
}
// Delete copy constructor and assignment operator
CountingSemaphore(const CountingSemaphore&) = delete;
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
void acquire()
{
std::unique_lock<std::mutex> lock(mtx_);
cv_.wait(lock, [this]() { return count_ > 0; });
--count_;
}
void release()
{
std::lock_guard<std::mutex> lock(mtx_);
++count_;
if (count_ <= max_count_) {
cv_.notify_one();
}
}
uint getCount() const
{
return count_;
}
uint getMaxCount() const
{
return max_count_;
}
private:
CountingSemaphore()
: max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))),
count_(max_count_)
{
}
std::mutex mtx_;
std::condition_variable cv_;
const uint max_count_;
uint count_;
};
#endif

120
bayesnet/utils/Mst.cc Normal file
View File

@@ -0,0 +1,120 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <sstream>
#include <vector>
#include <list>
#include "Mst.h"
/*
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
*/
namespace bayesnet {
Graph::Graph(int V) : V(V), parent(std::vector<int>(V))
{
for (int i = 0; i < V; i++)
parent[i] = i;
G.clear();
T.clear();
}
void Graph::addEdge(int u, int v, float wt)
{
G.push_back({ wt, { u, v } });
}
int Graph::find_set(int i)
{
// If i is the parent of itself
if (i == parent[i])
return i;
else
//else recursively find the parent of i
return find_set(parent[i]);
}
void Graph::union_set(int u, int v)
{
parent[u] = parent[v];
}
void Graph::kruskal_algorithm()
{
// sort the edges ordered on decreasing weight
stable_sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
for (int i = 0; i < G.size(); i++) {
int uSt, vEd;
uSt = find_set(G[i].second.first);
vEd = find_set(G[i].second.second);
if (uSt != vEd) {
T.push_back(G[i]); // add to mst std::vector
union_set(uSt, vEd);
}
}
}
void MST::insertElement(std::list<int>& variables, int variable)
{
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
variables.push_front(variable);
}
}
std::vector<std::pair<int, int>> MST::reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
{
// Create the edges of a DAG from the MST
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
auto result = std::vector<std::pair<int, int>>();
auto visited = std::vector<int>();
auto nextVariables = std::list<int>();
nextVariables.push_front(root_original);
while (nextVariables.size() > 0) {
int root = nextVariables.front();
nextVariables.pop_front();
for (int i = 0; i < T.size(); ++i) {
auto [weight, edge] = T[i];
auto [from, to] = edge;
if (from == root || to == root) {
visited.insert(visited.begin(), i);
if (from == root) {
result.push_back({ from, to });
insertElement(nextVariables, to);
} else {
result.push_back({ to, from });
insertElement(nextVariables, from);
}
}
}
// Remove visited
for (int i = 0; i < visited.size(); ++i) {
T.erase(T.begin() + visited[i]);
}
visited.clear();
}
if (T.size() > 0) {
for (int i = 0; i < T.size(); ++i) {
auto [weight, edge] = T[i];
auto [from, to] = edge;
result.push_back({ from, to });
}
}
return result;
}
MST::MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
std::vector<std::pair<int, int>> MST::maximumSpanningTree()
{
auto num_features = features.size();
Graph g(num_features);
// Make a complete graph
for (int i = 0; i < num_features - 1; ++i) {
for (int j = i + 1; j < num_features; ++j) {
g.addEdge(i, j, weights[i][j].item<float>());
}
}
g.kruskal_algorithm();
auto mst = g.get_mst();
return reorder(mst, root);
}
}

40
bayesnet/utils/Mst.h Normal file
View File

@@ -0,0 +1,40 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef MST_H
#define MST_H
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class MST {
public:
MST() = default;
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
void insertElement(std::list<int>& variables, int variable);
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original);
std::vector<std::pair<int, int>> maximumSpanningTree();
private:
torch::Tensor weights;
std::vector<std::string> features;
int root = 0;
};
class Graph {
public:
explicit Graph(int V);
void addEdge(int u, int v, float wt);
int find_set(int i);
void union_set(int u, int v);
void kruskal_algorithm();
std::vector <std::pair<float, std::pair<int, int>>> get_mst() { return T; }
private:
int V; // number of nodes in graph
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
std::vector<int> parent;
};
}
#endif

View File

@@ -0,0 +1,51 @@
#ifndef TENSORUTILS_H
#define TENSORUTILS_H
#include <torch/torch.h>
#include <vector>
namespace bayesnet {
class TensorUtils {
public:
static std::vector<std::vector<int>> to_matrix(const torch::Tensor& X)
{
// Ensure tensor is contiguous in memory
auto X_contig = X.contiguous();
// Access tensor data pointer directly
auto data_ptr = X_contig.data_ptr<int>();
// IF you are using int64_t as the data type, use the following line
//auto data_ptr = X_contig.data_ptr<int64_t>();
//std::vector<std::vector<int64_t>> data(X.size(0), std::vector<int64_t>(X.size(1)));
// Prepare output container
std::vector<std::vector<int>> data(X.size(0), std::vector<int>(X.size(1)));
// Fill the 2D vector in a single loop using pointer arithmetic
int rows = X.size(0);
int cols = X.size(1);
for (int i = 0; i < rows; ++i) {
std::copy(data_ptr + i * cols, data_ptr + (i + 1) * cols, data[i].begin());
}
return data;
}
template <typename T>
static std::vector<T> to_vector(const torch::Tensor& y)
{
// Ensure the tensor is contiguous in memory
auto y_contig = y.contiguous();
// Access data pointer
auto data_ptr = y_contig.data_ptr<T>();
// Prepare output container
std::vector<T> data(y.size(0));
// Copy data efficiently
std::copy(data_ptr, data_ptr + y.size(0), data.begin());
return data;
}
};
}
#endif // TENSORUTILS_H

View File

@@ -0,0 +1,44 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "bayesnetUtils.h"
namespace bayesnet {
// Return the indices in descending order
std::vector<int> argsort(std::vector<double>& nums)
{
int n = nums.size();
std::vector<int> indices(n);
iota(indices.begin(), indices.end(), 0);
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
return indices;
}
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor)
{
// convert mxn tensor to mxn std::vector
std::vector<std::vector<double>> result;
// Iterate over cols
for (int i = 0; i < dtensor.size(0); ++i) {
auto col_tensor = dtensor.index({ i, "..." });
auto col = std::vector<double>(col_tensor.data_ptr<float>(), col_tensor.data_ptr<float>() + dtensor.size(1));
result.push_back(col);
}
return result;
}
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose)
{
// convert nxm std::vector to mxn tensor if transpose
long int m = transpose ? vector[0].size() : vector.size();
long int n = transpose ? vector.size() : vector[0].size();
auto tensor = torch::zeros({ m, n }, torch::kInt32);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
tensor[i][j] = transpose ? vector[j][i] : vector[i][j];
}
}
return tensor;
}
}

View File

@@ -0,0 +1,16 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef BAYESNET_UTILS_H
#define BAYESNET_UTILS_H
#include <vector>
#include <torch/torch.h>
namespace bayesnet {
std::vector<int> argsort(std::vector<double>& nums);
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor);
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose = true);
}
#endif //BAYESNET_UTILS_H