714 lines
32 KiB
C++
714 lines
32 KiB
C++
#include <iostream>
|
|
#include <torch/torch.h>
|
|
#include "GridSearch.h"
|
|
#include "Models.h"
|
|
#include "Paths.h"
|
|
#include "Folding.h"
|
|
#include "Colors.h"
|
|
|
|
namespace platform {
|
|
std::string get_date()
|
|
{
|
|
time_t rawtime;
|
|
tm* timeinfo;
|
|
time(&rawtime);
|
|
timeinfo = std::localtime(&rawtime);
|
|
std::ostringstream oss;
|
|
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
|
return oss.str();
|
|
}
|
|
std::string get_time()
|
|
{
|
|
time_t rawtime;
|
|
tm* timeinfo;
|
|
time(&rawtime);
|
|
timeinfo = std::localtime(&rawtime);
|
|
std::ostringstream oss;
|
|
oss << std::put_time(timeinfo, "%H:%M:%S");
|
|
return oss.str();
|
|
}
|
|
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
|
{
|
|
}
|
|
json GridSearch::getResults()
|
|
{
|
|
std::ifstream file(Paths::grid_output(config.model));
|
|
if (file.is_open()) {
|
|
return json::parse(file);
|
|
}
|
|
return json();
|
|
}
|
|
vector<std::string> GridSearch::processDatasets(Datasets& datasets)
|
|
{
|
|
// Load datasets
|
|
auto datasets_names = datasets.getNames();
|
|
if (config.continue_from != NO_CONTINUE()) {
|
|
// Continue previous execution:
|
|
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
|
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
|
}
|
|
// Remove datasets already processed
|
|
vector< string >::iterator it = datasets_names.begin();
|
|
while (it != datasets_names.end()) {
|
|
if (*it != config.continue_from) {
|
|
it = datasets_names.erase(it);
|
|
} else {
|
|
if (config.only)
|
|
++it;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Exclude datasets
|
|
for (const auto& name : config.excluded) {
|
|
auto dataset = name.get<std::string>();
|
|
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
|
if (it == datasets_names.end()) {
|
|
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
|
}
|
|
datasets_names.erase(it);
|
|
}
|
|
return datasets_names;
|
|
}
|
|
void showProgressComb(const int num, const int n_folds, const int total, const std::string& color)
|
|
{
|
|
int spaces = int(log(total) / log(10)) + 1;
|
|
int magic = n_folds * 3 + 22 + 2 * spaces;
|
|
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
|
|
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
|
|
}
|
|
void showProgressFold(int fold, const std::string& color, const std::string& phase)
|
|
{
|
|
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
|
|
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
|
}
|
|
std::string getColor(bayesnet::status_t status)
|
|
{
|
|
switch (status) {
|
|
case bayesnet::NORMAL:
|
|
return Colors::GREEN();
|
|
case bayesnet::WARNING:
|
|
return Colors::YELLOW();
|
|
case bayesnet::ERROR:
|
|
return Colors::RED();
|
|
default:
|
|
return Colors::RESET();
|
|
}
|
|
}
|
|
json GridSearch::build_tasks_mpi()
|
|
{
|
|
auto tasks = json::array();
|
|
auto grid = GridData(Paths::grid_input(config.model));
|
|
auto datasets = Datasets(false, Paths::datasets());
|
|
auto datasets_names = processDatasets(datasets);
|
|
for (const auto& dataset : datasets_names) {
|
|
for (const auto& seed : config.seeds) {
|
|
auto combinations = grid.getGrid(dataset);
|
|
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
|
json task = {
|
|
{ "dataset", dataset },
|
|
{ "seed", seed },
|
|
{ "fold", n_fold}
|
|
};
|
|
tasks.push_back(task);
|
|
}
|
|
}
|
|
}
|
|
// It's important to shuffle the array so heavy datasets are spread across the Workers
|
|
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
|
std::shuffle(tasks.begin(), tasks.end(), g);
|
|
std::cout << "Tasks size: " << tasks.size() << std::endl;
|
|
std::cout << "|";
|
|
for (int i = 0; i < tasks.size(); ++i) {
|
|
std::cout << (i + 1) % 10;
|
|
}
|
|
std::cout << "|" << std::endl << "|" << std::flush;
|
|
return tasks;
|
|
}
|
|
std::pair<int, int> GridSearch::part_range_mpi(int n_tasks, int nprocs, int rank)
|
|
{
|
|
int assigned = 0;
|
|
int remainder = n_tasks % nprocs;
|
|
int start = 0;
|
|
if (rank < remainder) {
|
|
assigned = n_tasks / nprocs + 1;
|
|
} else {
|
|
assigned = n_tasks / nprocs;
|
|
start = remainder;
|
|
}
|
|
start += rank * assigned;
|
|
int end = start + assigned;
|
|
if (rank == nprocs - 1) {
|
|
end = n_tasks;
|
|
}
|
|
return { start, end };
|
|
}
|
|
std::string get_color_rank(int rank)
|
|
{
|
|
auto colors = { Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
|
|
return *(colors.begin() + rank % colors.size());
|
|
}
|
|
|
|
void GridSearch::go_producer_consumer(struct ConfigMPI& config_mpi)
|
|
{
|
|
/*
|
|
* Each task is a json object with the following structure:
|
|
* {
|
|
* "dataset": "dataset_name",
|
|
* "seed": # of seed to use,
|
|
* "model": "model_name",
|
|
* "Fold": # of fold to process
|
|
* }
|
|
*
|
|
* The overall process consists in these steps:
|
|
* 0. Create the MPI result type & tasks
|
|
* 0.1 Create the MPI result type
|
|
* 0.2 Manager creates the tasks
|
|
* 1. Manager will broadcast the tasks to all the processes
|
|
* 1.1 Broadcast the number of tasks
|
|
* 1.2 Broadcast the length of the following string
|
|
* 1.2 Broadcast the tasks as a char* string
|
|
* 2. Workers will receive the tasks and start the process
|
|
* 2.1 A method will tell each worker the range of tasks to process
|
|
* 2.2 Each worker will process the tasks and generate the best score for each task
|
|
* 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
|
* 3.1 Obtain the maximum size of the results message of all the workers
|
|
* 3.2 Gather all the results from the workers into the manager
|
|
* 3.3 Compile the results from all the workers
|
|
* 3.4 Filter the best hyperparameters for each dataset
|
|
*/
|
|
//
|
|
// 0.1 Create the MPI result type
|
|
//
|
|
Task_Result result;
|
|
MPI_Datatype MPI_Result;
|
|
MPI_Datatype type[3] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_DOUBLE };
|
|
int blocklen[3] = { 1, 1, 1 };
|
|
MPI_Aint disp[3];
|
|
disp[0] = offsetof(struct MPI_Result, idx_dataset);
|
|
disp[1] = offsetof(struct MPI_Result, idx_combination);
|
|
disp[2] = offsetof(struct MPI_Result, score);
|
|
MPI_Type_create_struct(3, blocklen, disp, type, &MPI_Result);
|
|
MPI_Type_commit(&MPI_Result);
|
|
//
|
|
// 0.2 Manager creates the tasks
|
|
//
|
|
char* msg;
|
|
if (config_mpi.rank == config_mpi.manager) {
|
|
timer.start();
|
|
auto tasks = build_tasks_mpi();
|
|
auto tasks_str = tasks.dump();
|
|
tasks_size = tasks_str.size();
|
|
msg = new char[tasks_size + 1];
|
|
strcpy(msg, tasks_str.c_str());
|
|
}
|
|
//
|
|
// 1. Manager will broadcast the tasks to all the processes
|
|
//
|
|
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
|
if (config_mpi.rank != config_mpi.manager) {
|
|
msg = new char[tasks_size + 1];
|
|
}
|
|
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
|
json tasks = json::parse(msg);
|
|
delete[] msg;
|
|
//
|
|
// 2. All Workers will receive the tasks and start the process
|
|
//
|
|
if (config_mpi.rank == config_mpi.manager) {
|
|
producer(tasks, &MPI_Result);
|
|
} else {
|
|
consumer(tasks, &MPI_Result);
|
|
}
|
|
}
|
|
void producer(json& tasks, MPI_Datatpe& MPI_Result)
|
|
{
|
|
Task_Result result;
|
|
int num_tasks = tasks.size();
|
|
for (int i = 0; i < num_tasks; ++i) {
|
|
MPI_Status status;
|
|
MPI_recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
if (status.MPI_TAG == TAG_RESULT) {
|
|
//Store result
|
|
|
|
}
|
|
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
|
}
|
|
// Send end message to all workers
|
|
for (int i = 0; i < config_mpi.n_procs; ++i) {
|
|
MPI_Status status;
|
|
MPI_recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
if (status.MPI_TAG == TAG_RESULT) {
|
|
//Store result
|
|
|
|
}
|
|
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
|
}
|
|
}
|
|
void consumer(json& tasks, MPI_Datatpe& MPI_Result)
|
|
{
|
|
Task_Result result;
|
|
// Anounce to the producer
|
|
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
|
int task;
|
|
while (true) {
|
|
MPI_Status status;
|
|
MPI_recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
if (status.MPI_TAG == TAG_END) {
|
|
break;
|
|
}
|
|
// Process task
|
|
process_task_mpi(config_mpi, task, datasets, results);
|
|
// Send result to producer
|
|
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
|
}
|
|
}
|
|
void GridSearch::go_mpi(struct ConfigMPI& config_mpi)
|
|
{
|
|
/*
|
|
* Each task is a json object with the following structure:
|
|
* {
|
|
* "dataset": "dataset_name",
|
|
* "seed": # of seed to use,
|
|
* "model": "model_name",
|
|
* "Fold": # of fold to process
|
|
* }
|
|
*
|
|
* The overall process consists in these steps:
|
|
* 1. Manager will broadcast the tasks to all the processes
|
|
* 1.1 Broadcast the number of tasks
|
|
* 1.2 Broadcast the length of the following string
|
|
* 1.2 Broadcast the tasks as a char* string
|
|
* 2. Workers will receive the tasks and start the process
|
|
* 2.1 A method will tell each worker the range of tasks to process
|
|
* 2.2 Each worker will process the tasks and generate the best score for each task
|
|
* 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
|
* 3.1 Obtain the maximum size of the results message of all the workers
|
|
* 3.2 Gather all the results from the workers into the manager
|
|
* 3.3 Compile the results from all the workers
|
|
* 3.4 Filter the best hyperparameters for each dataset
|
|
*/
|
|
char* msg;
|
|
int tasks_size;
|
|
if (config_mpi.rank == config_mpi.manager) {
|
|
timer.start();
|
|
auto tasks = build_tasks_mpi();
|
|
auto tasks_str = tasks.dump();
|
|
tasks_size = tasks_str.size();
|
|
msg = new char[tasks_size + 1];
|
|
strcpy(msg, tasks_str.c_str());
|
|
}
|
|
//
|
|
// 1. Manager will broadcast the tasks to all the processes
|
|
//
|
|
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
|
if (config_mpi.rank != config_mpi.manager) {
|
|
msg = new char[tasks_size + 1];
|
|
}
|
|
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
|
json tasks = json::parse(msg);
|
|
delete[] msg;
|
|
//
|
|
// 2. All Workers will receive the tasks and start the process
|
|
//
|
|
int num_tasks = tasks.size();
|
|
// 2.1 A method will tell each worker the range of tasks to process
|
|
auto [start, end] = part_range_mpi(num_tasks, config_mpi.n_procs, config_mpi.rank);
|
|
// 2.2 Each worker will process the tasks and return the best scores obtained
|
|
auto datasets = Datasets(config.discretize, Paths::datasets());
|
|
json results;
|
|
for (int i = start; i < end; ++i) {
|
|
// Process task
|
|
process_task_mpi(config_mpi, tasks[i], datasets, results);
|
|
}
|
|
int size = results.dump().size() + 1;
|
|
int max_size = 0;
|
|
//
|
|
// 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
|
//
|
|
//3.1 Obtain the maximum size of the results message of all the workers
|
|
MPI_Allreduce(&size, &max_size, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
|
|
// Assign the memory to the message and initialize it to 0s
|
|
char* total = NULL;
|
|
msg = new char[max_size];
|
|
strncpy(msg, results.dump().c_str(), size);
|
|
if (config_mpi.rank == config_mpi.manager) {
|
|
total = new char[max_size * config_mpi.n_procs];
|
|
}
|
|
// 3.2 Gather all the results from the workers into the manager
|
|
MPI_Gather(msg, max_size, MPI_CHAR, total, max_size, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
|
delete[] msg;
|
|
if (config_mpi.rank == config_mpi.manager) {
|
|
std::cout << Colors::RESET() << "|" << std::endl;
|
|
json total_results;
|
|
json best_results;
|
|
// 3.3 Compile the results from all the workers
|
|
for (int i = 0; i < config_mpi.n_procs; ++i) {
|
|
json partial_results = json::parse(total + i * max_size);
|
|
for (auto& [dataset, folds] : partial_results.items()) {
|
|
for (auto& [fold, result] : folds.items()) {
|
|
total_results[dataset][fold] = result;
|
|
}
|
|
}
|
|
}
|
|
delete[] total;
|
|
// 3.4 Filter the best hyperparameters for each dataset
|
|
auto grid = GridData(Paths::grid_input(config.model));
|
|
for (auto& [dataset, folds] : total_results.items()) {
|
|
double best_score = 0.0;
|
|
double duration = 0.0;
|
|
json best_hyper;
|
|
for (auto& [fold, result] : folds.items()) {
|
|
duration += result["duration"].get<double>();
|
|
if (result["score"] > best_score) {
|
|
best_score = result["score"];
|
|
best_hyper = result["hyperparameters"];
|
|
}
|
|
}
|
|
auto timer = Timer();
|
|
json result = {
|
|
{ "score", best_score },
|
|
{ "hyperparameters", best_hyper },
|
|
{ "date", get_date() + " " + get_time() },
|
|
{ "grid", grid.getInputGrid(dataset) },
|
|
{ "duration", timer.translate2String(duration) }
|
|
};
|
|
best_results[dataset] = result;
|
|
}
|
|
save(best_results);
|
|
}
|
|
}
|
|
void GridSearch::go()
|
|
{
|
|
timer.start();
|
|
auto grid_type = config.nested == 0 ? "Single" : "Nested";
|
|
auto datasets = Datasets(config.discretize, Paths::datasets());
|
|
auto datasets_names = processDatasets(datasets);
|
|
json results = initializeResults();
|
|
std::cout << "***************** Starting " << grid_type << " Gridsearch *****************" << std::endl;
|
|
std::cout << "input file=" << Paths::grid_input(config.model) << std::endl;
|
|
auto grid = GridData(Paths::grid_input(config.model));
|
|
Timer timer_dataset;
|
|
double bestScore = 0;
|
|
json bestHyperparameters;
|
|
for (const auto& dataset : datasets_names) {
|
|
if (!config.quiet)
|
|
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
|
|
auto combinations = grid.getGrid(dataset);
|
|
timer_dataset.start();
|
|
if (config.nested == 0)
|
|
// for dataset // for hyperparameters // for seed // for fold
|
|
tie(bestScore, bestHyperparameters) = processFileSingle(dataset, datasets, combinations);
|
|
else
|
|
// for dataset // for seed // for fold // for hyperparameters // for nested fold
|
|
tie(bestScore, bestHyperparameters) = processFileNested(dataset, datasets, combinations);
|
|
if (!config.quiet) {
|
|
std::cout << "end." << " Score: " << Colors::IBLUE() << setw(9) << setprecision(7) << fixed
|
|
<< bestScore << Colors::BLUE() << " [" << bestHyperparameters.dump() << "]"
|
|
<< Colors::RESET() << ::endl;
|
|
}
|
|
json result = {
|
|
{ "score", bestScore },
|
|
{ "hyperparameters", bestHyperparameters },
|
|
{ "date", get_date() + " " + get_time() },
|
|
{ "grid", grid.getInputGrid(dataset) },
|
|
{ "duration", timer_dataset.getDurationString() }
|
|
};
|
|
results[dataset] = result;
|
|
// Save partial results
|
|
save(results);
|
|
}
|
|
// Save final results
|
|
save(results);
|
|
std::cout << "***************** Ending " << grid_type << " Gridsearch *******************" << std::endl;
|
|
}
|
|
pair<double, json> GridSearch::processFileSingle(std::string fileName, Datasets& datasets, vector<json>& combinations)
|
|
{
|
|
int num = 0;
|
|
double bestScore = 0.0;
|
|
json bestHyperparameters;
|
|
auto totalComb = combinations.size();
|
|
for (const auto& hyperparam_line : combinations) {
|
|
if (!config.quiet)
|
|
showProgressComb(++num, config.n_folds, totalComb, Colors::CYAN());
|
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
|
// Get dataset
|
|
auto [X, y] = datasets.getTensors(fileName);
|
|
auto states = datasets.getStates(fileName);
|
|
auto features = datasets.getFeatures(fileName);
|
|
auto className = datasets.getClassName(fileName);
|
|
double totalScore = 0.0;
|
|
int numItems = 0;
|
|
for (const auto& seed : config.seeds) {
|
|
if (!config.quiet)
|
|
std::cout << "(" << seed << ") doing Fold: " << flush;
|
|
Fold* fold;
|
|
if (config.stratified)
|
|
fold = new StratifiedKFold(config.n_folds, y, seed);
|
|
else
|
|
fold = new KFold(config.n_folds, y.size(0), seed);
|
|
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
|
auto clf = Models::instance()->create(config.model);
|
|
auto valid = clf->getValidHyperparameters();
|
|
hyperparameters.check(valid, fileName);
|
|
clf->setHyperparameters(hyperparameters.get(fileName));
|
|
auto [train, test] = fold->getFold(nfold);
|
|
auto train_t = torch::tensor(train);
|
|
auto test_t = torch::tensor(test);
|
|
auto X_train = X.index({ "...", train_t });
|
|
auto y_train = y.index({ train_t });
|
|
auto X_test = X.index({ "...", test_t });
|
|
auto y_test = y.index({ test_t });
|
|
// Train model
|
|
if (!config.quiet)
|
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
|
clf->fit(X_train, y_train, features, className, states);
|
|
// Test model
|
|
if (!config.quiet)
|
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
|
totalScore += clf->score(X_test, y_test);
|
|
numItems++;
|
|
if (!config.quiet)
|
|
std::cout << "\b\b\b, \b" << flush;
|
|
}
|
|
delete fold;
|
|
}
|
|
double score = numItems == 0 ? 0.0 : totalScore / numItems;
|
|
if (score > bestScore) {
|
|
bestScore = score;
|
|
bestHyperparameters = hyperparam_line;
|
|
}
|
|
}
|
|
return { bestScore, bestHyperparameters };
|
|
}
|
|
pair<double, json> GridSearch::processFileNested(std::string fileName, Datasets& datasets, vector<json>& combinations)
|
|
{
|
|
// Get dataset
|
|
auto [X, y] = datasets.getTensors(fileName);
|
|
auto states = datasets.getStates(fileName);
|
|
auto features = datasets.getFeatures(fileName);
|
|
auto className = datasets.getClassName(fileName);
|
|
int spcs_combinations = int(log(combinations.size()) / log(10)) + 1;
|
|
double goatScore = 0.0;
|
|
json goatHyperparameters;
|
|
// for dataset // for seed // for fold // for hyperparameters // for nested fold
|
|
for (const auto& seed : config.seeds) {
|
|
Fold* fold;
|
|
if (config.stratified)
|
|
fold = new StratifiedKFold(config.n_folds, y, seed);
|
|
else
|
|
fold = new KFold(config.n_folds, y.size(0), seed);
|
|
double bestScore = 0.0;
|
|
json bestHyperparameters;
|
|
std::cout << "(" << seed << ") doing Fold: " << flush;
|
|
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
|
if (!config.quiet)
|
|
std::cout << Colors::GREEN() << nfold + 1 << " " << flush;
|
|
// First level fold
|
|
auto [train, test] = fold->getFold(nfold);
|
|
auto train_t = torch::tensor(train);
|
|
auto test_t = torch::tensor(test);
|
|
auto X_train = X.index({ "...", train_t });
|
|
auto y_train = y.index({ train_t });
|
|
auto X_test = X.index({ "...", test_t });
|
|
auto y_test = y.index({ test_t });
|
|
auto num = 0;
|
|
json result_fold;
|
|
double hypScore = 0.0;
|
|
double bestHypScore = 0.0;
|
|
json bestHypHyperparameters;
|
|
for (const auto& hyperparam_line : combinations) {
|
|
std::cout << "[" << setw(spcs_combinations) << ++num << "/" << setw(spcs_combinations)
|
|
<< combinations.size() << "] " << std::flush;
|
|
Fold* nested_fold;
|
|
if (config.stratified)
|
|
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
|
else
|
|
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
|
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
|
// Nested level fold
|
|
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
|
auto train_nested_t = torch::tensor(train_nested);
|
|
auto test_nested_t = torch::tensor(test_nested);
|
|
auto X_nexted_train = X_train.index({ "...", train_nested_t });
|
|
auto y_nested_train = y_train.index({ train_nested_t });
|
|
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
|
auto y_nested_test = y_train.index({ test_nested_t });
|
|
// Build Classifier with selected hyperparameters
|
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
|
auto clf = Models::instance()->create(config.model);
|
|
auto valid = clf->getValidHyperparameters();
|
|
hyperparameters.check(valid, fileName);
|
|
clf->setHyperparameters(hyperparameters.get(fileName));
|
|
// Train model
|
|
if (!config.quiet)
|
|
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "a");
|
|
clf->fit(X_nexted_train, y_nested_train, features, className, states);
|
|
// Test model
|
|
if (!config.quiet)
|
|
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "b");
|
|
hypScore += clf->score(X_nested_test, y_nested_test);
|
|
if (!config.quiet)
|
|
std::cout << "\b\b\b, \b" << flush;
|
|
}
|
|
int magic = 3 * config.nested + 2 * spcs_combinations + 4;
|
|
std::cout << string(magic, '\b') << string(magic, ' ') << string(magic, '\b') << flush;
|
|
delete nested_fold;
|
|
hypScore /= config.nested;
|
|
if (hypScore > bestHypScore) {
|
|
bestHypScore = hypScore;
|
|
bestHypHyperparameters = hyperparam_line;
|
|
}
|
|
}
|
|
// Build Classifier with selected hyperparameters
|
|
auto clf = Models::instance()->create(config.model);
|
|
clf->setHyperparameters(bestHypHyperparameters);
|
|
// Train model
|
|
if (!config.quiet)
|
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
|
clf->fit(X_train, y_train, features, className, states);
|
|
// Test model
|
|
if (!config.quiet)
|
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
|
double score = clf->score(X_test, y_test);
|
|
if (!config.quiet)
|
|
std::cout << string(2 * config.nested - 1, '\b') << "," << string(2 * config.nested, ' ') << string(2 * config.nested - 1, '\b') << flush;
|
|
if (score > bestScore) {
|
|
bestScore = score;
|
|
bestHyperparameters = bestHypHyperparameters;
|
|
}
|
|
}
|
|
if (bestScore > goatScore) {
|
|
goatScore = bestScore;
|
|
goatHyperparameters = bestHyperparameters;
|
|
}
|
|
delete fold;
|
|
}
|
|
return { goatScore, goatHyperparameters };
|
|
}
|
|
void GridSearch::process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results)
|
|
{
|
|
// Process the task and store the result in the results json
|
|
Timer timer;
|
|
timer.start();
|
|
auto grid = GridData(Paths::grid_input(config.model));
|
|
auto dataset = task["dataset"].get<std::string>();
|
|
auto seed = task["seed"].get<int>();
|
|
auto n_fold = task["fold"].get<int>();
|
|
// Generate the hyperparamters combinations
|
|
auto combinations = grid.getGrid(dataset);
|
|
auto [X, y] = datasets.getTensors(dataset);
|
|
auto states = datasets.getStates(dataset);
|
|
auto features = datasets.getFeatures(dataset);
|
|
auto className = datasets.getClassName(dataset);
|
|
//
|
|
// Start working on task
|
|
//
|
|
Fold* fold;
|
|
if (config.stratified)
|
|
fold = new StratifiedKFold(config.n_folds, y, seed);
|
|
else
|
|
fold = new KFold(config.n_folds, y.size(0), seed);
|
|
auto [train, test] = fold->getFold(n_fold);
|
|
auto train_t = torch::tensor(train);
|
|
auto test_t = torch::tensor(test);
|
|
auto X_train = X.index({ "...", train_t });
|
|
auto y_train = y.index({ train_t });
|
|
auto X_test = X.index({ "...", test_t });
|
|
auto y_test = y.index({ test_t });
|
|
auto num = 0;
|
|
double best_fold_score = 0.0;
|
|
json best_fold_hyper;
|
|
for (const auto& hyperparam_line : combinations) {
|
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
|
Fold* nested_fold;
|
|
if (config.stratified)
|
|
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
|
else
|
|
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
|
double score = 0.0;
|
|
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
|
// Nested level fold
|
|
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
|
auto train_nested_t = torch::tensor(train_nested);
|
|
auto test_nested_t = torch::tensor(test_nested);
|
|
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
|
auto y_nested_train = y_train.index({ train_nested_t });
|
|
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
|
auto y_nested_test = y_train.index({ test_nested_t });
|
|
// Build Classifier with selected hyperparameters
|
|
auto clf = Models::instance()->create(config.model);
|
|
auto valid = clf->getValidHyperparameters();
|
|
hyperparameters.check(valid, dataset);
|
|
clf->setHyperparameters(hyperparameters.get(dataset));
|
|
// Train model
|
|
clf->fit(X_nested_train, y_nested_train, features, className, states);
|
|
// Test model
|
|
score += clf->score(X_nested_test, y_nested_test);
|
|
}
|
|
delete nested_fold;
|
|
score /= config.nested;
|
|
if (score > best_fold_score) {
|
|
best_fold_score = score;
|
|
best_fold_hyper = hyperparam_line;
|
|
}
|
|
}
|
|
delete fold;
|
|
// Build Classifier with the best hyperparameters to obtain the best score
|
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
|
auto clf = Models::instance()->create(config.model);
|
|
auto valid = clf->getValidHyperparameters();
|
|
hyperparameters.check(valid, dataset);
|
|
clf->setHyperparameters(best_fold_hyper);
|
|
clf->fit(X_train, y_train, features, className, states);
|
|
best_fold_score = clf->score(X_test, y_test);
|
|
// Save results
|
|
results[dataset][std::to_string(n_fold)]["score"] = best_fold_score;
|
|
results[dataset][std::to_string(n_fold)]["hyperparameters"] = best_fold_hyper;
|
|
results[dataset][std::to_string(n_fold)]["seed"] = seed;
|
|
results[dataset][std::to_string(n_fold)]["duration"] = timer.getDuration();
|
|
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
|
|
}
|
|
json GridSearch::initializeResults()
|
|
{
|
|
// Load previous results
|
|
json results;
|
|
if (config.continue_from != NO_CONTINUE()) {
|
|
if (!config.quiet)
|
|
std::cout << "* Loading previous results" << std::endl;
|
|
try {
|
|
std::ifstream file(Paths::grid_output(config.model));
|
|
if (file.is_open()) {
|
|
results = json::parse(file);
|
|
results = results["results"];
|
|
}
|
|
}
|
|
catch (const std::exception& e) {
|
|
std::cerr << "* There were no previous results" << std::endl;
|
|
std::cerr << "* Initizalizing new results" << std::endl;
|
|
results = json();
|
|
}
|
|
}
|
|
return results;
|
|
}
|
|
void GridSearch::save(json& results)
|
|
{
|
|
std::ofstream file(Paths::grid_output(config.model));
|
|
json output = {
|
|
{ "model", config.model },
|
|
{ "score", config.score },
|
|
{ "discretize", config.discretize },
|
|
{ "stratified", config.stratified },
|
|
{ "n_folds", config.n_folds },
|
|
{ "seeds", config.seeds },
|
|
{ "date", get_date() + " " + get_time()},
|
|
{ "nested", config.nested},
|
|
{ "platform", config.platform },
|
|
{ "duration", timer.getDurationString(true)},
|
|
{ "results", results }
|
|
|
|
};
|
|
file << output.dump(4);
|
|
}
|
|
} /* namespace platform */ |