Files
BayesNet/bayesnet/feature_selection/L1FS.cc

279 lines
9.4 KiB
C++

// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <algorithm>
#include <cmath>
#include <numeric>
#include "bayesnet/utils/bayesnetUtils.h"
#include "L1FS.h"
namespace bayesnet {
using namespace torch::indexing;
L1FS::L1FS(const torch::Tensor& samples,
const std::vector<std::string>& features,
const std::string& className,
const int maxFeatures,
const int classNumStates,
const torch::Tensor& weights,
const double alpha,
const int maxIter,
const double tolerance,
const bool fitIntercept)
: FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights),
alpha(alpha), maxIter(maxIter), tolerance(tolerance), fitIntercept(fitIntercept)
{
if (alpha < 0) {
throw std::invalid_argument("Alpha (regularization strength) must be non-negative");
}
if (maxIter < 1) {
throw std::invalid_argument("Maximum iterations must be positive");
}
if (tolerance <= 0) {
throw std::invalid_argument("Tolerance must be positive");
}
// Determine if this is a regression or classification task
// For simplicity, assume binary classification if classNumStates == 2
// and regression otherwise (this can be refined based on your needs)
isRegression = (classNumStates > 2 || classNumStates == 0);
}
void L1FS::fit()
{
initialize();
// Prepare data
int n_samples = samples.size(1);
int n_features = features.size();
// Extract features (all rows except last)
auto X = samples.index({ Slice(0, n_features), Slice() }).t().contiguous();
// Extract labels (last row)
auto y = samples.index({ -1, Slice() }).contiguous();
// Convert to float for numerical operations
X = X.to(torch::kFloat32);
y = y.to(torch::kFloat32);
// Normalize features for better convergence
auto X_mean = X.mean(0);
auto X_std = X.std(0);
X_std = torch::where(X_std == 0, torch::ones_like(X_std), X_std);
X = (X - X_mean) / X_std;
if (isRegression) {
// Normalize y for regression
auto y_mean = y.mean();
auto y_std = y.std();
if (y_std.item<double>() > 0) {
y = (y - y_mean) / y_std;
}
fitLasso(X, y, weights);
} else {
// For binary classification
fitL1Logistic(X, y, weights);
}
// Select features based on non-zero coefficients
std::vector<std::pair<int, double>> featureImportance;
for (int i = 0; i < n_features; ++i) {
double coef_magnitude = std::abs(coefficients[i]);
if (coef_magnitude > 1e-10) { // Threshold for numerical zero
featureImportance.push_back({ i, coef_magnitude });
}
}
// If all coefficients are zero (high regularization), select based on original feature-class correlation
if (featureImportance.empty() && maxFeatures > 0) {
// Compute SU with labels as fallback
computeSuLabels();
auto featureOrder = argsort(suLabels);
// Select top features by SU score
int numToSelect = std::min(static_cast<int>(featureOrder.size()),
std::min(maxFeatures, 3)); // At most 3 features as fallback
for (int i = 0; i < numToSelect; ++i) {
selectedFeatures.push_back(featureOrder[i]);
selectedScores.push_back(suLabels[featureOrder[i]]);
}
} else {
// Sort by importance (absolute coefficient value)
std::sort(featureImportance.begin(), featureImportance.end(),
[](const auto& a, const auto& b) { return a.second > b.second; });
// Select top features up to maxFeatures
int numToSelect = std::min(static_cast<int>(featureImportance.size()),
maxFeatures);
for (int i = 0; i < numToSelect; ++i) {
selectedFeatures.push_back(featureImportance[i].first);
selectedScores.push_back(featureImportance[i].second);
}
}
fitted = true;
}
void L1FS::fitLasso(const torch::Tensor& X, const torch::Tensor& y,
const torch::Tensor& sampleWeights)
{
int n_samples = X.size(0);
int n_features = X.size(1);
// Initialize coefficients
coefficients.resize(n_features, 0.0);
double intercept = 0.0;
// Ensure consistent types
torch::Tensor weights = sampleWeights.to(torch::kFloat32);
// Coordinate descent for Lasso
torch::Tensor residuals = y.clone();
if (fitIntercept) {
intercept = (y * weights).sum().item<float>() / weights.sum().item<float>();
residuals = y - intercept;
}
// Precompute feature norms
std::vector<double> featureNorms(n_features);
for (int j = 0; j < n_features; ++j) {
auto Xj = X.index({ Slice(), j });
featureNorms[j] = (Xj * Xj * weights).sum().item<float>();
}
// Coordinate descent iterations
for (int iter = 0; iter < maxIter; ++iter) {
double maxChange = 0.0;
// Update each coordinate
for (int j = 0; j < n_features; ++j) {
auto Xj = X.index({ Slice(), j });
// Compute partial residuals (excluding feature j)
torch::Tensor partialResiduals = residuals + coefficients[j] * Xj;
// Compute rho (correlation with residuals)
double rho = (Xj * partialResiduals * weights).sum().item<float>();
// Soft thresholding
double oldCoef = coefficients[j];
coefficients[j] = softThreshold(rho, alpha) / featureNorms[j];
// Update residuals
residuals = partialResiduals - coefficients[j] * Xj;
maxChange = std::max(maxChange, std::abs(coefficients[j] - oldCoef));
}
// Update intercept if needed
if (fitIntercept) {
double oldIntercept = intercept;
intercept = (residuals * weights).sum().item<float>() /
weights.sum().item<float>();
residuals = residuals - (intercept - oldIntercept);
maxChange = std::max(maxChange, std::abs(intercept - oldIntercept));
}
// Check convergence
if (maxChange < tolerance) {
break;
}
}
}
void L1FS::fitL1Logistic(const torch::Tensor& X, const torch::Tensor& y,
const torch::Tensor& sampleWeights)
{
int n_samples = X.size(0);
int n_features = X.size(1);
// Initialize coefficients
torch::Tensor coef = torch::zeros({ n_features }, torch::kFloat32);
double intercept = 0.0;
// Ensure consistent types
torch::Tensor weights = sampleWeights.to(torch::kFloat32);
// Learning rate (can be adaptive)
double learningRate = 0.01;
// Proximal gradient descent
for (int iter = 0; iter < maxIter; ++iter) {
// Compute predictions
torch::Tensor linearPred = X.matmul(coef);
if (fitIntercept) {
linearPred = linearPred + intercept;
}
torch::Tensor pred = sigmoid(linearPred);
// Compute gradient
torch::Tensor diff = pred - y;
torch::Tensor grad = X.t().matmul(diff * weights) / n_samples;
// Gradient descent step
torch::Tensor coef_new = coef - learningRate * grad;
// Proximal step (soft thresholding)
for (int j = 0; j < n_features; ++j) {
coef_new[j] = softThreshold(coef_new[j].item<float>(),
learningRate * alpha);
}
// Update intercept if needed
if (fitIntercept) {
double grad_intercept = (diff * weights).sum().item<float>() / n_samples;
intercept -= learningRate * grad_intercept;
}
// Check convergence
double change = (coef_new - coef).abs().max().item<float>();
coef = coef_new;
if (change < tolerance) {
break;
}
// Adaptive learning rate (optional)
if (iter % 100 == 0) {
learningRate *= 0.9;
}
}
// Store final coefficients
coefficients.resize(n_features);
for (int j = 0; j < n_features; ++j) {
coefficients[j] = coef[j].item<float>();
}
}
double L1FS::softThreshold(double x, double lambda) const
{
if (x > lambda) {
return x - lambda;
} else if (x < -lambda) {
return x + lambda;
} else {
return 0.0;
}
}
torch::Tensor L1FS::sigmoid(const torch::Tensor& z) const
{
return 1.0 / (1.0 + torch::exp(-z));
}
std::vector<double> L1FS::getCoefficients() const
{
if (!fitted) {
throw std::runtime_error("L1FS not fitted");
}
return coefficients;
}
} // namespace bayesnet