382 lines
21 KiB
C++
382 lines
21 KiB
C++
// ***************************************************************
|
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
// SPDX-FileType: SOURCE
|
|
// SPDX-License-Identifier: MIT
|
|
// ***************************************************************
|
|
|
|
#include <catch2/catch_approx.hpp>
|
|
#include <catch2/catch_test_macros.hpp>
|
|
#include <catch2/generators/catch_generators.hpp>
|
|
#include <catch2/matchers/catch_matchers.hpp>
|
|
#include "TestUtils.h"
|
|
#include "bayesnet/classifiers/KDB.h"
|
|
#include "bayesnet/classifiers/KDBLd.h"
|
|
#include "bayesnet/classifiers/SPODE.h"
|
|
#include "bayesnet/classifiers/SPODELd.h"
|
|
#include "bayesnet/classifiers/TAN.h"
|
|
#include "bayesnet/classifiers/TANLd.h"
|
|
#include "bayesnet/classifiers/XSPODE.h"
|
|
#include "bayesnet/ensembles/AODE.h"
|
|
#include "bayesnet/ensembles/AODELd.h"
|
|
#include "bayesnet/ensembles/BoostAODE.h"
|
|
|
|
const std::string ACTUAL_VERSION = "1.0.7";
|
|
|
|
TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
|
{
|
|
map<pair<std::string, std::string>, float> scores{// Diabetes
|
|
{{"diabetes", "AODE"}, 0.82161},
|
|
{{"diabetes", "KDB"}, 0.852865},
|
|
{{"diabetes", "XSPODE"}, 0.631510437f},
|
|
{{"diabetes", "SPODE"}, 0.802083},
|
|
{{"diabetes", "TAN"}, 0.821615},
|
|
{{"diabetes", "AODELd"}, 0.8125f},
|
|
{{"diabetes", "KDBLd"}, 0.80208f},
|
|
{{"diabetes", "SPODELd"}, 0.7890625f},
|
|
{{"diabetes", "TANLd"}, 0.803385437f},
|
|
{{"diabetes", "BoostAODE"}, 0.83984f},
|
|
// Ecoli
|
|
{{"ecoli", "AODE"}, 0.889881},
|
|
{{"ecoli", "KDB"}, 0.889881},
|
|
{{"ecoli", "XSPODE"}, 0.696428597f},
|
|
{{"ecoli", "SPODE"}, 0.880952},
|
|
{{"ecoli", "TAN"}, 0.892857},
|
|
{{"ecoli", "AODELd"}, 0.875f},
|
|
{{"ecoli", "KDBLd"}, 0.880952358f},
|
|
{{"ecoli", "SPODELd"}, 0.839285731f},
|
|
{{"ecoli", "TANLd"}, 0.848214269f},
|
|
{{"ecoli", "BoostAODE"}, 0.89583f},
|
|
// Glass
|
|
{{"glass", "AODE"}, 0.79439},
|
|
{{"glass", "KDB"}, 0.827103},
|
|
{{"glass", "XSPODE"}, 0.775701},
|
|
{{"glass", "SPODE"}, 0.775701},
|
|
{{"glass", "TAN"}, 0.827103},
|
|
{{"glass", "AODELd"}, 0.799065411f},
|
|
{{"glass", "KDBLd"}, 0.82710278f},
|
|
{{"glass", "SPODELd"}, 0.780373812f},
|
|
{{"glass", "TANLd"}, 0.869158864f},
|
|
{{"glass", "BoostAODE"}, 0.84579f},
|
|
// Iris
|
|
{{"iris", "AODE"}, 0.973333},
|
|
{{"iris", "KDB"}, 0.973333},
|
|
{{"iris", "XSPODE"}, 0.853333354f},
|
|
{{"iris", "SPODE"}, 0.973333},
|
|
{{"iris", "TAN"}, 0.973333},
|
|
{{"iris", "AODELd"}, 0.973333},
|
|
{{"iris", "KDBLd"}, 0.973333},
|
|
{{"iris", "SPODELd"}, 0.96f},
|
|
{{"iris", "TANLd"}, 0.97333f},
|
|
{{"iris", "BoostAODE"}, 0.98f} };
|
|
std::map<std::string, bayesnet::BaseClassifier*> models{ {"AODE", new bayesnet::AODE()},
|
|
{"AODELd", new bayesnet::AODELd()},
|
|
{"BoostAODE", new bayesnet::BoostAODE()},
|
|
{"KDB", new bayesnet::KDB(2)},
|
|
{"KDBLd", new bayesnet::KDBLd(2)},
|
|
{"XSPODE", new bayesnet::XSpode(1)},
|
|
{"SPODE", new bayesnet::SPODE(1)},
|
|
{"SPODELd", new bayesnet::SPODELd(1)},
|
|
{"TAN", new bayesnet::TAN()},
|
|
{"TANLd", new bayesnet::TANLd()} };
|
|
std::string name = GENERATE("AODE", "AODELd", "KDB", "KDBLd", "SPODE", "XSPODE", "SPODELd", "TAN", "TANLd");
|
|
auto clf = models[name];
|
|
|
|
SECTION("Test " + name + " classifier")
|
|
{
|
|
for (const std::string& file_name : { "glass", "iris", "ecoli", "diabetes" }) {
|
|
auto clf = models[name];
|
|
auto discretize = name.substr(name.length() - 2) != "Ld";
|
|
auto raw = RawDatasets(file_name, discretize);
|
|
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
|
auto score = clf->score(raw.Xt, raw.yt);
|
|
// std::cout << "Classifier: " << name << " File: " << file_name << " Score: " << score << " expected = " <<
|
|
// scores[{file_name, name}] << std::endl;
|
|
INFO("Classifier: " << name << " File: " << file_name);
|
|
REQUIRE(score == Catch::Approx(scores[{file_name, name}]).epsilon(raw.epsilon));
|
|
REQUIRE(clf->getStatus() == bayesnet::NORMAL);
|
|
}
|
|
}
|
|
SECTION("Library check version")
|
|
{
|
|
INFO("Checking version of " << name << " classifier");
|
|
REQUIRE(clf->getVersion() == ACTUAL_VERSION);
|
|
}
|
|
delete clf;
|
|
}
|
|
TEST_CASE("Models features & Graph", "[Models]")
|
|
{
|
|
auto graph = std::vector<std::string>(
|
|
{ "digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
|
|
"\"class\" [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
|
|
"\"class\" -> \"sepallength\"", "\"class\" -> \"sepalwidth\"", "\"class\" -> \"petallength\"",
|
|
"\"class\" -> \"petalwidth\"", "\"petallength\" [shape=circle] \n", "\"petallength\" -> \"sepallength\"",
|
|
"\"petalwidth\" [shape=circle] \n", "\"sepallength\" [shape=circle] \n", "\"sepallength\" -> \"sepalwidth\"",
|
|
"\"sepalwidth\" [shape=circle] \n", "\"sepalwidth\" -> \"petalwidth\"", "}\n" });
|
|
SECTION("Test TAN")
|
|
{
|
|
auto raw = RawDatasets("iris", true);
|
|
auto clf = bayesnet::TAN();
|
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
|
REQUIRE(clf.getNumberOfNodes() == 5);
|
|
REQUIRE(clf.getNumberOfEdges() == 7);
|
|
REQUIRE(clf.getNumberOfStates() == 19);
|
|
REQUIRE(clf.getClassNumStates() == 3);
|
|
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
|
"petallength -> sepallength, ", "petalwidth -> ",
|
|
"sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
|
REQUIRE(clf.graph("Test") == graph);
|
|
}
|
|
SECTION("Test TANLd")
|
|
{
|
|
auto clf = bayesnet::TANLd();
|
|
auto raw = RawDatasets("iris", false);
|
|
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
|
REQUIRE(clf.getNumberOfNodes() == 5);
|
|
REQUIRE(clf.getNumberOfEdges() == 7);
|
|
REQUIRE(clf.getNumberOfStates() == 27);
|
|
REQUIRE(clf.getClassNumStates() == 3);
|
|
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
|
"petallength -> sepallength, ", "petalwidth -> ",
|
|
"sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
|
REQUIRE(clf.graph("Test") == graph);
|
|
}
|
|
}
|
|
TEST_CASE("Get num features & num edges", "[Models]")
|
|
{
|
|
auto raw = RawDatasets("iris", true);
|
|
auto clf = bayesnet::KDB(2);
|
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
|
REQUIRE(clf.getNumberOfNodes() == 5);
|
|
REQUIRE(clf.getNumberOfEdges() == 8);
|
|
}
|
|
|
|
TEST_CASE("Model predict_proba", "[Models]")
|
|
{
|
|
std::string model = GENERATE("TAN", "SPODE", "BoostAODEproba", "BoostAODEvoting");
|
|
auto res_prob_tan = std::vector<std::vector<double>>({ {0.00375671, 0.994457, 0.00178621},
|
|
{0.00137462, 0.992734, 0.00589123},
|
|
{0.00137462, 0.992734, 0.00589123},
|
|
{0.00137462, 0.992734, 0.00589123},
|
|
{0.00218225, 0.992877, 0.00494094},
|
|
{0.00494209, 0.0978534, 0.897205},
|
|
{0.0054192, 0.974275, 0.0203054},
|
|
{0.00433012, 0.985054, 0.0106159},
|
|
{0.000860806, 0.996922, 0.00221698} });
|
|
auto res_prob_spode = std::vector<std::vector<double>>({ {0.00419032, 0.994247, 0.00156265},
|
|
{0.00172808, 0.993433, 0.00483862},
|
|
{0.00172808, 0.993433, 0.00483862},
|
|
{0.00172808, 0.993433, 0.00483862},
|
|
{0.00279211, 0.993737, 0.00347077},
|
|
{0.0120674, 0.357909, 0.630024},
|
|
{0.00386239, 0.913919, 0.0822185},
|
|
{0.0244389, 0.966447, 0.00911374},
|
|
{0.003135, 0.991799, 0.0050661} });
|
|
auto res_prob_baode = std::vector<std::vector<double>>({ {0.0112349, 0.962274, 0.0264907},
|
|
{0.00371025, 0.950592, 0.0456973},
|
|
{0.00371025, 0.950592, 0.0456973},
|
|
{0.00371025, 0.950592, 0.0456973},
|
|
{0.00369275, 0.84967, 0.146637},
|
|
{0.0252205, 0.113564, 0.861215},
|
|
{0.0284828, 0.770524, 0.200993},
|
|
{0.0213182, 0.857189, 0.121493},
|
|
{0.00868436, 0.949494, 0.0418215} });
|
|
auto res_prob_voting = std::vector<std::vector<double>>(
|
|
{ {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0} });
|
|
std::map<std::string, std::vector<std::vector<double>>> res_prob{ {"TAN", res_prob_tan},
|
|
{"SPODE", res_prob_spode},
|
|
{"BoostAODEproba", res_prob_baode},
|
|
{"BoostAODEvoting", res_prob_voting} };
|
|
std::map<std::string, bayesnet::BaseClassifier*> models{ {"TAN", new bayesnet::TAN()},
|
|
{"SPODE", new bayesnet::SPODE(0)},
|
|
{"BoostAODEproba", new bayesnet::BoostAODE(false)},
|
|
{"BoostAODEvoting", new bayesnet::BoostAODE(true)} };
|
|
int init_index = 78;
|
|
auto raw = RawDatasets("iris", true);
|
|
|
|
SECTION("Test " + model + " predict_proba")
|
|
{
|
|
auto clf = models[model];
|
|
clf->fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
|
auto y_pred_proba = clf->predict_proba(raw.Xv);
|
|
auto yt_pred_proba = clf->predict_proba(raw.Xt);
|
|
auto y_pred = clf->predict(raw.Xv);
|
|
auto yt_pred = clf->predict(raw.Xt);
|
|
REQUIRE(y_pred.size() == yt_pred.size(0));
|
|
REQUIRE(y_pred.size() == y_pred_proba.size());
|
|
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
|
REQUIRE(y_pred.size() == raw.yv.size());
|
|
REQUIRE(y_pred_proba[0].size() == 3);
|
|
REQUIRE(yt_pred_proba.size(1) == y_pred_proba[0].size());
|
|
for (int i = 0; i < 9; ++i) {
|
|
auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end());
|
|
int predictedClass = distance(y_pred_proba[i].begin(), maxElem);
|
|
REQUIRE(predictedClass == y_pred[i]);
|
|
// Check predict is coherent with predict_proba
|
|
REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
|
for (int j = 0; j < yt_pred_proba.size(1); j++) {
|
|
REQUIRE(yt_pred_proba[i][j].item<double>() == Catch::Approx(y_pred_proba[i][j]).epsilon(raw.epsilon));
|
|
}
|
|
}
|
|
// Check predict_proba values for vectors and tensors
|
|
for (int i = 0; i < 9; i++) {
|
|
REQUIRE(y_pred[i] == yt_pred[i].item<int>());
|
|
for (int j = 0; j < 3; j++) {
|
|
REQUIRE(res_prob[model][i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
|
|
REQUIRE(res_prob[model][i][j] ==
|
|
Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
|
}
|
|
}
|
|
delete clf;
|
|
}
|
|
}
|
|
|
|
TEST_CASE("AODE voting-proba", "[Models]")
|
|
{
|
|
auto raw = RawDatasets("glass", true);
|
|
auto clf = bayesnet::AODE(false);
|
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
|
auto score_proba = clf.score(raw.Xv, raw.yv);
|
|
auto pred_proba = clf.predict_proba(raw.Xv);
|
|
clf.setHyperparameters({
|
|
{"predict_voting", true},
|
|
});
|
|
auto score_voting = clf.score(raw.Xv, raw.yv);
|
|
auto pred_voting = clf.predict_proba(raw.Xv);
|
|
REQUIRE(score_proba == Catch::Approx(0.79439f).epsilon(raw.epsilon));
|
|
REQUIRE(score_voting == Catch::Approx(0.78972f).epsilon(raw.epsilon));
|
|
REQUIRE(pred_voting[67][0] == Catch::Approx(0.888889).epsilon(raw.epsilon));
|
|
REQUIRE(pred_proba[67][0] == Catch::Approx(0.702184).epsilon(raw.epsilon));
|
|
REQUIRE(clf.topological_order() == std::vector<std::string>());
|
|
}
|
|
TEST_CASE("SPODELd dataset", "[Models]")
|
|
{
|
|
auto raw = RawDatasets("iris", false);
|
|
auto clf = bayesnet::SPODELd(0);
|
|
// raw.dataset.to(torch::kFloat32);
|
|
clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing);
|
|
auto score = clf.score(raw.Xt, raw.yt);
|
|
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
|
auto scoret = clf.score(raw.Xt, raw.yt);
|
|
REQUIRE(score == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
|
REQUIRE(scoret == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
|
}
|
|
TEST_CASE("KDB with hyperparameters", "[Models]")
|
|
{
|
|
auto raw = RawDatasets("glass", true);
|
|
auto clf = bayesnet::KDB(2);
|
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
|
auto score = clf.score(raw.Xv, raw.yv);
|
|
clf.setHyperparameters({
|
|
{"k", 3},
|
|
{"theta", 0.7},
|
|
});
|
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
|
auto scoret = clf.score(raw.Xv, raw.yv);
|
|
REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon));
|
|
REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon));
|
|
}
|
|
TEST_CASE("Incorrect type of data for SPODELd", "[Models]")
|
|
{
|
|
auto raw = RawDatasets("iris", true);
|
|
auto clf = bayesnet::SPODELd(0);
|
|
REQUIRE_THROWS_AS(clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
|
}
|
|
TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
|
|
{
|
|
auto clf = bayesnet::AODE();
|
|
auto raw = RawDatasets("iris", true);
|
|
std::string message = "Ensemble has not been fitted";
|
|
REQUIRE_THROWS_AS(clf.predict(raw.Xv), std::logic_error);
|
|
REQUIRE_THROWS_AS(clf.predict_proba(raw.Xv), std::logic_error);
|
|
REQUIRE_THROWS_AS(clf.predict(raw.Xt), std::logic_error);
|
|
REQUIRE_THROWS_AS(clf.predict_proba(raw.Xt), std::logic_error);
|
|
REQUIRE_THROWS_AS(clf.score(raw.Xv, raw.yv), std::logic_error);
|
|
REQUIRE_THROWS_AS(clf.score(raw.Xt, raw.yt), std::logic_error);
|
|
REQUIRE_THROWS_WITH(clf.predict(raw.Xv), message);
|
|
REQUIRE_THROWS_WITH(clf.predict_proba(raw.Xv), message);
|
|
REQUIRE_THROWS_WITH(clf.predict(raw.Xt), message);
|
|
REQUIRE_THROWS_WITH(clf.predict_proba(raw.Xt), message);
|
|
REQUIRE_THROWS_WITH(clf.score(raw.Xv, raw.yv), message);
|
|
REQUIRE_THROWS_WITH(clf.score(raw.Xt, raw.yt), message);
|
|
}
|
|
TEST_CASE("TAN & SPODE with hyperparameters", "[Models]")
|
|
{
|
|
auto raw = RawDatasets("iris", true);
|
|
auto clf = bayesnet::TAN();
|
|
clf.setHyperparameters({
|
|
{"parent", 1},
|
|
});
|
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
|
auto score = clf.score(raw.Xv, raw.yv);
|
|
REQUIRE(score == Catch::Approx(0.973333).epsilon(raw.epsilon));
|
|
auto clf2 = bayesnet::SPODE(0);
|
|
clf2.setHyperparameters({
|
|
{"parent", 1},
|
|
});
|
|
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
|
auto score2 = clf2.score(raw.Xv, raw.yv);
|
|
REQUIRE(score2 == Catch::Approx(0.973333).epsilon(raw.epsilon));
|
|
}
|
|
TEST_CASE("TAN & SPODE with invalid hyperparameters", "[Models]")
|
|
{
|
|
auto raw = RawDatasets("iris", true);
|
|
auto clf = bayesnet::TAN();
|
|
clf.setHyperparameters({
|
|
{"parent", 5},
|
|
});
|
|
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing),
|
|
std::invalid_argument);
|
|
auto clf2 = bayesnet::SPODE(0);
|
|
clf2.setHyperparameters({
|
|
{"parent", 5},
|
|
});
|
|
REQUIRE_THROWS_AS(clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing),
|
|
std::invalid_argument);
|
|
}
|
|
TEST_CASE("Check proposal checkInput", "[Models]")
|
|
{
|
|
class testProposal : public bayesnet::Proposal {
|
|
public:
|
|
testProposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_)
|
|
: Proposal(dataset_, features_, className_)
|
|
{
|
|
}
|
|
void test_X_y(const torch::Tensor& X, const torch::Tensor& y) { checkInput(X, y); }
|
|
};
|
|
auto raw = RawDatasets("iris", true);
|
|
auto clf = testProposal(raw.dataset, raw.features, raw.className);
|
|
torch::Tensor X = torch::randint(0, 3, { 10, 4 });
|
|
torch::Tensor y = torch::rand({ 10 });
|
|
INFO("Check X is not float");
|
|
REQUIRE_THROWS_AS(clf.test_X_y(X, y), std::invalid_argument);
|
|
X = torch::rand({ 10, 4 });
|
|
INFO("Check y is not integer");
|
|
REQUIRE_THROWS_AS(clf.test_X_y(X, y), std::invalid_argument);
|
|
y = torch::randint(0, 3, { 10 });
|
|
INFO("X and y are correct");
|
|
REQUIRE_NOTHROW(clf.test_X_y(X, y));
|
|
}
|
|
TEST_CASE("Check KDB loop detection", "[Models]")
|
|
{
|
|
class testKDB : public bayesnet::KDB {
|
|
public:
|
|
testKDB() : KDB(2, 0) {}
|
|
void test_add_m_edges(std::vector<std::string> features_, int idx, std::vector<int>& S, torch::Tensor& weights)
|
|
{
|
|
features = features_;
|
|
add_m_edges(idx, S, weights);
|
|
}
|
|
};
|
|
auto clf = testKDB();
|
|
auto features = std::vector<std::string>{ "A", "B", "C" };
|
|
int idx = 0;
|
|
std::vector<int> S = { 0 };
|
|
torch::Tensor weights = torch::tensor({
|
|
{ 1.0, 10.0, 0.0 }, // row0 -> picks col1
|
|
{ 0.0, 1.0, 10.0 }, // row1 -> picks col2
|
|
{ 10.0, 0.0, 1.0 }, // row2 -> picks col0
|
|
});
|
|
REQUIRE_NOTHROW(clf.test_add_m_edges(features, 0, S, weights));
|
|
REQUIRE_NOTHROW(clf.test_add_m_edges(features, 1, S, weights));
|
|
}
|