Files
BayesNet/src/Network.cc

225 lines
8.9 KiB
C++

#include "Network.h"
namespace bayesnet {
Network::Network() : laplaceSmoothing(1), root(nullptr), features(vector<string>()), className("") {}
Network::Network(int smoothing) : laplaceSmoothing(smoothing), root(nullptr), features(vector<string>()), className("") {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), root(other.root), features(other.features), className(other.className)
{
for (auto& pair : other.nodes) {
nodes[pair.first] = new Node(*pair.second);
}
}
Network::~Network()
{
for (auto& pair : nodes) {
delete pair.second;
}
}
void Network::addNode(string name, int numStates)
{
if (nodes.find(name) != nodes.end()) {
// if node exists update its number of states
nodes[name]->setNumStates(numStates);
return;
}
nodes[name] = new Node(name, numStates);
if (root == nullptr) {
root = nodes[name];
}
}
void Network::setRoot(string name)
{
if (nodes.find(name) == nodes.end()) {
throw invalid_argument("Node " + name + " does not exist");
}
root = nodes[name];
}
Node* Network::getRoot()
{
return root;
}
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
{
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
{
visited.insert(nodeId);
recStack.insert(nodeId);
for (Node* child : nodes[nodeId]->getChildren()) {
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
return true;
else if (recStack.find(child->getName()) != recStack.end())
return true;
}
}
recStack.erase(nodeId); // remove node from recursion stack before function ends
return false;
}
void Network::addEdge(const string parent, const string child)
{
if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist");
}
if (nodes.find(child) == nodes.end()) {
throw invalid_argument("Child node " + child + " does not exist");
}
// Temporarily add edge to check for cycles
nodes[parent]->addChild(nodes[child]);
nodes[child]->addParent(nodes[parent]);
unordered_set<string> visited;
unordered_set<string> recStack;
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
{
// remove problematic edge
nodes[parent]->removeChild(nodes[child]);
nodes[child]->removeParent(nodes[parent]);
throw invalid_argument("Adding this edge forms a cycle in the graph.");
}
}
map<string, Node*>& Network::getNodes()
{
return nodes;
}
void Network::fit(const vector<vector<int>>& dataset, const vector<int>& labels, const vector<string>& featureNames, const string& className)
{
features = featureNames;
this->className = className;
// Build dataset
for (int i = 0; i < featureNames.size(); ++i) {
this->dataset[featureNames[i]] = dataset[i];
}
this->dataset[className] = labels;
estimateParameters();
}
void Network::estimateParameters()
{
auto dimensions = vector<int64_t>();
for (auto [name, node] : nodes) {
// Get dimensions of the CPT
dimensions.clear();
dimensions.push_back(node->getNumStates());
for (auto father : node->getParents()) {
dimensions.push_back(father->getNumStates());
}
auto length = dimensions.size();
// Create a tensor of zeros with the dimensions of the CPT
torch::Tensor cpt = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample]));
for (auto father : node->getParents()) {
coordinates.push_back(torch::tensor(dataset[father->getName()][n_sample]));
}
// Increment the count of the corresponding coordinate
cpt.index_put_({ coordinates }, cpt.index({ coordinates }) + 1);
}
// Normalize the counts
cpt = cpt / cpt.sum(0);
// store thre resulting cpt in the node
node->setCPT(cpt);
}
}
// pair<int, double> Network::predict_sample(const vector<int>& sample)
// {
// // For each possible class, calculate the posterior probability
// Node* classNode = nodes[className];
// int numClassStates = classNode->getNumStates();
// vector<double> classProbabilities(numClassStates, 0.0);
// for (int classState = 0; classState < numClassStates; ++classState) {
// // Start with the prior probability of the class
// classProbabilities[classState] = classNode->getCPT()[classState].item<double>();
// // Multiply by the likelihood of each feature given the class
// for (auto& pair : nodes) {
// if (pair.first != className) {
// Node* node = pair.second;
// int featureValue = featureValues[pair.first];
// // We use the class as the parent state to index into the CPT
// classProbabilities[classState] *= node->getCPT()[classState][featureValue].item<double>();
// }
// }
// }
// // Find the class with the maximum posterior probability
// auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
// int predictedClass = distance(classProbabilities.begin(), maxElem);
// double maxProbability = *maxElem;
// return make_pair(predictedClass, maxProbability);
// }
vector<int> Network::predict(const vector<vector<int>>& samples)
{
vector<int> predictions;
vector<int> sample;
for (int row = 0; row < samples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < samples.size(); ++col) {
sample.push_back(samples[col][row]);
}
predictions.push_back(predict_sample(sample).first);
}
return predictions;
}
vector<pair<int, double>> Network::predict_proba(const vector<vector<int>>& samples)
{
vector<pair<int, double>> predictions;
vector<int> sample;
for (int row = 0; row < samples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < samples.size(); ++col) {
sample.push_back(samples[col][row]);
}
predictions.push_back(predict_sample(sample));
}
return predictions;
}
double Network::score(const vector<vector<int>>& samples, const vector<int>& labels)
{
vector<int> y_pred = predict(samples);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == labels[i]) {
correct++;
}
}
return (double)correct / y_pred.size();
}
pair<int, double> Network::predict_sample(const vector<int>& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size() != features.size()) {
throw invalid_argument("Sample size (" + to_string(sample.size()) +
") does not match the number of features (" + to_string(features.size()) + ")");
}
// Map the feature values to their corresponding nodes
map<string, int> featureValues;
for (int i = 0; i < features.size(); ++i) {
featureValues[features[i]] = sample[i];
}
// For each possible class, calculate the posterior probability
Network network = *this;
vector<double> classProbabilities = eliminateVariables(network, featureValues);
// Normalize the probabilities to sum to 1
double sum = accumulate(classProbabilities.begin(), classProbabilities.end(), 0.0);
for (double& prob : classProbabilities) {
prob /= sum;
}
// Find the class with the maximum posterior probability
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
int predictedClass = distance(classProbabilities.begin(), maxElem);
double maxProbability = *maxElem;
return make_pair(predictedClass, maxProbability);
}
vector<double> eliminateVariables(network, featureValues)
{
}
}