Files
BayesNet/src/Platform/GridSearch.cc

883 lines
42 KiB
C++

#include <iostream>
#include <cstddef>
#include <torch/torch.h>
#include "GridSearch.h"
#include "Models.h"
#include "Paths.h"
#include "Folding.h"
#include "Colors.h"
namespace platform {
std::string get_date()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%Y-%m-%d");
return oss.str();
}
std::string get_time()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
std::string get_color_rank(int rank)
{
auto colors = { Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
return *(colors.begin() + rank % colors.size());
}
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
{
}
json GridSearch::loadResults()
{
std::ifstream file(Paths::grid_output(config.model));
if (file.is_open()) {
return json::parse(file);
}
return json();
}
vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
{
// Load datasets
auto datasets_names = datasets.getNames();
if (config.continue_from != NO_CONTINUE()) {
// Continue previous execution:
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
}
// Remove datasets already processed
vector< string >::iterator it = datasets_names.begin();
while (it != datasets_names.end()) {
if (*it != config.continue_from) {
it = datasets_names.erase(it);
} else {
if (config.only)
++it;
else
break;
}
}
}
// Exclude datasets
for (const auto& name : config.excluded) {
auto dataset = name.get<std::string>();
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
if (it == datasets_names.end()) {
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
}
datasets_names.erase(it);
}
return datasets_names;
}
void showProgressComb(const int num, const int n_folds, const int total, const std::string& color)
{
int spaces = int(log(total) / log(10)) + 1;
int magic = n_folds * 3 + 22 + 2 * spaces;
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
}
void showProgressFold(int fold, const std::string& color, const std::string& phase)
{
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
}
std::string getColor(bayesnet::status_t status)
{
switch (status) {
case bayesnet::NORMAL:
return Colors::GREEN();
case bayesnet::WARNING:
return Colors::YELLOW();
case bayesnet::ERROR:
return Colors::RED();
default:
return Colors::RESET();
}
}
json GridSearch::build_tasks_mpi()
{
auto tasks = json::array();
auto grid = GridData(Paths::grid_input(config.model));
auto datasets = Datasets(false, Paths::datasets());
auto all_datasets = datasets.getNames();
auto datasets_names = filterDatasets(datasets);
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
auto dataset = datasets_names[idx_dataset];
for (const auto& seed : config.seeds) {
auto combinations = grid.getGrid(dataset);
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
json task = {
{ "dataset", dataset },
{ "idx_dataset", idx_dataset},
{ "seed", seed },
{ "fold", n_fold},
};
tasks.push_back(task);
}
}
}
// It's important to shuffle the array so heavy datasets are spread across the Workers
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
std::shuffle(tasks.begin(), tasks.end(), g);
std::cout << "Tasks size: " << tasks.size() << std::endl;
std::cout << "|";
for (int i = 0; i < tasks.size(); ++i) {
std::cout << (i + 1) % 10;
}
std::cout << "|" << std::endl << "|" << std::flush;
return tasks;
}
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
{
// initialize
Timer timer;
timer.start();
json task = tasks[n_task];
auto model = config.model;
auto grid = GridData(Paths::grid_input(model));
auto dataset = task["dataset"].get<std::string>();
auto idx_dataset = task["idx_dataset"].get<int>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
bool stratified = config.stratified;
// Generate the hyperparamters combinations
auto combinations = grid.getGrid(dataset);
auto [X, y] = datasets.getTensors(dataset);
auto states = datasets.getStates(dataset);
auto features = datasets.getFeatures(dataset);
auto className = datasets.getClassName(dataset);
//
// Start working on task
//
Fold* fold;
if (stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
double best_fold_score = 0.0;
int best_idx_combination = -1;
json best_fold_hyper;
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
auto hyperparam_line = combinations[idx_combination];
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
Fold* nested_fold;
if (config.stratified)
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new KFold(config.nested, y_train.size(0), seed);
double score = 0.0;
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nested_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(hyperparameters.get(dataset));
// Train model
clf->fit(X_nested_train, y_nested_train, features, className, states);
// Test model
score += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
score /= config.nested;
if (score > best_fold_score) {
best_fold_score = score;
best_idx_combination = idx_combination;
best_fold_hyper = hyperparam_line;
}
}
delete fold;
// Build Classifier with the best hyperparameters to obtain the best score
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states);
best_fold_score = clf->score(X_test, y_test);
// Return the result
result->idx_dataset = task["idx_dataset"].get<int>();
result->idx_combination = best_idx_combination;
result->score = best_fold_score;
result->n_fold = n_fold;
result->time = timer.getDuration();
// Update progress bar
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
}
// std::pair<int, int> GridSearch::part_range_mpi(int n_tasks, int nprocs, int rank)
// {
// int assigned = 0;
// int remainder = n_tasks % nprocs;
// int start = 0;
// if (rank < remainder) {
// assigned = n_tasks / nprocs + 1;
// } else {
// assigned = n_tasks / nprocs;
// start = remainder;
// }
// start += rank * assigned;
// int end = start + assigned;
// if (rank == nprocs - 1) {
// end = n_tasks;
// }
// return { start, end };
// }
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
{
json json_result = {
{ "score", result.score },
{ "combination", result.idx_combination },
{ "fold", result.n_fold },
{ "time", result.time },
{ "dataset", result.idx_dataset }
};
std::cout << "x Storing result for dataset " << result.idx_dataset << " from " << result.idx_combination << ::endl;
std::cout << json_result.dump() << std::endl;
std::cout << string(80, '-') << std::endl;
auto name = names[result.idx_dataset];
if (!results.contains(name)) {
results[name] = json::array();
}
results[name].push_back(json_result);
std::cout << results.dump() << std::endl;
return results;
}
json producer(json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
json results;
int num_tasks = tasks.size();
auto datasets = Datasets(false, Paths::datasets());
auto names = datasets.getNames();
for (int i = 0; i < num_tasks; ++i) {
MPI_Status status;
std::cout << "+ Producer waiting for result." << std::endl;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
std::cout << "+ Producer received result from " << status.MPI_SOURCE << std::endl;
store_result(names, result, results);
}
std::cout << "+ Producer sending task " << i << " to " << status.MPI_SOURCE << std::endl;
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
}
// Send end message to all workers but the manager
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
MPI_Status status;
std::cout << "+ Producer waiting for result (closing)." << std::endl;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
std::cout << "+ Producer received result from " << status.MPI_SOURCE << " (closing)" << std::endl;
store_result(names, result, results);
}
std::cout << "+ Producer sending end signal to " << status.MPI_SOURCE << std::endl;
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
}
return results;
}
json select_best_results_folds(json& all_results, std::string& model)
{
json results;
Timer timer;
auto grid = GridData(Paths::grid_input(model));
//
// Select the best result of the computed outer folds
//
std::cout << "--- Selecting best results of the outer folds ---" << std::endl;
std::cout << all_results.dump() << std::endl;
for (const auto& result : all_results.items()) {
// each result has the results of all the outer folds as each one were a different task
double best_score = 0.0;
json best;
std::cout << " Processing " << result.key() << std::endl;
for (const auto& result_fold : result.value()) {
double score = result_fold["score"].get<double>();
if (score > best_score) {
best_score = score;
best = result_fold;
}
}
auto dataset = result.key();
auto combinations = grid.getGrid(dataset);
json json_best = {
{ "score", best_score },
{ "hyperparameters", combinations[best["combination"].get<int>()] },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", timer.translate2String(best["time"].get<double>()) }
};
results[dataset] = json_best;
}
return results;
}
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
// Anounce to the producer
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
int task;
while (true) {
MPI_Status status;
std::cout << "- Consumer nº " << config_mpi.rank << " waiting for task." << std::endl;
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_END) {
break;
}
// Process task
std::cout << " - Consumer nº " << config_mpi.rank << " processing task " << task << std::endl;
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
// Send result to producer
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
std::cout << " - Consumer nº " << config_mpi.rank << " sent task " << task << std::endl;
}
}
void GridSearch::go_producer_consumer(struct ConfigMPI& config_mpi)
{
/*
* Each task is a json object with the following structure:
* {
* "dataset": "dataset_name",
* "idx_dataset": idx_dataset,
* "seed": # of seed to use,
* "Fold": # of fold to process
* }
*
* The overall process consists in these steps:
* 0. Create the MPI result type & tasks
* 0.1 Create the MPI result type
* 0.2 Manager creates the tasks
* 1. Manager will broadcast the tasks to all the processes
* 1.1 Broadcast the number of tasks
* 1.2 Broadcast the length of the following string
* 1.2 Broadcast the tasks as a char* string
* 2. Workers will receive the tasks and start the process
* 2.1 A method will tell each worker the range of tasks to process
* 2.2 Each worker will process the tasks and generate the best score for each task
* 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
* 3.1 Obtain the maximum size of the results message of all the workers
* 3.2 Gather all the results from the workers into the manager
* 3.3 Compile the results from all the workers
* 3.4 Filter the best hyperparameters for each dataset
*/
//
// 0.1 Create the MPI result type
//
Task_Result result;
int tasks_size;
MPI_Datatype MPI_Result;
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
int blocklen[5] = { 1, 1, 1, 1, 1 };
MPI_Aint disp[5];
disp[0] = offsetof(Task_Result, idx_dataset);
disp[1] = offsetof(Task_Result, idx_combination);
disp[2] = offsetof(Task_Result, n_fold);
disp[3] = offsetof(Task_Result, score);
disp[4] = offsetof(Task_Result, time);
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
MPI_Type_commit(&MPI_Result);
//
// 0.2 Manager creates the tasks
//
char* msg;
json tasks;
if (config_mpi.rank == config_mpi.manager) {
timer.start();
tasks = build_tasks_mpi();
auto tasks_str = tasks.dump();
tasks_size = tasks_str.size();
msg = new char[tasks_size + 1];
strcpy(msg, tasks_str.c_str());
}
//
// 1. Manager will broadcast the tasks to all the processes
//
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
if (config_mpi.rank != config_mpi.manager) {
msg = new char[tasks_size + 1];
}
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
tasks = json::parse(msg);
delete[] msg;
//
// 2. All Workers will receive the tasks and start the process
//
auto datasets = Datasets(config.discretize, Paths::datasets());
if (config_mpi.rank == config_mpi.manager) {
json all_results = producer(tasks, config_mpi, MPI_Result);
json results = select_best_results_folds(all_results, config.model);
save(results);
} else {
consumer(datasets, tasks, config, config_mpi, MPI_Result);
}
}
// void GridSearch::go_mpi(struct ConfigMPI& config_mpi)
// {
// /*
// * Each task is a json object with the following structure:
// * {
// * "dataset": "dataset_name",
// * "seed": # of seed to use,
// * "model": "model_name",
// * "Fold": # of fold to process
// * }
// *
// * The overall process consists in these steps:
// * 1. Manager will broadcast the tasks to all the processes
// * 1.1 Broadcast the number of tasks
// * 1.2 Broadcast the length of the following string
// * 1.2 Broadcast the tasks as a char* string
// * 2. Workers will receive the tasks and start the process
// * 2.1 A method will tell each worker the range of tasks to process
// * 2.2 Each worker will process the tasks and generate the best score for each task
// * 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
// * 3.1 Obtain the maximum size of the results message of all the workers
// * 3.2 Gather all the results from the workers into the manager
// * 3.3 Compile the results from all the workers
// * 3.4 Filter the best hyperparameters for each dataset
// */
// char* msg;
// int tasks_size;
// if (config_mpi.rank == config_mpi.manager) {
// timer.start();
// auto tasks = build_tasks_mpi();
// auto tasks_str = tasks.dump();
// tasks_size = tasks_str.size();
// msg = new char[tasks_size + 1];
// strcpy(msg, tasks_str.c_str());
// }
// //
// // 1. Manager will broadcast the tasks to all the processes
// //
// MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
// if (config_mpi.rank != config_mpi.manager) {
// msg = new char[tasks_size + 1];
// }
// MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
// json tasks = json::parse(msg);
// delete[] msg;
// //
// // 2. All Workers will receive the tasks and start the process
// //
// int num_tasks = tasks.size();
// // 2.1 A method will tell each worker the range of tasks to process
// auto [start, end] = part_range_mpi(num_tasks, config_mpi.n_procs, config_mpi.rank);
// // 2.2 Each worker will process the tasks and return the best scores obtained
// auto datasets = Datasets(config.discretize, Paths::datasets());
// json results;
// for (int i = start; i < end; ++i) {
// // Process task
// process_task_mpi(config_mpi, tasks[i], datasets, results);
// }
// int size = results.dump().size() + 1;
// int max_size = 0;
// //
// // 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
// //
// //3.1 Obtain the maximum size of the results message of all the workers
// MPI_Allreduce(&size, &max_size, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
// // Assign the memory to the message and initialize it to 0s
// char* total = NULL;
// msg = new char[max_size];
// strncpy(msg, results.dump().c_str(), size);
// if (config_mpi.rank == config_mpi.manager) {
// total = new char[max_size * config_mpi.n_procs];
// }
// // 3.2 Gather all the results from the workers into the manager
// MPI_Gather(msg, max_size, MPI_CHAR, total, max_size, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
// delete[] msg;
// if (config_mpi.rank == config_mpi.manager) {
// std::cout << Colors::RESET() << "|" << std::endl;
// json total_results;
// json best_results;
// // 3.3 Compile the results from all the workers
// for (int i = 0; i < config_mpi.n_procs; ++i) {
// json partial_results = json::parse(total + i * max_size);
// for (auto& [dataset, folds] : partial_results.items()) {
// for (auto& [fold, result] : folds.items()) {
// total_results[dataset][fold] = result;
// }
// }
// }
// delete[] total;
// // 3.4 Filter the best hyperparameters for each dataset
// auto grid = GridData(Paths::grid_input(config.model));
// for (auto& [dataset, folds] : total_results.items()) {
// double best_score = 0.0;
// double duration = 0.0;
// json best_hyper;
// for (auto& [fold, result] : folds.items()) {
// duration += result["duration"].get<double>();
// if (result["score"] > best_score) {
// best_score = result["score"];
// best_hyper = result["hyperparameters"];
// }
// }
// auto timer = Timer();
// json result = {
// { "score", best_score },
// { "hyperparameters", best_hyper },
// { "date", get_date() + " " + get_time() },
// { "grid", grid.getInputGrid(dataset) },
// { "duration", timer.translate2String(duration) }
// };
// best_results[dataset] = result;
// }
// save(best_results);
// }
// }
// void GridSearch::go()
// {
// timer.start();
// auto grid_type = config.nested == 0 ? "Single" : "Nested";
// auto datasets = Datasets(config.discretize, Paths::datasets());
// auto datasets_names = processDatasets(datasets);
// json results = initializeResults();
// std::cout << "***************** Starting " << grid_type << " Gridsearch *****************" << std::endl;
// std::cout << "input file=" << Paths::grid_input(config.model) << std::endl;
// auto grid = GridData(Paths::grid_input(config.model));
// Timer timer_dataset;
// double bestScore = 0;
// json bestHyperparameters;
// for (const auto& dataset : datasets_names) {
// if (!config.quiet)
// std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
// auto combinations = grid.getGrid(dataset);
// timer_dataset.start();
// if (config.nested == 0)
// // for dataset // for hyperparameters // for seed // for fold
// tie(bestScore, bestHyperparameters) = processFileSingle(dataset, datasets, combinations);
// else
// // for dataset // for seed // for fold // for hyperparameters // for nested fold
// tie(bestScore, bestHyperparameters) = processFileNested(dataset, datasets, combinations);
// if (!config.quiet) {
// std::cout << "end." << " Score: " << Colors::IBLUE() << setw(9) << setprecision(7) << fixed
// << bestScore << Colors::BLUE() << " [" << bestHyperparameters.dump() << "]"
// << Colors::RESET() << ::endl;
// }
// json result = {
// { "score", bestScore },
// { "hyperparameters", bestHyperparameters },
// { "date", get_date() + " " + get_time() },
// { "grid", grid.getInputGrid(dataset) },
// { "duration", timer_dataset.getDurationString() }
// };
// results[dataset] = result;
// // Save partial results
// save(results);
// }
// // Save final results
// save(results);
// std::cout << "***************** Ending " << grid_type << " Gridsearch *******************" << std::endl;
// }
// pair<double, json> GridSearch::processFileSingle(std::string fileName, Datasets& datasets, vector<json>& combinations)
// {
// int num = 0;
// double bestScore = 0.0;
// json bestHyperparameters;
// auto totalComb = combinations.size();
// for (const auto& hyperparam_line : combinations) {
// if (!config.quiet)
// showProgressComb(++num, config.n_folds, totalComb, Colors::CYAN());
// auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
// // Get dataset
// auto [X, y] = datasets.getTensors(fileName);
// auto states = datasets.getStates(fileName);
// auto features = datasets.getFeatures(fileName);
// auto className = datasets.getClassName(fileName);
// double totalScore = 0.0;
// int numItems = 0;
// for (const auto& seed : config.seeds) {
// if (!config.quiet)
// std::cout << "(" << seed << ") doing Fold: " << flush;
// Fold* fold;
// if (config.stratified)
// fold = new StratifiedKFold(config.n_folds, y, seed);
// else
// fold = new KFold(config.n_folds, y.size(0), seed);
// for (int nfold = 0; nfold < config.n_folds; nfold++) {
// auto clf = Models::instance()->create(config.model);
// auto valid = clf->getValidHyperparameters();
// hyperparameters.check(valid, fileName);
// clf->setHyperparameters(hyperparameters.get(fileName));
// auto [train, test] = fold->getFold(nfold);
// auto train_t = torch::tensor(train);
// auto test_t = torch::tensor(test);
// auto X_train = X.index({ "...", train_t });
// auto y_train = y.index({ train_t });
// auto X_test = X.index({ "...", test_t });
// auto y_test = y.index({ test_t });
// // Train model
// if (!config.quiet)
// showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
// clf->fit(X_train, y_train, features, className, states);
// // Test model
// if (!config.quiet)
// showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
// totalScore += clf->score(X_test, y_test);
// numItems++;
// if (!config.quiet)
// std::cout << "\b\b\b, \b" << flush;
// }
// delete fold;
// }
// double score = numItems == 0 ? 0.0 : totalScore / numItems;
// if (score > bestScore) {
// bestScore = score;
// bestHyperparameters = hyperparam_line;
// }
// }
// return { bestScore, bestHyperparameters };
// }
// pair<double, json> GridSearch::processFileNested(std::string fileName, Datasets& datasets, vector<json>& combinations)
// {
// // Get dataset
// auto [X, y] = datasets.getTensors(fileName);
// auto states = datasets.getStates(fileName);
// auto features = datasets.getFeatures(fileName);
// auto className = datasets.getClassName(fileName);
// int spcs_combinations = int(log(combinations.size()) / log(10)) + 1;
// double goatScore = 0.0;
// json goatHyperparameters;
// // for dataset // for seed // for fold // for hyperparameters // for nested fold
// for (const auto& seed : config.seeds) {
// Fold* fold;
// if (config.stratified)
// fold = new StratifiedKFold(config.n_folds, y, seed);
// else
// fold = new KFold(config.n_folds, y.size(0), seed);
// double bestScore = 0.0;
// json bestHyperparameters;
// std::cout << "(" << seed << ") doing Fold: " << flush;
// for (int nfold = 0; nfold < config.n_folds; nfold++) {
// if (!config.quiet)
// std::cout << Colors::GREEN() << nfold + 1 << " " << flush;
// // First level fold
// auto [train, test] = fold->getFold(nfold);
// auto train_t = torch::tensor(train);
// auto test_t = torch::tensor(test);
// auto X_train = X.index({ "...", train_t });
// auto y_train = y.index({ train_t });
// auto X_test = X.index({ "...", test_t });
// auto y_test = y.index({ test_t });
// auto num = 0;
// json result_fold;
// double hypScore = 0.0;
// double bestHypScore = 0.0;
// json bestHypHyperparameters;
// for (const auto& hyperparam_line : combinations) {
// std::cout << "[" << setw(spcs_combinations) << ++num << "/" << setw(spcs_combinations)
// << combinations.size() << "] " << std::flush;
// Fold* nested_fold;
// if (config.stratified)
// nested_fold = new StratifiedKFold(config.nested, y_train, seed);
// else
// nested_fold = new KFold(config.nested, y_train.size(0), seed);
// for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// // Nested level fold
// auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
// auto train_nested_t = torch::tensor(train_nested);
// auto test_nested_t = torch::tensor(test_nested);
// auto X_nexted_train = X_train.index({ "...", train_nested_t });
// auto y_nested_train = y_train.index({ train_nested_t });
// auto X_nested_test = X_train.index({ "...", test_nested_t });
// auto y_nested_test = y_train.index({ test_nested_t });
// // Build Classifier with selected hyperparameters
// auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
// auto clf = Models::instance()->create(config.model);
// auto valid = clf->getValidHyperparameters();
// hyperparameters.check(valid, fileName);
// clf->setHyperparameters(hyperparameters.get(fileName));
// // Train model
// if (!config.quiet)
// showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "a");
// clf->fit(X_nexted_train, y_nested_train, features, className, states);
// // Test model
// if (!config.quiet)
// showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "b");
// hypScore += clf->score(X_nested_test, y_nested_test);
// if (!config.quiet)
// std::cout << "\b\b\b, \b" << flush;
// }
// int magic = 3 * config.nested + 2 * spcs_combinations + 4;
// std::cout << string(magic, '\b') << string(magic, ' ') << string(magic, '\b') << flush;
// delete nested_fold;
// hypScore /= config.nested;
// if (hypScore > bestHypScore) {
// bestHypScore = hypScore;
// bestHypHyperparameters = hyperparam_line;
// }
// }
// // Build Classifier with selected hyperparameters
// auto clf = Models::instance()->create(config.model);
// clf->setHyperparameters(bestHypHyperparameters);
// // Train model
// if (!config.quiet)
// showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
// clf->fit(X_train, y_train, features, className, states);
// // Test model
// if (!config.quiet)
// showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
// double score = clf->score(X_test, y_test);
// if (!config.quiet)
// std::cout << string(2 * config.nested - 1, '\b') << "," << string(2 * config.nested, ' ') << string(2 * config.nested - 1, '\b') << flush;
// if (score > bestScore) {
// bestScore = score;
// bestHyperparameters = bestHypHyperparameters;
// }
// }
// if (bestScore > goatScore) {
// goatScore = bestScore;
// goatHyperparameters = bestHyperparameters;
// }
// delete fold;
// }
// return { goatScore, goatHyperparameters };
// }
// void GridSearch::process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results)
// {
// // Process the task and store the result in the results json
// Timer timer;
// timer.start();
// auto grid = GridData(Paths::grid_input(config.model));
// auto dataset = task["dataset"].get<std::string>();
// auto seed = task["seed"].get<int>();
// auto n_fold = task["fold"].get<int>();
// // Generate the hyperparamters combinations
// auto combinations = grid.getGrid(dataset);
// auto [X, y] = datasets.getTensors(dataset);
// auto states = datasets.getStates(dataset);
// auto features = datasets.getFeatures(dataset);
// auto className = datasets.getClassName(dataset);
// //
// // Start working on task
// //
// Fold* fold;
// if (config.stratified)
// fold = new StratifiedKFold(config.n_folds, y, seed);
// else
// fold = new KFold(config.n_folds, y.size(0), seed);
// auto [train, test] = fold->getFold(n_fold);
// auto train_t = torch::tensor(train);
// auto test_t = torch::tensor(test);
// auto X_train = X.index({ "...", train_t });
// auto y_train = y.index({ train_t });
// auto X_test = X.index({ "...", test_t });
// auto y_test = y.index({ test_t });
// auto num = 0;
// double best_fold_score = 0.0;
// json best_fold_hyper;
// for (const auto& hyperparam_line : combinations) {
// auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
// Fold* nested_fold;
// if (config.stratified)
// nested_fold = new StratifiedKFold(config.nested, y_train, seed);
// else
// nested_fold = new KFold(config.nested, y_train.size(0), seed);
// double score = 0.0;
// for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// // Nested level fold
// auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
// auto train_nested_t = torch::tensor(train_nested);
// auto test_nested_t = torch::tensor(test_nested);
// auto X_nested_train = X_train.index({ "...", train_nested_t });
// auto y_nested_train = y_train.index({ train_nested_t });
// auto X_nested_test = X_train.index({ "...", test_nested_t });
// auto y_nested_test = y_train.index({ test_nested_t });
// // Build Classifier with selected hyperparameters
// auto clf = Models::instance()->create(config.model);
// auto valid = clf->getValidHyperparameters();
// hyperparameters.check(valid, dataset);
// clf->setHyperparameters(hyperparameters.get(dataset));
// // Train model
// clf->fit(X_nested_train, y_nested_train, features, className, states);
// // Test model
// score += clf->score(X_nested_test, y_nested_test);
// }
// delete nested_fold;
// score /= config.nested;
// if (score > best_fold_score) {
// best_fold_score = score;
// best_fold_hyper = hyperparam_line;
// }
// }
// delete fold;
// // Build Classifier with the best hyperparameters to obtain the best score
// auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
// auto clf = Models::instance()->create(config.model);
// auto valid = clf->getValidHyperparameters();
// hyperparameters.check(valid, dataset);
// clf->setHyperparameters(best_fold_hyper);
// clf->fit(X_train, y_train, features, className, states);
// best_fold_score = clf->score(X_test, y_test);
// // Save results
// results[dataset][std::to_string(n_fold)]["score"] = best_fold_score;
// results[dataset][std::to_string(n_fold)]["hyperparameters"] = best_fold_hyper;
// results[dataset][std::to_string(n_fold)]["seed"] = seed;
// results[dataset][std::to_string(n_fold)]["duration"] = timer.getDuration();
// std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
// }
json GridSearch::initializeResults()
{
// Load previous results
json results;
if (config.continue_from != NO_CONTINUE()) {
if (!config.quiet)
std::cout << "* Loading previous results" << std::endl;
try {
std::ifstream file(Paths::grid_output(config.model));
if (file.is_open()) {
results = json::parse(file);
results = results["results"];
}
}
catch (const std::exception& e) {
std::cerr << "* There were no previous results" << std::endl;
std::cerr << "* Initizalizing new results" << std::endl;
results = json();
}
}
return results;
}
void GridSearch::save(json& results)
{
std::ofstream file(Paths::grid_output(config.model));
json output = {
{ "model", config.model },
{ "score", config.score },
{ "discretize", config.discretize },
{ "stratified", config.stratified },
{ "n_folds", config.n_folds },
{ "seeds", config.seeds },
{ "date", get_date() + " " + get_time()},
{ "nested", config.nested},
{ "platform", config.platform },
{ "duration", timer.getDurationString(true)},
{ "results", results }
};
file << output.dump(4);
}
} /* namespace platform */