Files
BayesNet/bayesnet/classifiers/XSP2DE.cc

576 lines
18 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "XSP2DE.h"
#include <pthread.h> // for pthread_setname_np on linux
#include <cassert>
#include <cmath>
#include <limits>
#include <stdexcept>
#include <iostream>
#include "bayesnet/utils/TensorUtils.h"
namespace bayesnet {
// --------------------------------------
// Constructor
// --------------------------------------
XSp2de::XSp2de(int spIndex1, int spIndex2)
: superParent1_{ spIndex1 }
, superParent2_{ spIndex2 }
, nFeatures_{0}
, statesClass_{0}
, alpha_{1.0}
, initializer_{1.0}
, semaphore_{ CountingSemaphore::getInstance() }
, Classifier(Network())
{
validHyperparameters = { "parent1", "parent2" };
}
// --------------------------------------
// setHyperparameters
// --------------------------------------
void XSp2de::setHyperparameters(const nlohmann::json &hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("parent1")) {
superParent1_ = hyperparameters["parent1"];
hyperparameters.erase("parent1");
}
if (hyperparameters.contains("parent2")) {
superParent2_ = hyperparameters["parent2"];
hyperparameters.erase("parent2");
}
// Hand off anything else to base Classifier
Classifier::setHyperparameters(hyperparameters);
}
// --------------------------------------
// fitx
// --------------------------------------
void XSp2de::fitx(torch::Tensor & X, torch::Tensor & y,
torch::Tensor & weights_, const Smoothing_t smoothing)
{
m = X.size(1); // number of samples
n = X.size(0); // number of features
dataset = X;
// Build the dataset in your environment if needed:
buildDataset(y);
// Construct the data structures needed for counting
buildModel(weights_);
// Accumulate counts & convert to probabilities
trainModel(weights_, smoothing);
fitted = true;
}
// --------------------------------------
// buildModel
// --------------------------------------
void XSp2de::buildModel(const torch::Tensor &weights)
{
nFeatures_ = n;
// Derive the number of states for each feature from the dataset
// states_[f] = max value in dataset[f] + 1.
states_.resize(nFeatures_);
for (int f = 0; f < nFeatures_; f++) {
// This is naive: we take max in feature f. You might adapt for real data.
states_[f] = dataset[f].max().item<int>() + 1;
}
// Class states:
statesClass_ = dataset[-1].max().item<int>() + 1;
// Initialize the class counts
classCounts_.resize(statesClass_, 0.0);
// For sp1 -> p(sp1Val| c)
sp1FeatureCounts_.resize(states_[superParent1_] * statesClass_, 0.0);
// For sp2 -> p(sp2Val| c)
sp2FeatureCounts_.resize(states_[superParent2_] * statesClass_, 0.0);
// For child features, we store p(childVal | c, sp1Val, sp2Val).
// childCounts_ will hold raw counts. Well gather them in one big vector.
// We need an offset for each feature.
childOffsets_.resize(nFeatures_, -1);
int totalSize = 0;
for (int f = 0; f < nFeatures_; f++) {
if (f == superParent1_ || f == superParent2_) {
// skip the superparents
childOffsets_[f] = -1;
continue;
}
childOffsets_[f] = totalSize;
// block size for a single child f: states_[f] * statesClass_
// * states_[superParent1_]
// * states_[superParent2_].
totalSize += (states_[f] * statesClass_
* states_[superParent1_]
* states_[superParent2_]);
}
childCounts_.resize(totalSize, 0.0);
}
// --------------------------------------
// trainModel
// --------------------------------------
void XSp2de::trainModel(const torch::Tensor &weights,
const bayesnet::Smoothing_t smoothing)
{
// Accumulate raw counts
for (int i = 0; i < m; i++) {
std::vector<int> instance(nFeatures_ + 1);
for (int f = 0; f < nFeatures_; f++) {
instance[f] = dataset[f][i].item<int>();
}
instance[nFeatures_] = dataset[-1][i].item<int>(); // class
double w = weights[i].item<double>();
addSample(instance, w);
}
// Choose alpha based on smoothing:
switch (smoothing) {
case bayesnet::Smoothing_t::ORIGINAL:
alpha_ = 1.0 / m;
break;
case bayesnet::Smoothing_t::LAPLACE:
alpha_ = 1.0;
break;
default:
alpha_ = 0.0; // no smoothing
}
// Large initializer factor for numerical stability
initializer_ = std::numeric_limits<double>::max() / (nFeatures_ * nFeatures_);
// Convert raw counts to probabilities
computeProbabilities();
}
// --------------------------------------
// addSample
// --------------------------------------
void XSp2de::addSample(const std::vector<int> &instance, double weight)
{
if (weight <= 0.0)
return;
int c = instance.back();
// increment classCounts
classCounts_[c] += weight;
int sp1Val = instance[superParent1_];
int sp2Val = instance[superParent2_];
// p(sp1|c)
sp1FeatureCounts_[sp1Val * statesClass_ + c] += weight;
// p(sp2|c)
sp2FeatureCounts_[sp2Val * statesClass_ + c] += weight;
// p(childVal| c, sp1Val, sp2Val)
for (int f = 0; f < nFeatures_; f++) {
if (f == superParent1_ || f == superParent2_)
continue;
int childVal = instance[f];
int offset = childOffsets_[f];
// block layout:
// offset + (sp1Val*(states_[sp2_]* states_[f]* statesClass_))
// + (sp2Val*(states_[f]* statesClass_))
// + childVal*(statesClass_)
// + c
int blockSizeSp2 = states_[superParent2_]
* states_[f]
* statesClass_;
int blockSizeChild = states_[f] * statesClass_;
int idx = offset
+ sp1Val*blockSizeSp2
+ sp2Val*blockSizeChild
+ childVal*statesClass_
+ c;
childCounts_[idx] += weight;
}
}
// --------------------------------------
// computeProbabilities
// --------------------------------------
void XSp2de::computeProbabilities()
{
double totalCount = std::accumulate(classCounts_.begin(),
classCounts_.end(), 0.0);
// classPriors_
classPriors_.resize(statesClass_, 0.0);
if (totalCount <= 0.0) {
// fallback => uniform
double unif = 1.0 / static_cast<double>(statesClass_);
for (int c = 0; c < statesClass_; c++) {
classPriors_[c] = unif;
}
} else {
for (int c = 0; c < statesClass_; c++) {
classPriors_[c] =
(classCounts_[c] + alpha_)
/ (totalCount + alpha_ * statesClass_);
}
}
// p(sp1Val| c)
sp1FeatureProbs_.resize(sp1FeatureCounts_.size());
int sp1Card = states_[superParent1_];
for (int spVal = 0; spVal < sp1Card; spVal++) {
for (int c = 0; c < statesClass_; c++) {
double denom = classCounts_[c] + alpha_ * sp1Card;
double num = sp1FeatureCounts_[spVal * statesClass_ + c] + alpha_;
sp1FeatureProbs_[spVal * statesClass_ + c] =
(denom <= 0.0 ? 0.0 : num / denom);
}
}
// p(sp2Val| c)
sp2FeatureProbs_.resize(sp2FeatureCounts_.size());
int sp2Card = states_[superParent2_];
for (int spVal = 0; spVal < sp2Card; spVal++) {
for (int c = 0; c < statesClass_; c++) {
double denom = classCounts_[c] + alpha_ * sp2Card;
double num = sp2FeatureCounts_[spVal * statesClass_ + c] + alpha_;
sp2FeatureProbs_[spVal * statesClass_ + c] =
(denom <= 0.0 ? 0.0 : num / denom);
}
}
// p(childVal| c, sp1Val, sp2Val)
childProbs_.resize(childCounts_.size());
int offset = 0;
for (int f = 0; f < nFeatures_; f++) {
if (f == superParent1_ || f == superParent2_)
continue;
int fCard = states_[f];
int sp1Card_ = states_[superParent1_];
int sp2Card_ = states_[superParent2_];
int childBlockSizeSp2 = sp2Card_ * fCard * statesClass_;
int childBlockSizeF = fCard * statesClass_;
int blockSize = fCard * sp1Card_ * sp2Card_ * statesClass_;
for (int sp1Val = 0; sp1Val < sp1Card_; sp1Val++) {
for (int sp2Val = 0; sp2Val < sp2Card_; sp2Val++) {
for (int childVal = 0; childVal < fCard; childVal++) {
for (int c = 0; c < statesClass_; c++) {
// index in childCounts_
int idx = offset
+ sp1Val*childBlockSizeSp2
+ sp2Val*childBlockSizeF
+ childVal*statesClass_
+ c;
double num = childCounts_[idx] + alpha_;
// denominator is the count of (sp1Val,sp2Val,c) plus alpha * fCard
// We can find that by summing childVal dimension, but we already
// have it in childCounts_[...] or we can re-check the superparent
// counts if your approach is purely hierarchical.
// Here we'll do it like the XSpode approach: sp1&sp2 are
// conditionally independent given c, so denominators come from
// summing the relevant block or we treat sp1,sp2 as "parents."
// A simpler approach:
double sumSp1Sp2C = 0.0;
// sum over all childVal:
for (int cv = 0; cv < fCard; cv++) {
int idx2 = offset
+ sp1Val*childBlockSizeSp2
+ sp2Val*childBlockSizeF
+ cv*statesClass_ + c;
sumSp1Sp2C += childCounts_[idx2];
}
double denom = sumSp1Sp2C + alpha_ * fCard;
childProbs_[idx] = (denom <= 0.0 ? 0.0 : num / denom);
}
}
}
}
offset += blockSize;
}
}
// --------------------------------------
// predict_proba (single instance)
// --------------------------------------
std::vector<double> XSp2de::predict_proba(const std::vector<int> &instance) const
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
std::vector<double> probs(statesClass_, 0.0);
int sp1Val = instance[superParent1_];
int sp2Val = instance[superParent2_];
// Start with p(c) * p(sp1Val| c) * p(sp2Val| c)
for (int c = 0; c < statesClass_; c++) {
double pC = classPriors_[c];
double pSp1C = sp1FeatureProbs_[sp1Val * statesClass_ + c];
double pSp2C = sp2FeatureProbs_[sp2Val * statesClass_ + c];
probs[c] = pC * pSp1C * pSp2C * initializer_;
}
// Multiply by each child feature f
int offset = 0;
for (int f = 0; f < nFeatures_; f++) {
if (f == superParent1_ || f == superParent2_)
continue;
int valF = instance[f];
int fCard = states_[f];
int sp1Card = states_[superParent1_];
int sp2Card = states_[superParent2_];
int blockSizeSp2 = sp2Card * fCard * statesClass_;
int blockSizeF = fCard * statesClass_;
// base index for childProbs_ for this child and sp1Val, sp2Val
int base = offset
+ sp1Val*blockSizeSp2
+ sp2Val*blockSizeF
+ valF*statesClass_;
for (int c = 0; c < statesClass_; c++) {
probs[c] *= childProbs_[base + c];
}
offset += (fCard * sp1Card * sp2Card * statesClass_);
}
// Normalize
normalize(probs);
return probs;
}
// --------------------------------------
// predict_proba (batch)
// --------------------------------------
std::vector<std::vector<double>> XSp2de::predict_proba(std::vector<std::vector<int>> &test_data)
{
int test_size = test_data[0].size(); // each feature is test_data[f], size = #samples
int sample_size = test_data.size(); // = nFeatures_
std::vector<std::vector<double>> probabilities(
test_size, std::vector<double>(statesClass_, 0.0));
// same concurrency approach
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
std::vector<std::thread> threads;
auto worker = [&](const std::vector<std::vector<int>> &samples,
int begin,
int chunk,
int sample_size,
std::vector<std::vector<double>> &predictions) {
std::string threadName =
"XSp2de-" + std::to_string(begin) + "-" + std::to_string(chunk);
#if defined(__linux__)
pthread_setname_np(pthread_self(), threadName.c_str());
#else
pthread_setname_np(threadName.c_str());
#endif
std::vector<int> instance(sample_size);
for (int sample = begin; sample < begin + chunk; ++sample) {
for (int feature = 0; feature < sample_size; ++feature) {
instance[feature] = samples[feature][sample];
}
predictions[sample] = predict_proba(instance);
}
semaphore_.release();
};
for (int begin = 0; begin < test_size; begin += chunk_size) {
int chunk = std::min(chunk_size, test_size - begin);
semaphore_.acquire();
threads.emplace_back(worker, test_data, begin, chunk, sample_size,
std::ref(probabilities));
}
for (auto &th : threads) {
th.join();
}
return probabilities;
}
// --------------------------------------
// predict (single instance)
// --------------------------------------
int XSp2de::predict(const std::vector<int> &instance) const
{
auto p = predict_proba(instance);
return static_cast<int>(
std::distance(p.begin(), std::max_element(p.begin(), p.end()))
);
}
// --------------------------------------
// predict (batch of data)
// --------------------------------------
std::vector<int> XSp2de::predict(std::vector<std::vector<int>> &test_data)
{
auto probabilities = predict_proba(test_data);
std::vector<int> predictions(probabilities.size(), 0);
for (size_t i = 0; i < probabilities.size(); i++) {
predictions[i] = static_cast<int>(
std::distance(probabilities[i].begin(),
std::max_element(probabilities[i].begin(),
probabilities[i].end()))
);
}
return predictions;
}
// --------------------------------------
// predict (torch::Tensor version)
// --------------------------------------
torch::Tensor XSp2de::predict(torch::Tensor &X)
{
auto X_ = TensorUtils::to_matrix(X);
auto result_v = predict(X_);
return torch::tensor(result_v, torch::kInt32);
}
// --------------------------------------
// predict_proba (torch::Tensor version)
// --------------------------------------
torch::Tensor XSp2de::predict_proba(torch::Tensor &X)
{
auto X_ = TensorUtils::to_matrix(X);
auto result_v = predict_proba(X_);
int n_samples = X.size(1);
torch::Tensor result =
torch::zeros({ n_samples, statesClass_ }, torch::kDouble);
for (int i = 0; i < (int)result_v.size(); ++i) {
result.index_put_({ i, "..." }, torch::tensor(result_v[i]));
}
return result;
}
// --------------------------------------
// score (torch::Tensor version)
// --------------------------------------
float XSp2de::score(torch::Tensor &X, torch::Tensor &y)
{
torch::Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
// --------------------------------------
// score (vector version)
// --------------------------------------
float XSp2de::score(std::vector<std::vector<int>> &X, std::vector<int> &y)
{
auto y_pred = predict(X);
int correct = 0;
for (size_t i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == y[i]) {
correct++;
}
}
return static_cast<float>(correct) / static_cast<float>(y_pred.size());
}
// --------------------------------------
// Utility: normalize
// --------------------------------------
void XSp2de::normalize(std::vector<double> &v) const
{
double sum = 0.0;
for (auto &val : v) {
sum += val;
}
if (sum > 0.0) {
for (auto &val : v) {
val /= sum;
}
}
}
// --------------------------------------
// to_string
// --------------------------------------
std::string XSp2de::to_string() const
{
std::ostringstream oss;
oss << "----- XSp2de Model -----\n"
<< "nFeatures_ = " << nFeatures_ << "\n"
<< "superParent1_ = " << superParent1_ << "\n"
<< "superParent2_ = " << superParent2_ << "\n"
<< "statesClass_ = " << statesClass_ << "\n\n";
oss << "States: [";
for (auto s : states_) oss << s << " ";
oss << "]\n";
oss << "classCounts_:\n";
for (auto v : classCounts_) oss << v << " ";
oss << "\nclassPriors_:\n";
for (auto v : classPriors_) oss << v << " ";
oss << "\nsp1FeatureCounts_ (size=" << sp1FeatureCounts_.size() << ")\n";
for (auto v : sp1FeatureCounts_) oss << v << " ";
oss << "\nsp2FeatureCounts_ (size=" << sp2FeatureCounts_.size() << ")\n";
for (auto v : sp2FeatureCounts_) oss << v << " ";
oss << "\nchildCounts_ (size=" << childCounts_.size() << ")\n";
for (auto v : childCounts_) oss << v << " ";
oss << "\nchildOffsets_:\n";
for (auto c : childOffsets_) oss << c << " ";
oss << "\n----------------------------------------\n";
return oss.str();
}
// --------------------------------------
// Some introspection about the graph
// --------------------------------------
int XSp2de::getNumberOfNodes() const
{
// nFeatures + 1 class node
return nFeatures_ + 1;
}
int XSp2de::getClassNumStates() const
{
return statesClass_;
}
int XSp2de::getNFeatures() const
{
return nFeatures_;
}
int XSp2de::getNumberOfStates() const
{
// purely an example. Possibly you want to sum up actual
// cardinalities or something else.
return std::accumulate(states_.begin(), states_.end(), 0) * nFeatures_;
}
int XSp2de::getNumberOfEdges() const
{
// In an SPNDE with n=2, for each feature we have edges from class, sp1, sp2.
// So thats 3*(nFeatures_) edges, minus the ones for the superparents themselves,
// plus the edges from class->superparent1, class->superparent2.
// For a quick approximation:
// - class->sp1, class->sp2 => 2 edges
// - class->child => (nFeatures -2) edges
// - sp1->child, sp2->child => 2*(nFeatures -2) edges
// total = 2 + (nFeatures-2) + 2*(nFeatures-2) = 2 + 3*(nFeatures-2)
// = 3nFeatures - 4 (just an example).
// You can adapt to your liking:
return 3 * nFeatures_ - 4;
}
} // namespace bayesnet