441 lines
18 KiB
C++
441 lines
18 KiB
C++
#include <iostream>
|
|
#include <cstddef>
|
|
#include <torch/torch.h>
|
|
#include "GridSearch.h"
|
|
#include "Models.h"
|
|
#include "Paths.h"
|
|
#include "Folding.h"
|
|
#include "Colors.h"
|
|
|
|
namespace platform {
|
|
std::string get_date()
|
|
{
|
|
time_t rawtime;
|
|
tm* timeinfo;
|
|
time(&rawtime);
|
|
timeinfo = std::localtime(&rawtime);
|
|
std::ostringstream oss;
|
|
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
|
return oss.str();
|
|
}
|
|
std::string get_time()
|
|
{
|
|
time_t rawtime;
|
|
tm* timeinfo;
|
|
time(&rawtime);
|
|
timeinfo = std::localtime(&rawtime);
|
|
std::ostringstream oss;
|
|
oss << std::put_time(timeinfo, "%H:%M:%S");
|
|
return oss.str();
|
|
}
|
|
std::string get_color_rank(int rank)
|
|
{
|
|
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
|
|
return *(colors.begin() + rank % colors.size());
|
|
}
|
|
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
|
{
|
|
}
|
|
json GridSearch::loadResults()
|
|
{
|
|
std::ifstream file(Paths::grid_output(config.model));
|
|
if (file.is_open()) {
|
|
return json::parse(file);
|
|
}
|
|
return json();
|
|
}
|
|
std::vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
|
|
{
|
|
// Load datasets
|
|
auto datasets_names = datasets.getNames();
|
|
if (config.continue_from != NO_CONTINUE()) {
|
|
// Continue previous execution:
|
|
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
|
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
|
}
|
|
// Remove datasets already processed
|
|
std::vector<string>::iterator it = datasets_names.begin();
|
|
while (it != datasets_names.end()) {
|
|
if (*it != config.continue_from) {
|
|
it = datasets_names.erase(it);
|
|
} else {
|
|
if (config.only)
|
|
++it;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Exclude datasets
|
|
for (const auto& name : config.excluded) {
|
|
auto dataset = name.get<std::string>();
|
|
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
|
if (it == datasets_names.end()) {
|
|
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
|
}
|
|
datasets_names.erase(it);
|
|
}
|
|
return datasets_names;
|
|
}
|
|
json GridSearch::build_tasks_mpi(int rank)
|
|
{
|
|
auto tasks = json::array();
|
|
auto grid = GridData(Paths::grid_input(config.model));
|
|
auto datasets = Datasets(false, Paths::datasets());
|
|
auto all_datasets = datasets.getNames();
|
|
auto datasets_names = filterDatasets(datasets);
|
|
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
|
auto dataset = datasets_names[idx_dataset];
|
|
for (const auto& seed : config.seeds) {
|
|
auto combinations = grid.getGrid(dataset);
|
|
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
|
json task = {
|
|
{ "dataset", dataset },
|
|
{ "idx_dataset", idx_dataset},
|
|
{ "seed", seed },
|
|
{ "fold", n_fold},
|
|
};
|
|
tasks.push_back(task);
|
|
}
|
|
}
|
|
}
|
|
// Shuffle the array so heavy datasets are spread across the workers
|
|
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
|
std::shuffle(tasks.begin(), tasks.end(), g);
|
|
std::cout << get_color_rank(rank) << "* Number of tasks: " << tasks.size() << std::endl;
|
|
std::cout << "|";
|
|
for (int i = 0; i < tasks.size(); ++i) {
|
|
std::cout << (i + 1) % 10;
|
|
}
|
|
std::cout << "|" << std::endl << "|" << std::flush;
|
|
return tasks;
|
|
}
|
|
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
|
{
|
|
// initialize
|
|
Timer timer;
|
|
timer.start();
|
|
json task = tasks[n_task];
|
|
auto model = config.model;
|
|
auto grid = GridData(Paths::grid_input(model));
|
|
auto dataset = task["dataset"].get<std::string>();
|
|
auto idx_dataset = task["idx_dataset"].get<int>();
|
|
auto seed = task["seed"].get<int>();
|
|
auto n_fold = task["fold"].get<int>();
|
|
bool stratified = config.stratified;
|
|
// Generate the hyperparamters combinations
|
|
auto combinations = grid.getGrid(dataset);
|
|
auto [X, y] = datasets.getTensors(dataset);
|
|
auto states = datasets.getStates(dataset);
|
|
auto features = datasets.getFeatures(dataset);
|
|
auto className = datasets.getClassName(dataset);
|
|
//
|
|
// Start working on task
|
|
//
|
|
Fold* fold;
|
|
if (stratified)
|
|
fold = new StratifiedKFold(config.n_folds, y, seed);
|
|
else
|
|
fold = new KFold(config.n_folds, y.size(0), seed);
|
|
auto [train, test] = fold->getFold(n_fold);
|
|
auto train_t = torch::tensor(train);
|
|
auto test_t = torch::tensor(test);
|
|
auto X_train = X.index({ "...", train_t });
|
|
auto y_train = y.index({ train_t });
|
|
auto X_test = X.index({ "...", test_t });
|
|
auto y_test = y.index({ test_t });
|
|
double best_fold_score = 0.0;
|
|
int best_idx_combination = -1;
|
|
json best_fold_hyper;
|
|
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
|
auto hyperparam_line = combinations[idx_combination];
|
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
|
Fold* nested_fold;
|
|
if (config.stratified)
|
|
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
|
else
|
|
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
|
double score = 0.0;
|
|
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
|
// Nested level fold
|
|
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
|
auto train_nested_t = torch::tensor(train_nested);
|
|
auto test_nested_t = torch::tensor(test_nested);
|
|
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
|
auto y_nested_train = y_train.index({ train_nested_t });
|
|
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
|
auto y_nested_test = y_train.index({ test_nested_t });
|
|
// Build Classifier with selected hyperparameters
|
|
auto clf = Models::instance()->create(config.model);
|
|
auto valid = clf->getValidHyperparameters();
|
|
hyperparameters.check(valid, dataset);
|
|
clf->setHyperparameters(hyperparameters.get(dataset));
|
|
// Train model
|
|
clf->fit(X_nested_train, y_nested_train, features, className, states);
|
|
// Test model
|
|
score += clf->score(X_nested_test, y_nested_test);
|
|
}
|
|
delete nested_fold;
|
|
score /= config.nested;
|
|
if (score > best_fold_score) {
|
|
best_fold_score = score;
|
|
best_idx_combination = idx_combination;
|
|
best_fold_hyper = hyperparam_line;
|
|
}
|
|
}
|
|
delete fold;
|
|
// Build Classifier with the best hyperparameters to obtain the best score
|
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
|
auto clf = Models::instance()->create(config.model);
|
|
auto valid = clf->getValidHyperparameters();
|
|
hyperparameters.check(valid, dataset);
|
|
clf->setHyperparameters(best_fold_hyper);
|
|
clf->fit(X_train, y_train, features, className, states);
|
|
best_fold_score = clf->score(X_test, y_test);
|
|
// Return the result
|
|
result->idx_dataset = task["idx_dataset"].get<int>();
|
|
result->idx_combination = best_idx_combination;
|
|
result->score = best_fold_score;
|
|
result->n_fold = n_fold;
|
|
result->time = timer.getDuration();
|
|
// Update progress bar
|
|
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
|
|
}
|
|
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
|
{
|
|
json json_result = {
|
|
{ "score", result.score },
|
|
{ "combination", result.idx_combination },
|
|
{ "fold", result.n_fold },
|
|
{ "time", result.time },
|
|
{ "dataset", result.idx_dataset }
|
|
};
|
|
auto name = names[result.idx_dataset];
|
|
if (!results.contains(name)) {
|
|
results[name] = json::array();
|
|
}
|
|
results[name].push_back(json_result);
|
|
return results;
|
|
}
|
|
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
|
{
|
|
Task_Result result;
|
|
json results;
|
|
int num_tasks = tasks.size();
|
|
|
|
//
|
|
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
|
//
|
|
for (int i = 0; i < num_tasks; ++i) {
|
|
MPI_Status status;
|
|
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
if (status.MPI_TAG == TAG_RESULT) {
|
|
//Store result
|
|
store_result(names, result, results);
|
|
}
|
|
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
|
}
|
|
//
|
|
// 2a.2 Producer will send the end message to all the consumers
|
|
//
|
|
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
|
MPI_Status status;
|
|
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
if (status.MPI_TAG == TAG_RESULT) {
|
|
//Store result
|
|
store_result(names, result, results);
|
|
}
|
|
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
|
}
|
|
return results;
|
|
}
|
|
void select_best_results_folds(json& results, json& all_results, std::string& model)
|
|
{
|
|
Timer timer;
|
|
auto grid = GridData(Paths::grid_input(model));
|
|
//
|
|
// Select the best result of the computed outer folds
|
|
//
|
|
for (const auto& result : all_results.items()) {
|
|
// each result has the results of all the outer folds as each one were a different task
|
|
double best_score = 0.0;
|
|
json best;
|
|
for (const auto& result_fold : result.value()) {
|
|
double score = result_fold["score"].get<double>();
|
|
if (score > best_score) {
|
|
best_score = score;
|
|
best = result_fold;
|
|
}
|
|
}
|
|
auto dataset = result.key();
|
|
auto combinations = grid.getGrid(dataset);
|
|
json json_best = {
|
|
{ "score", best_score },
|
|
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
|
{ "date", get_date() + " " + get_time() },
|
|
{ "grid", grid.getInputGrid(dataset) },
|
|
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
|
};
|
|
results[dataset] = json_best;
|
|
}
|
|
}
|
|
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
|
{
|
|
Task_Result result;
|
|
//
|
|
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
|
//
|
|
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
|
int task;
|
|
while (true) {
|
|
MPI_Status status;
|
|
//
|
|
// 2b.2 Consumers receive the task from the producer and process it
|
|
//
|
|
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
if (status.MPI_TAG == TAG_END) {
|
|
break;
|
|
}
|
|
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
|
|
//
|
|
// 2b.3 Consumers send the result to the producer
|
|
//
|
|
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
|
}
|
|
}
|
|
void GridSearch::go(struct ConfigMPI& config_mpi)
|
|
{
|
|
/*
|
|
* Each task is a json object with the following structure:
|
|
* {
|
|
* "dataset": "dataset_name",
|
|
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
|
* // this index is relative to the used datasets in the actual run not to the whole datasets
|
|
* "seed": # of seed to use,
|
|
* "Fold": # of fold to process
|
|
* }
|
|
*
|
|
* The overall process consists in these steps:
|
|
* 0. Create the MPI result type & tasks
|
|
* 0.1 Create the MPI result type
|
|
* 0.2 Manager creates the tasks
|
|
* 1. Manager will broadcast the tasks to all the processes
|
|
* 1.1 Broadcast the number of tasks
|
|
* 1.2 Broadcast the length of the following string
|
|
* 1.2 Broadcast the tasks as a char* string
|
|
* 2a. Producer delivers the tasks to the consumers
|
|
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
|
* 2a.2 Producer will send the end message to all the consumers
|
|
* 2b. Consumers process the tasks and send the results to the producer
|
|
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
|
* 2b.2 Consumers receive the task from the producer and process it
|
|
* 2b.3 Consumers send the result to the producer
|
|
* 3. Manager select the bests sccores for each dataset
|
|
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
|
* 3.2 Save the results
|
|
*/
|
|
//
|
|
// 0.1 Create the MPI result type
|
|
//
|
|
Task_Result result;
|
|
int tasks_size;
|
|
MPI_Datatype MPI_Result;
|
|
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
|
|
int blocklen[5] = { 1, 1, 1, 1, 1 };
|
|
MPI_Aint disp[5];
|
|
disp[0] = offsetof(Task_Result, idx_dataset);
|
|
disp[1] = offsetof(Task_Result, idx_combination);
|
|
disp[2] = offsetof(Task_Result, n_fold);
|
|
disp[3] = offsetof(Task_Result, score);
|
|
disp[4] = offsetof(Task_Result, time);
|
|
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
|
|
MPI_Type_commit(&MPI_Result);
|
|
//
|
|
// 0.2 Manager creates the tasks
|
|
//
|
|
char* msg;
|
|
json tasks;
|
|
if (config_mpi.rank == config_mpi.manager) {
|
|
timer.start();
|
|
tasks = build_tasks_mpi(config_mpi.rank);
|
|
auto tasks_str = tasks.dump();
|
|
tasks_size = tasks_str.size();
|
|
msg = new char[tasks_size + 1];
|
|
strcpy(msg, tasks_str.c_str());
|
|
}
|
|
//
|
|
// 1. Manager will broadcast the tasks to all the processes
|
|
//
|
|
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
|
if (config_mpi.rank != config_mpi.manager) {
|
|
msg = new char[tasks_size + 1];
|
|
}
|
|
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
|
tasks = json::parse(msg);
|
|
delete[] msg;
|
|
auto datasets = Datasets(config.discretize, Paths::datasets());
|
|
if (config_mpi.rank == config_mpi.manager) {
|
|
//
|
|
// 2a. Producer delivers the tasks to the consumers
|
|
//
|
|
auto datasets_names = filterDatasets(datasets);
|
|
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
|
|
std::cout << get_color_rank(config_mpi.rank) << "|" << std::endl;
|
|
//
|
|
// 3. Manager select the bests sccores for each dataset
|
|
//
|
|
auto results = initializeResults();
|
|
select_best_results_folds(results, all_results, config.model);
|
|
//
|
|
// 3.2 Save the results
|
|
//
|
|
save(results);
|
|
} else {
|
|
//
|
|
// 2b. Consumers process the tasks and send the results to the producer
|
|
//
|
|
consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
|
}
|
|
}
|
|
json GridSearch::initializeResults()
|
|
{
|
|
// Load previous results if continue is set
|
|
json results;
|
|
if (config.continue_from != NO_CONTINUE()) {
|
|
if (!config.quiet)
|
|
std::cout << "* Loading previous results" << std::endl;
|
|
try {
|
|
std::ifstream file(Paths::grid_output(config.model));
|
|
if (file.is_open()) {
|
|
results = json::parse(file);
|
|
results = results["results"];
|
|
}
|
|
}
|
|
catch (const std::exception& e) {
|
|
std::cerr << "* There were no previous results" << std::endl;
|
|
std::cerr << "* Initizalizing new results" << std::endl;
|
|
results = json();
|
|
}
|
|
}
|
|
return results;
|
|
}
|
|
void GridSearch::save(json& results)
|
|
{
|
|
std::ofstream file(Paths::grid_output(config.model));
|
|
json output = {
|
|
{ "model", config.model },
|
|
{ "score", config.score },
|
|
{ "discretize", config.discretize },
|
|
{ "stratified", config.stratified },
|
|
{ "n_folds", config.n_folds },
|
|
{ "seeds", config.seeds },
|
|
{ "date", get_date() + " " + get_time()},
|
|
{ "nested", config.nested},
|
|
{ "platform", config.platform },
|
|
{ "duration", timer.getDurationString(true)},
|
|
{ "results", results }
|
|
|
|
};
|
|
file << output.dump(4);
|
|
}
|
|
} /* namespace platform */ |