// *************************************************************** // SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez // SPDX-FileType: SOURCE // SPDX-License-Identifier: MIT // *************************************************************** #include "WA2DE.h" namespace bayesnet { WA2DE::WA2DE(bool predict_voting) : num_classes_(0), num_attributes_(0), total_count_(0.0), weighted_a2de_(false), smoothing_factor_(1.0) { validHyperparameters = { "predict_voting" }; std::cout << "WA2DE classifier created.\n"; } void bayesnet::WA2DE::setHyperparameters(const nlohmann::json& hyperparameters_) { auto hyperparameters = hyperparameters_; if (hyperparameters.contains("predict_voting")) { predict_voting = hyperparameters["predict_voting"]; hyperparameters.erase("predict_voting"); } Classifier::setHyperparameters(hyperparameters); } void WA2DE::buildModel(const torch::Tensor& weights) { for (int c = 0; c < num_classes_; ++c) { class_counts_[c] += 1e-4; // Laplace smoothing } for (int a = 0; a < num_attributes_; ++a) { for (int v = 0; v < attribute_cardinalities_[a]; ++v) { for (int c = 0; c < num_classes_; ++c) { freq_attr_class_[a][v][c] = (freq_attr_class_[a][v][c] + 1.0) / (class_counts_[c] + attribute_cardinalities_[a]); } } } for (int sp = 0; sp < num_attributes_; ++sp) { for (int spv = 0; spv < attribute_cardinalities_[sp]; ++spv) { for (int ch = 0; ch < num_attributes_; ++ch) { if (sp != ch) { for (int chv = 0; chv < attribute_cardinalities_[ch]; ++chv) { for (int c = 0; c < num_classes_; ++c) { freq_pair_class_[sp][spv][ch][chv][c] = (freq_pair_class_[sp][spv][ch][chv][c] + 1.0) / (class_counts_[c] + attribute_cardinalities_[sp] * attribute_cardinalities_[ch]); } } } } } } std::cout << "Model probabilities computed.\n"; } void WA2DE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) { auto data = dataset.clone(); auto labels = data[-1]; // Remove class row from data data = data.index({ at::indexing::Slice(0, -1) }); std::cout << "Training A2DE model...\n"; std::cout << "Data: " << data.sizes() << std::endl; std::cout << "Labels: " << labels.sizes() << std::endl; std::cout << std::string(80, '-') << std::endl; if (data.dim() != 2 || labels.dim() != 1) { throw std::invalid_argument("Invalid input dimensions."); } num_attributes_ = data.size(0); num_classes_ = labels.max().item() + 1; total_count_ = data.size(1); std::cout << "Number of attributes: " << num_attributes_ << std::endl; std::cout << "Number of classes: " << num_classes_ << std::endl; std::cout << "Total count: " << total_count_ << std::endl; // Compute cardinalities attribute_cardinalities_.clear(); for (int i = 0; i < num_attributes_; ++i) { attribute_cardinalities_.push_back(data[i].max().item() + 1); } std::cout << "Attribute cardinalities: "; for (int i = 0; i < num_attributes_; ++i) { std::cout << attribute_cardinalities_[i] << " "; } std::cout << std::endl; // output the map of states std::cout << "States: "; for (int i = 0; i < states.size() - 1; i++) { std::cout << features[i] << " " << states[features[i]].size() << std::endl; } // Resize storage class_counts_.resize(num_classes_, 0.0); freq_attr_class_.resize(num_attributes_); freq_pair_class_.resize(num_attributes_); for (int i = 0; i < num_attributes_; ++i) { freq_attr_class_[i].resize(attribute_cardinalities_[i], std::vector(num_classes_, 0.0)); freq_pair_class_[i].resize(attribute_cardinalities_[i]); // Ensure first level exists for (int j = 0; j < attribute_cardinalities_[i]; ++j) { freq_pair_class_[i][j].resize(num_attributes_); // Ensure second level exists for (int k = 0; k < num_attributes_; ++k) { if (i != k) { freq_pair_class_[i][j][k].resize(attribute_cardinalities_[k]); // Ensure third level exists for (int l = 0; l < attribute_cardinalities_[k]; ++l) { freq_pair_class_[i][j][k][l].resize(num_classes_, 0.0); // Finally, initialize with 0.0 } } } } } // Count frequencies auto data_cpu = data.to(torch::kCPU); auto labels_cpu = labels.to(torch::kCPU); int32_t* data_ptr = data_cpu.data_ptr(); int32_t* labels_ptr = labels_cpu.data_ptr(); for (int i = 0; i < total_count_; ++i) { int class_label = labels_ptr[i]; class_counts_[class_label] += 1.0; std::vector attr_values(num_attributes_); for (int a = 0; a < num_attributes_; ++a) { attr_values[a] = toIntValue(a, data_ptr[i * num_attributes_ + a]); freq_attr_class_[a][attr_values[a]][class_label] += 1.0; } // Pairwise counts for (int sp = 0; sp < num_attributes_; ++sp) { for (int ch = 0; ch < num_attributes_; ++ch) { if (sp != ch) { freq_pair_class_[sp][attr_values[sp]][ch][attr_values[ch]][class_label] += 1.0; } } } } std::cout << "Verifying Frequency Counts:\n"; for (int c = 0; c < num_classes_; ++c) { std::cout << "Class " << c << " Count: " << class_counts_[c] << std::endl; } for (int a = 0; a < num_attributes_; ++a) { for (int v = 0; v < attribute_cardinalities_[a]; ++v) { std::cout << "P(A[" << a << "]=" << v << "|C): "; for (int c = 0; c < num_classes_; ++c) { std::cout << freq_attr_class_[a][v][c] << " "; } std::cout << std::endl; } } } torch::Tensor WA2DE::computeProbabilities(const torch::Tensor& data) const { int M = data.size(1); auto output = torch::zeros({ M, num_classes_ }, torch::kF64); auto data_cpu = data.to(torch::kCPU); int32_t* data_ptr = data_cpu.data_ptr(); for (int i = 0; i < M; ++i) { std::vector attr_values(num_attributes_); for (int a = 0; a < num_attributes_; ++a) { attr_values[a] = toIntValue(a, data_ptr[i * num_attributes_ + a]); } std::vector log_prob(num_classes_, 0.0); for (int c = 0; c < num_classes_; ++c) { log_prob[c] = std::log((class_counts_[c] + smoothing_factor_) / (total_count_ + num_classes_ * smoothing_factor_)); double sum_log = 0.0; for (int sp = 0; sp < num_attributes_; ++sp) { double sp_log = log_prob[c]; for (int ch = 0; ch < num_attributes_; ++ch) { if (sp == ch) continue; double num = freq_pair_class_[sp][attr_values[sp]][ch][attr_values[ch]][c] + smoothing_factor_; double denom = class_counts_[c] + attribute_cardinalities_[sp] * attribute_cardinalities_[ch] * smoothing_factor_; sp_log += std::log(num / denom); } sum_log += std::exp(sp_log); } log_prob[c] = std::log(sum_log / num_attributes_); } double max_log = *std::max_element(log_prob.begin(), log_prob.end()); double sum_exp = 0.0; for (int c = 0; c < num_classes_; ++c) { sum_exp += std::exp(log_prob[c] - max_log); } double log_sum_exp = max_log + std::log(sum_exp); for (int c = 0; c < num_classes_; ++c) { output[i][c] = std::exp(log_prob[c] - log_sum_exp); } } return output.to(torch::kF32); } int WA2DE::toIntValue(int attributeIndex, float value) const { int v = static_cast(value); return std::max(0, std::min(v, attribute_cardinalities_[attributeIndex] - 1)); } torch::Tensor WA2DE::AODEConditionalProb(const torch::Tensor& data) { int M = data.size(1); // Number of test samples torch::Tensor output = torch::zeros({ M, num_classes_ }, torch::kF32); auto data_cpu = data.to(torch::kCPU); int32_t* data_ptr = data_cpu.data_ptr(); for (int i = 0; i < M; ++i) { std::vector attr_values(num_attributes_); for (int a = 0; a < num_attributes_; ++a) { attr_values[a] = toIntValue(a, data_ptr[i * num_attributes_ + a]); } std::vector log_prob(num_classes_, 0.0); for (int c = 0; c < num_classes_; ++c) { log_prob[c] = std::log(class_counts_[c] / total_count_); double sum_log = 0.0; for (int sp = 0; sp < num_attributes_; ++sp) { double sp_log = log_prob[c]; for (int ch = 0; ch < num_attributes_; ++ch) { if (sp == ch) continue; double prob = freq_pair_class_[sp][attr_values[sp]][ch][attr_values[ch]][c]; sp_log += std::log(prob); } sum_log += std::exp(sp_log); } log_prob[c] = std::log(sum_log / num_attributes_); } double max_log = *std::max_element(log_prob.begin(), log_prob.end()); double sum_exp = 0.0; for (int c = 0; c < num_classes_; ++c) { sum_exp += std::exp(log_prob[c] - max_log); } double log_sum_exp = max_log + std::log(sum_exp); for (int c = 0; c < num_classes_; ++c) { output[i][c] = std::exp(log_prob[c] - log_sum_exp); } } return output; } double WA2DE::score(const torch::Tensor& X, const torch::Tensor& y) { torch::Tensor preds = AODEConditionalProb(X); torch::Tensor pred_labels = preds.argmax(1); auto correct = pred_labels.eq(y).sum().item(); auto total = y.size(0); return static_cast(correct) / total; } std::vector WA2DE::graph(const std::string& title) const { return { title, "Graph visualization not implemented." }; } }