// *************************************************************** // SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez // SPDX-FileType: SOURCE // SPDX-License-Identifier: MIT // *************************************************************** #include "XBAODE.h" #include "bayesnet/classifiers/XSPODE.h" #include "bayesnet/utils/TensorUtils.h" #include #include #include namespace bayesnet { XBAODE::XBAODE() : Boost(false) {} std::vector XBAODE::initializeModels(const Smoothing_t smoothing) { torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64); std::vector featuresSelected = featureSelection(weights_); for (const int &feature : featuresSelected) { std::unique_ptr model = std::make_unique(feature); model->fit(dataset, features, className, states, weights_, smoothing); add_model(std::move(model), 1.0); } notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm); return featuresSelected; } void XBAODE::trainModel(const torch::Tensor &weights, const bayesnet::Smoothing_t smoothing) { X_train_ = TensorUtils::to_matrix(X_train); y_train_ = TensorUtils::to_vector(y_train); if (convergence) { X_test_ = TensorUtils::to_matrix(X_test); y_test_ = TensorUtils::to_vector(y_test); } fitted = true; double alpha_t; torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64); bool finished = false; std::vector featuresUsed; n_models = 0; if (selectFeatures) { featuresUsed = initializeModels(smoothing); auto ypred = predict(X_train_); auto ypred_t = torch::tensor(ypred); std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_); // Update significance of the models for (const int &feature : featuresUsed) { significanceModels.pop_back(); } for (const int &feature : featuresUsed) { significanceModels.push_back(alpha_t); } // VLOG_SCOPE_F(1, "SelectFeatures. alpha_t: %f n_models: %d", alpha_t, // n_models); if (finished) { return; } } int numItemsPack = 0; // The counter of the models inserted in the current pack // Variables to control the accuracy finish condition double priorAccuracy = 0.0; double improvement = 1.0; double convergence_threshold = 1e-4; int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold // Step 0: Set the finish condition // epsilon sub t > 0.5 => inverse the weights_ policy // validation error is not decreasing // run out of features bool ascending = order_algorithm == bayesnet::Orders.ASC; std::mt19937 g{173}; while (!finished) { // Step 1: Build ranking with mutual information auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted if (order_algorithm == bayesnet::Orders.RAND) { std::shuffle(featureSelection.begin(), featureSelection.end(), g); } // Remove used features featureSelection.erase(remove_if(featureSelection.begin(), featureSelection.end(), [&](auto x) { return std::find(featuresUsed.begin(), featuresUsed.end(), x) != featuresUsed.end(); }), featureSelection.end()); int k = bisection ? pow(2, tolerance) : 1; int counter = 0; // The model counter of the current pack // VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, // featureSelection.size()); while (counter++ < k && featureSelection.size() > 0) { auto feature = featureSelection[0]; featureSelection.erase(featureSelection.begin()); std::unique_ptr model; model = std::make_unique(feature); model->fit(dataset, features, className, states, weights_, smoothing); /*dynamic_cast(model.get())->fitx(X_train, y_train, weights_, * smoothing); // using exclusive XSpode fit method*/ // DEBUG /*std::cout << dynamic_cast(model.get())->to_string() << * std::endl;*/ // DEBUG std::vector ypred; if (alpha_block) { // // Compute the prediction with the current ensemble + model // // Add the model to the ensemble add_model(std::move(model), 1.0); // Compute the prediction ypred = predict(X_train_); model = std::move(models.back()); // Remove the model from the ensemble remove_last_model(); } else { ypred = model->predict(X_train_); } // Step 3.1: Compute the classifier amout of say auto ypred_t = torch::tensor(ypred); std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_); // Step 3.4: Store classifier and its accuracy to weigh its future vote numItemsPack++; featuresUsed.push_back(feature); add_model(std::move(model), alpha_t); // VLOG_SCOPE_F(2, "finished: %d numItemsPack: %d n_models: %d // featuresUsed: %zu", finished, numItemsPack, n_models, // featuresUsed.size()); } // End of the pack if (convergence && !finished) { auto y_val_predict = predict(X_test); double accuracy = (y_val_predict == y_test).sum().item() / (double)y_test.size(0); if (priorAccuracy == 0) { priorAccuracy = accuracy; } else { improvement = accuracy - priorAccuracy; } if (improvement < convergence_threshold) { // VLOG_SCOPE_F(3, " (improvement=threshold) Reset. tolerance: %d // numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, // numItemsPack, improvement, priorAccuracy, accuracy); tolerance = 0; // Reset the counter if the model performs better numItemsPack = 0; } if (convergence_best) { // Keep the best accuracy until now as the prior accuracy priorAccuracy = std::max(accuracy, priorAccuracy); } else { // Keep the last accuray obtained as the prior accuracy priorAccuracy = accuracy; } } // VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: // %zu", tolerance, featuresUsed.size(), features.size()); finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size(); } if (tolerance > maxTolerance) { if (numItemsPack < n_models) { notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated"); // VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated // of %d", numItemsPack, n_models); for (int i = featuresUsed.size() - 1; i >= featuresUsed.size() - numItemsPack; --i) { remove_last_model(); } // VLOG_SCOPE_F(4, "*Convergence threshold %d models left & %d features // used.", n_models, featuresUsed.size()); } else { notes.push_back("Convergence threshold reached & 0 models eliminated"); // VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated // n_models=%d numItemsPack=%d", n_models, numItemsPack); } } if (featuresUsed.size() != features.size()) { notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size())); status = bayesnet::WARNING; } notes.push_back("Number of models: " + std::to_string(n_models)); return; } } // namespace bayesnet