10 TAN::TAN() : Classifier(Network()) {}
12 void TAN::buildModel(
const torch::Tensor& weights)
18 auto mi = std::vector <std::pair<int, float >>();
19 torch::Tensor class_dataset = dataset.index({ -1,
"..." });
20 for (
int i = 0; i < static_cast<int>(features.size()); ++i) {
21 torch::Tensor feature_dataset = dataset.index({ i,
"..." });
22 auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
23 mi.push_back({ i, mi_value });
25 sort(mi.begin(), mi.end(), [](
const auto& left,
const auto& right) {return left.second < right.second;});
26 auto root = mi[mi.size() - 1].first;
28 auto weights_matrix = metrics.conditionalEdge(weights);
30 auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);
32 for (
auto i = 0; i < mst.size(); ++i) {
33 auto [from, to] = mst[i];
34 model.addEdge(features[from], features[to]);
37 for (
auto feature : features) {
38 model.addEdge(className, feature);
41 std::vector<std::string> TAN::graph(
const std::string& title)
const
43 return model.graph(title);