BayesNet 1.0.5
Bayesian Network Classifiers using libtorch from scratch
Loading...
Searching...
No Matches
TAN.cc
1// ***************************************************************
2// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
3// SPDX-FileType: SOURCE
4// SPDX-License-Identifier: MIT
5// ***************************************************************
6
7#include "TAN.h"
8
9namespace bayesnet {
10 TAN::TAN() : Classifier(Network()) {}
11
12 void TAN::buildModel(const torch::Tensor& weights)
13 {
14 // 0. Add all nodes to the model
15 addNodes();
16 // 1. Compute mutual information between each feature and the class and set the root node
17 // as the highest mutual information with the class
18 auto mi = std::vector <std::pair<int, float >>();
19 torch::Tensor class_dataset = dataset.index({ -1, "..." });
20 for (int i = 0; i < static_cast<int>(features.size()); ++i) {
21 torch::Tensor feature_dataset = dataset.index({ i, "..." });
22 auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
23 mi.push_back({ i, mi_value });
24 }
25 sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
26 auto root = mi[mi.size() - 1].first;
27 // 2. Compute mutual information between each feature and the class
28 auto weights_matrix = metrics.conditionalEdge(weights);
29 // 3. Compute the maximum spanning tree
30 auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);
31 // 4. Add edges from the maximum spanning tree to the model
32 for (auto i = 0; i < mst.size(); ++i) {
33 auto [from, to] = mst[i];
34 model.addEdge(features[from], features[to]);
35 }
36 // 5. Add edges from the class to all features
37 for (auto feature : features) {
38 model.addEdge(className, feature);
39 }
40 }
41 std::vector<std::string> TAN::graph(const std::string& title) const
42 {
43 return model.graph(title);
44 }
45}