#include #include #include #include #include #include "ArffFiles.h" #include "Network.h" #include "BayesMetrics.h" #include "CPPFImdlp.h" #include "KDB.h" #include "SPODE.h" #include "AODE.h" #include "TAN.h" using namespace std; const string PATH = "data/"; /* print a description of all supported options */ void usage(const char* path) { /* take only the last portion of the path */ const char* basename = strrchr(path, '/'); basename = basename ? basename + 1 : path; cout << "usage: " << basename << "[OPTION]" << endl; cout << " -h, --help\t\t Print this help and exit." << endl; cout << " -f, --file[=FILENAME]\t {diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}." << endl; cout << " -p, --path[=FILENAME]\t folder where the data files are located, default " << PATH << endl; cout << " -m, --model={AODE, KDB, SPODE, TAN}\t " << endl; } tuple parse_arguments(int argc, char** argv) { string file_name; string model_name; string path = PATH; const vector long_options = { {"help", no_argument, nullptr, 'h'}, {"file", required_argument, nullptr, 'f'}, {"path", required_argument, nullptr, 'p'}, {"model", required_argument, nullptr, 'm'}, {nullptr, no_argument, nullptr, 0} }; while (true) { const auto c = getopt_long(argc, argv, "hf:p:m:", long_options.data(), nullptr); if (c == -1) break; switch (c) { case 'h': usage(argv[0]); exit(0); case 'f': file_name = string(optarg); break; case 'm': model_name = string(optarg); break; case 'p': path = optarg; if (path.back() != '/') path += '/'; break; case '?': usage(argv[0]); exit(1); default: abort(); } } if (file_name.empty()) { usage(argv[0]); exit(1); } return make_tuple(file_name, path, model_name); } inline constexpr auto hash_conv(const std::string_view sv) { unsigned long hash{ 5381 }; for (unsigned char c : sv) { hash = ((hash << 5) + hash) ^ c; } return hash; } inline constexpr auto operator"" _sh(const char* str, size_t len) { return hash_conv(std::string_view{ str, len }); } pair, map> discretize(vector& X, mdlp::labels_t& y, vector features) { vectorXd; map maxes; auto fimdlp = mdlp::CPPFImdlp(); for (int i = 0; i < X.size(); i++) { fimdlp.fit(X[i], y); mdlp::labels_t& xd = fimdlp.transform(X[i]); maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1; Xd.push_back(xd); } return { Xd, maxes }; } bool file_exists(const std::string& name) { if (FILE* file = fopen(name.c_str(), "r")) { fclose(file); return true; } else { return false; } } tuple get_options(int argc, char** argv) { map datasets = { {"diabetes", true}, {"ecoli", true}, {"glass", true}, {"iris", true}, {"kdd_JapaneseVowels", false}, {"letter", true}, {"liver-disorders", true}, {"mfeat-factors", true}, }; vector models = { "AODE", "KDB", "SPODE", "TAN" }; string file_name; string path; string model_name; tie(file_name, path, model_name) = parse_arguments(argc, argv); if (datasets.find(file_name) == datasets.end()) { cout << "Invalid file name: " << file_name << endl; usage(argv[0]); exit(1); } if (!file_exists(path + file_name + ".arff")) { cout << "Data File " << path + file_name + ".arff" << " does not exist" << endl; usage(argv[0]); exit(1); } if (find(models.begin(), models.end(), model_name) == models.end()) { cout << "Invalid model name: " << model_name << endl; usage(argv[0]); exit(1); } return { file_name, path, model_name }; } int main(int argc, char** argv) { string file_name, path, model_name; tie(file_name, path, model_name) = get_options(argc, argv); auto handler = ArffFiles(); handler.load(path + file_name + ".arff"); // Get Dataset X, y vector& X = handler.getX(); mdlp::labels_t& y = handler.getY(); // Get className & Features auto className = handler.getClassName(); vector features; for (auto feature : handler.getAttributes()) { features.push_back(feature.first); } // Discretize Dataset vector Xd; map maxes; tie(Xd, maxes) = discretize(X, y, features); maxes[className] = *max_element(y.begin(), y.end()) + 1; map> states; for (auto feature : features) { states[feature] = vector(maxes[feature]); } states[className] = vector( maxes[className]); double score; vector lines; vector graph; auto kdb = bayesnet::KDB(2); auto aode = bayesnet::AODE(); auto spode = bayesnet::SPODE(2); auto tan = bayesnet::TAN(); switch (hash_conv(model_name)) { case "AODE"_sh: aode.fit(Xd, y, features, className, states); lines = aode.show(); score = aode.score(Xd, y); graph = aode.graph(); break; case "KDB"_sh: kdb.fit(Xd, y, features, className, states); lines = kdb.show(); score = kdb.score(Xd, y); graph = kdb.graph(); break; case "SPODE"_sh: spode.fit(Xd, y, features, className, states); lines = spode.show(); score = spode.score(Xd, y); graph = spode.graph(); break; case "TAN"_sh: tan.fit(Xd, y, features, className, states); lines = tan.show(); score = tan.score(Xd, y); graph = tan.graph(); break; } for (auto line : lines) { cout << line << endl; } cout << "Score: " << score << endl; auto dot_file = model_name + "_" + file_name; ofstream file(dot_file + ".dot"); file << graph; file.close(); cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl; cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl; return 0; }