Compare commits
9 Commits
v1.0.6
...
alphablock
Author | SHA1 | Date | |
---|---|---|---|
b571a4da4d
|
|||
8a9f329ff9
|
|||
e2781ee525
|
|||
56a2d3ead0
|
|||
dc32a0fc47
|
|||
3d6b4f0614
|
|||
18844c7da7
|
|||
43ceefd2c9
|
|||
e6501502d1
|
@@ -1,4 +1,4 @@
|
|||||||
compilation_database_dir: build_debug
|
compilation_database_dir: build_Debug
|
||||||
output_directory: diagrams
|
output_directory: diagrams
|
||||||
diagrams:
|
diagrams:
|
||||||
BayesNet:
|
BayesNet:
|
||||||
|
@@ -7,6 +7,12 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|||||||
|
|
||||||
## [Unreleased]
|
## [Unreleased]
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Add a new hyperparameter to the BoostAODE class, *alphablock*, to control the way α is computed, with the last model or with the ensmble built so far. Default value is *false*.
|
||||||
|
- Add a new hyperparameter to the SPODE class, *parent*, to set the root node of the model. If no value is set the root parameter of the constructor is used.
|
||||||
|
- Add a new hyperparameter to the TAN class, *parent*, to set the root node of the model. If not set the first feature is used as root.
|
||||||
|
|
||||||
## [1.0.6] 2024-11-23
|
## [1.0.6] 2024-11-23
|
||||||
|
|
||||||
### Fixed
|
### Fixed
|
||||||
|
2
Makefile
2
Makefile
@@ -172,7 +172,7 @@ docdir = ""
|
|||||||
doc-install: ## Install documentation
|
doc-install: ## Install documentation
|
||||||
@echo ">>> Installing documentation..."
|
@echo ">>> Installing documentation..."
|
||||||
@if [ "$(docdir)" = "" ]; then \
|
@if [ "$(docdir)" = "" ]; then \
|
||||||
echo "docdir parameter has to be set when calling doc-install"; \
|
echo "docdir parameter has to be set when calling doc-install, i.e. docdir=../bayesnet_help"; \
|
||||||
exit 1; \
|
exit 1; \
|
||||||
fi
|
fi
|
||||||
@if [ ! -d $(docdir) ]; then \
|
@if [ ! -d $(docdir) ]; then \
|
||||||
|
@@ -8,6 +8,7 @@
|
|||||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||||

|

|
||||||
[](html/index.html)
|
[](html/index.html)
|
||||||
|
[](https://doi.org/10.5281/zenodo.14210344)
|
||||||
|
|
||||||
Bayesian Network Classifiers library
|
Bayesian Network Classifiers library
|
||||||
|
|
||||||
@@ -17,7 +18,7 @@ The only external dependency is [libtorch](https://pytorch.org/cppdocs/installin
|
|||||||
|
|
||||||
```bash
|
```bash
|
||||||
wget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zip
|
wget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zip
|
||||||
unzip libtorch-shared-with-deps-latest.zips
|
unzip libtorch-shared-with-deps-latest.zip
|
||||||
```
|
```
|
||||||
|
|
||||||
## Setup
|
## Setup
|
||||||
|
@@ -8,14 +8,29 @@
|
|||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
|
|
||||||
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
|
SPODE::SPODE(int root) : Classifier(Network()), root(root)
|
||||||
|
{
|
||||||
|
validHyperparameters = { "parent" };
|
||||||
|
}
|
||||||
|
|
||||||
|
void SPODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
|
if (hyperparameters.contains("parent")) {
|
||||||
|
root = hyperparameters["parent"];
|
||||||
|
hyperparameters.erase("parent");
|
||||||
|
}
|
||||||
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
|
}
|
||||||
void SPODE::buildModel(const torch::Tensor& weights)
|
void SPODE::buildModel(const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
// 0. Add all nodes to the model
|
// 0. Add all nodes to the model
|
||||||
addNodes();
|
addNodes();
|
||||||
// 1. Add edges from the class node to all other nodes
|
// 1. Add edges from the class node to all other nodes
|
||||||
// 2. Add edges from the root node to all other nodes
|
// 2. Add edges from the root node to all other nodes
|
||||||
|
if (root >= static_cast<int>(features.size())) {
|
||||||
|
throw std::invalid_argument("The parent node is not in the dataset");
|
||||||
|
}
|
||||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||||
model.addEdge(className, features[i]);
|
model.addEdge(className, features[i]);
|
||||||
if (i != root) {
|
if (i != root) {
|
||||||
|
@@ -10,14 +10,15 @@
|
|||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class SPODE : public Classifier {
|
class SPODE : public Classifier {
|
||||||
private:
|
|
||||||
int root;
|
|
||||||
protected:
|
|
||||||
void buildModel(const torch::Tensor& weights) override;
|
|
||||||
public:
|
public:
|
||||||
explicit SPODE(int root);
|
explicit SPODE(int root);
|
||||||
virtual ~SPODE() = default;
|
virtual ~SPODE() = default;
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||||
|
protected:
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
private:
|
||||||
|
int root;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@@ -7,8 +7,20 @@
|
|||||||
#include "TAN.h"
|
#include "TAN.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
TAN::TAN() : Classifier(Network()) {}
|
TAN::TAN() : Classifier(Network())
|
||||||
|
{
|
||||||
|
validHyperparameters = { "parent" };
|
||||||
|
}
|
||||||
|
|
||||||
|
void TAN::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
|
if (hyperparameters.contains("parent")) {
|
||||||
|
parent = hyperparameters["parent"];
|
||||||
|
hyperparameters.erase("parent");
|
||||||
|
}
|
||||||
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
|
}
|
||||||
void TAN::buildModel(const torch::Tensor& weights)
|
void TAN::buildModel(const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
// 0. Add all nodes to the model
|
// 0. Add all nodes to the model
|
||||||
@@ -23,7 +35,10 @@ namespace bayesnet {
|
|||||||
mi.push_back({ i, mi_value });
|
mi.push_back({ i, mi_value });
|
||||||
}
|
}
|
||||||
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
||||||
auto root = mi[mi.size() - 1].first;
|
auto root = parent == -1 ? mi[mi.size() - 1].first : parent;
|
||||||
|
if (root >= static_cast<int>(features.size())) {
|
||||||
|
throw std::invalid_argument("The parent node is not in the dataset");
|
||||||
|
}
|
||||||
// 2. Compute mutual information between each feature and the class
|
// 2. Compute mutual information between each feature and the class
|
||||||
auto weights_matrix = metrics.conditionalEdge(weights);
|
auto weights_matrix = metrics.conditionalEdge(weights);
|
||||||
// 3. Compute the maximum spanning tree
|
// 3. Compute the maximum spanning tree
|
||||||
|
@@ -9,13 +9,15 @@
|
|||||||
#include "Classifier.h"
|
#include "Classifier.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class TAN : public Classifier {
|
class TAN : public Classifier {
|
||||||
private:
|
|
||||||
protected:
|
|
||||||
void buildModel(const torch::Tensor& weights) override;
|
|
||||||
public:
|
public:
|
||||||
TAN();
|
TAN();
|
||||||
virtual ~TAN() = default;
|
virtual ~TAN() = default;
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||||
|
protected:
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
private:
|
||||||
|
int parent = -1;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@@ -20,7 +20,8 @@ namespace bayesnet {
|
|||||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||||
states = fit_local_discretization(y);
|
states = fit_local_discretization(y);
|
||||||
// We have discretized the input data
|
// We have discretized the input data
|
||||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
// 1st we need to fit the model to build the normal AODE structure, Ensemble::fit
|
||||||
|
// calls buildModel to initialize the base models
|
||||||
Ensemble::fit(dataset, features, className, states, smoothing);
|
Ensemble::fit(dataset, features, className, states, smoothing);
|
||||||
return *this;
|
return *this;
|
||||||
|
|
||||||
|
@@ -12,7 +12,7 @@
|
|||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
Boost::Boost(bool predict_voting) : Ensemble(predict_voting)
|
Boost::Boost(bool predict_voting) : Ensemble(predict_voting)
|
||||||
{
|
{
|
||||||
validHyperparameters = { "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
validHyperparameters = { "alpha_block", "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
||||||
"predict_voting", "select_features", "block_update" };
|
"predict_voting", "select_features", "block_update" };
|
||||||
}
|
}
|
||||||
void Boost::setHyperparameters(const nlohmann::json& hyperparameters_)
|
void Boost::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
@@ -26,6 +26,10 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
hyperparameters.erase("order");
|
hyperparameters.erase("order");
|
||||||
}
|
}
|
||||||
|
if (hyperparameters.contains("alpha_block")) {
|
||||||
|
alpha_block = hyperparameters["alpha_block"];
|
||||||
|
hyperparameters.erase("alpha_block");
|
||||||
|
}
|
||||||
if (hyperparameters.contains("convergence")) {
|
if (hyperparameters.contains("convergence")) {
|
||||||
convergence = hyperparameters["convergence"];
|
convergence = hyperparameters["convergence"];
|
||||||
hyperparameters.erase("convergence");
|
hyperparameters.erase("convergence");
|
||||||
@@ -66,6 +70,12 @@ namespace bayesnet {
|
|||||||
block_update = hyperparameters["block_update"];
|
block_update = hyperparameters["block_update"];
|
||||||
hyperparameters.erase("block_update");
|
hyperparameters.erase("block_update");
|
||||||
}
|
}
|
||||||
|
if (block_update && alpha_block) {
|
||||||
|
throw std::invalid_argument("alpha_block and block_update cannot be true at the same time");
|
||||||
|
}
|
||||||
|
if (block_update && !bisection) {
|
||||||
|
throw std::invalid_argument("block_update needs bisection to be true");
|
||||||
|
}
|
||||||
Classifier::setHyperparameters(hyperparameters);
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
}
|
}
|
||||||
void Boost::buildModel(const torch::Tensor& weights)
|
void Boost::buildModel(const torch::Tensor& weights)
|
||||||
|
@@ -45,8 +45,8 @@ namespace bayesnet {
|
|||||||
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||||
FeatureSelect* featureSelector = nullptr;
|
FeatureSelect* featureSelector = nullptr;
|
||||||
double threshold = -1;
|
double threshold = -1;
|
||||||
bool block_update = false;
|
bool block_update = false; // if true, use block update algorithm, only meaningful if bisection is true
|
||||||
|
bool alpha_block = false; // if true, the alpha is computed with the ensemble built so far and the new model
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@@ -92,7 +92,25 @@ namespace bayesnet {
|
|||||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||||
alpha_t = 0.0;
|
alpha_t = 0.0;
|
||||||
if (!block_update) {
|
if (!block_update) {
|
||||||
auto ypred = model->predict(X_train);
|
torch::Tensor ypred;
|
||||||
|
if (alpha_block) {
|
||||||
|
//
|
||||||
|
// Compute the prediction with the current ensemble + model
|
||||||
|
//
|
||||||
|
// Add the model to the ensemble
|
||||||
|
n_models++;
|
||||||
|
models.push_back(std::move(model));
|
||||||
|
significanceModels.push_back(1);
|
||||||
|
// Compute the prediction
|
||||||
|
ypred = predict(X_train);
|
||||||
|
// Remove the model from the ensemble
|
||||||
|
model = std::move(models.back());
|
||||||
|
models.pop_back();
|
||||||
|
significanceModels.pop_back();
|
||||||
|
n_models--;
|
||||||
|
} else {
|
||||||
|
ypred = model->predict(X_train);
|
||||||
|
}
|
||||||
// Step 3.1: Compute the classifier amout of say
|
// Step 3.1: Compute the classifier amout of say
|
||||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||||
}
|
}
|
||||||
|
@@ -1,36 +1,16 @@
|
|||||||
@startuml
|
@startuml
|
||||||
title clang-uml class diagram model
|
title clang-uml class diagram model
|
||||||
class "bayesnet::Metrics" as C_0000736965376885623323
|
class "bayesnet::Node" as C_0010428199432536647474
|
||||||
class C_0000736965376885623323 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0010428199432536647474 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+Metrics() = default : void
|
|
||||||
+Metrics(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
|
||||||
+Metrics(const std::vector<std::vector<int>> & vsamples, const std::vector<int> & labels, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
|
||||||
..
|
|
||||||
+SelectKBestWeighted(const torch::Tensor & weights, bool ascending = false, unsigned int k = 0) : std::vector<int>
|
|
||||||
+conditionalEdge(const torch::Tensor & weights) : torch::Tensor
|
|
||||||
+conditionalEdgeWeights(std::vector<float> & weights) : std::vector<float>
|
|
||||||
#doCombinations<T>(const std::vector<T> & source) : std::vector<std::pair<T, T> >
|
|
||||||
#entropy(const torch::Tensor & feature, const torch::Tensor & weights) : double
|
|
||||||
+getScoresKBest() const : std::vector<double>
|
|
||||||
+maximumSpanningTree(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : std::vector<std::pair<int,int>>
|
|
||||||
+mutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & weights) : double
|
|
||||||
#pop_first<T>(std::vector<T> & v) : T
|
|
||||||
__
|
|
||||||
#className : std::string
|
|
||||||
#features : std::vector<std::string>
|
|
||||||
#samples : torch::Tensor
|
|
||||||
}
|
|
||||||
class "bayesnet::Node" as C_0001303524929067080934
|
|
||||||
class C_0001303524929067080934 #aliceblue;line:blue;line.dotted;text:blue {
|
|
||||||
+Node(const std::string &) : void
|
+Node(const std::string &) : void
|
||||||
..
|
..
|
||||||
+addChild(Node *) : void
|
+addChild(Node *) : void
|
||||||
+addParent(Node *) : void
|
+addParent(Node *) : void
|
||||||
+clear() : void
|
+clear() : void
|
||||||
+computeCPT(const torch::Tensor & dataset, const std::vector<std::string> & features, const double laplaceSmoothing, const torch::Tensor & weights) : void
|
+computeCPT(const torch::Tensor & dataset, const std::vector<std::string> & features, const double smoothing, const torch::Tensor & weights) : void
|
||||||
+getCPT() : torch::Tensor &
|
+getCPT() : torch::Tensor &
|
||||||
+getChildren() : std::vector<Node *> &
|
+getChildren() : std::vector<Node *> &
|
||||||
+getFactorValue(std::map<std::string,int> &) : float
|
+getFactorValue(std::map<std::string,int> &) : double
|
||||||
+getName() const : std::string
|
+getName() const : std::string
|
||||||
+getNumStates() const : int
|
+getNumStates() const : int
|
||||||
+getParents() : std::vector<Node *> &
|
+getParents() : std::vector<Node *> &
|
||||||
@@ -41,24 +21,29 @@ class C_0001303524929067080934 #aliceblue;line:blue;line.dotted;text:blue {
|
|||||||
+setNumStates(int) : void
|
+setNumStates(int) : void
|
||||||
__
|
__
|
||||||
}
|
}
|
||||||
class "bayesnet::Network" as C_0001186707649890429575
|
enum "bayesnet::Smoothing_t" as C_0013393078277439680282
|
||||||
class C_0001186707649890429575 #aliceblue;line:blue;line.dotted;text:blue {
|
enum C_0013393078277439680282 {
|
||||||
|
NONE
|
||||||
|
ORIGINAL
|
||||||
|
LAPLACE
|
||||||
|
CESTNIK
|
||||||
|
}
|
||||||
|
class "bayesnet::Network" as C_0009493661199123436603
|
||||||
|
class C_0009493661199123436603 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+Network() : void
|
+Network() : void
|
||||||
+Network(float) : void
|
|
||||||
+Network(const Network &) : void
|
+Network(const Network &) : void
|
||||||
+~Network() = default : void
|
+~Network() = default : void
|
||||||
..
|
..
|
||||||
+addEdge(const std::string &, const std::string &) : void
|
+addEdge(const std::string &, const std::string &) : void
|
||||||
+addNode(const std::string &) : void
|
+addNode(const std::string &) : void
|
||||||
+dump_cpt() const : std::string
|
+dump_cpt() const : std::string
|
||||||
+fit(const torch::Tensor & samples, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
+fit(const torch::Tensor & samples, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||||
+fit(const torch::Tensor & X, const torch::Tensor & y, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
+fit(const torch::Tensor & X, const torch::Tensor & y, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||||
+fit(const std::vector<std::vector<int>> & input_data, const std::vector<int> & labels, const std::vector<double> & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
+fit(const std::vector<std::vector<int>> & input_data, const std::vector<int> & labels, const std::vector<double> & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||||
+getClassName() const : std::string
|
+getClassName() const : std::string
|
||||||
+getClassNumStates() const : int
|
+getClassNumStates() const : int
|
||||||
+getEdges() const : std::vector<std::pair<std::string,std::string>>
|
+getEdges() const : std::vector<std::pair<std::string,std::string>>
|
||||||
+getFeatures() const : std::vector<std::string>
|
+getFeatures() const : std::vector<std::string>
|
||||||
+getMaxThreads() const : float
|
|
||||||
+getNodes() : std::map<std::string,std::unique_ptr<Node>> &
|
+getNodes() : std::map<std::string,std::unique_ptr<Node>> &
|
||||||
+getNumEdges() const : int
|
+getNumEdges() const : int
|
||||||
+getSamples() : torch::Tensor &
|
+getSamples() : torch::Tensor &
|
||||||
@@ -76,21 +61,21 @@ class C_0001186707649890429575 #aliceblue;line:blue;line.dotted;text:blue {
|
|||||||
+version() : std::string
|
+version() : std::string
|
||||||
__
|
__
|
||||||
}
|
}
|
||||||
enum "bayesnet::status_t" as C_0000738420730783851375
|
enum "bayesnet::status_t" as C_0005907365846270811004
|
||||||
enum C_0000738420730783851375 {
|
enum C_0005907365846270811004 {
|
||||||
NORMAL
|
NORMAL
|
||||||
WARNING
|
WARNING
|
||||||
ERROR
|
ERROR
|
||||||
}
|
}
|
||||||
abstract "bayesnet::BaseClassifier" as C_0000327135989451974539
|
abstract "bayesnet::BaseClassifier" as C_0002617087915615796317
|
||||||
abstract C_0000327135989451974539 #aliceblue;line:blue;line.dotted;text:blue {
|
abstract C_0002617087915615796317 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+~BaseClassifier() = default : void
|
+~BaseClassifier() = default : void
|
||||||
..
|
..
|
||||||
{abstract} +dump_cpt() const = 0 : std::string
|
{abstract} +dump_cpt() const = 0 : std::string
|
||||||
{abstract} +fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
{abstract} +fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights) = 0 : BaseClassifier &
|
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||||
{abstract} +fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
{abstract} +fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||||
{abstract} +getClassNumStates() const = 0 : int
|
{abstract} +getClassNumStates() const = 0 : int
|
||||||
{abstract} +getNotes() const = 0 : std::vector<std::string>
|
{abstract} +getNotes() const = 0 : std::vector<std::string>
|
||||||
{abstract} +getNumberOfEdges() const = 0 : int
|
{abstract} +getNumberOfEdges() const = 0 : int
|
||||||
@@ -109,12 +94,35 @@ abstract C_0000327135989451974539 #aliceblue;line:blue;line.dotted;text:blue {
|
|||||||
{abstract} +setHyperparameters(const nlohmann::json & hyperparameters) = 0 : void
|
{abstract} +setHyperparameters(const nlohmann::json & hyperparameters) = 0 : void
|
||||||
{abstract} +show() const = 0 : std::vector<std::string>
|
{abstract} +show() const = 0 : std::vector<std::string>
|
||||||
{abstract} +topological_order() = 0 : std::vector<std::string>
|
{abstract} +topological_order() = 0 : std::vector<std::string>
|
||||||
{abstract} #trainModel(const torch::Tensor & weights) = 0 : void
|
{abstract} #trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) = 0 : void
|
||||||
__
|
__
|
||||||
#validHyperparameters : std::vector<std::string>
|
#validHyperparameters : std::vector<std::string>
|
||||||
}
|
}
|
||||||
abstract "bayesnet::Classifier" as C_0002043996622900301644
|
class "bayesnet::Metrics" as C_0005895723015084986588
|
||||||
abstract C_0002043996622900301644 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0005895723015084986588 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+Metrics() = default : void
|
||||||
|
+Metrics(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||||
|
+Metrics(const std::vector<std::vector<int>> & vsamples, const std::vector<int> & labels, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||||
|
..
|
||||||
|
+SelectKBestWeighted(const torch::Tensor & weights, bool ascending = false, unsigned int k = 0) : std::vector<int>
|
||||||
|
+SelectKPairs(const torch::Tensor & weights, std::vector<int> & featuresExcluded, bool ascending = false, unsigned int k = 0) : std::vector<std::pair<int,int>>
|
||||||
|
+conditionalEdge(const torch::Tensor & weights) : torch::Tensor
|
||||||
|
+conditionalEntropy(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & labels, const torch::Tensor & weights) : double
|
||||||
|
+conditionalMutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & labels, const torch::Tensor & weights) : double
|
||||||
|
#doCombinations<T>(const std::vector<T> & source) : std::vector<std::pair<T, T> >
|
||||||
|
+entropy(const torch::Tensor & feature, const torch::Tensor & weights) : double
|
||||||
|
+getScoresKBest() const : std::vector<double>
|
||||||
|
+getScoresKPairs() const : std::vector<std::pair<std::pair<int,int>,double>>
|
||||||
|
+maximumSpanningTree(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : std::vector<std::pair<int,int>>
|
||||||
|
+mutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & weights) : double
|
||||||
|
#pop_first<T>(std::vector<T> & v) : T
|
||||||
|
__
|
||||||
|
#className : std::string
|
||||||
|
#features : std::vector<std::string>
|
||||||
|
#samples : torch::Tensor
|
||||||
|
}
|
||||||
|
abstract "bayesnet::Classifier" as C_0016351972983202413152
|
||||||
|
abstract C_0016351972983202413152 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+Classifier(Network model) : void
|
+Classifier(Network model) : void
|
||||||
+~Classifier() = default : void
|
+~Classifier() = default : void
|
||||||
..
|
..
|
||||||
@@ -123,10 +131,10 @@ abstract C_0002043996622900301644 #aliceblue;line:blue;line.dotted;text:blue {
|
|||||||
{abstract} #buildModel(const torch::Tensor & weights) = 0 : void
|
{abstract} #buildModel(const torch::Tensor & weights) = 0 : void
|
||||||
#checkFitParameters() : void
|
#checkFitParameters() : void
|
||||||
+dump_cpt() const : std::string
|
+dump_cpt() const : std::string
|
||||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||||
+fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
+fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights) : Classifier &
|
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights, const Smoothing_t smoothing) : Classifier &
|
||||||
+getClassNumStates() const : int
|
+getClassNumStates() const : int
|
||||||
+getNotes() const : std::vector<std::string>
|
+getNotes() const : std::vector<std::string>
|
||||||
+getNumberOfEdges() const : int
|
+getNumberOfEdges() const : int
|
||||||
@@ -143,7 +151,7 @@ abstract C_0002043996622900301644 #aliceblue;line:blue;line.dotted;text:blue {
|
|||||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||||
+show() const : std::vector<std::string>
|
+show() const : std::vector<std::string>
|
||||||
+topological_order() : std::vector<std::string>
|
+topological_order() : std::vector<std::string>
|
||||||
#trainModel(const torch::Tensor & weights) : void
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||||
__
|
__
|
||||||
#className : std::string
|
#className : std::string
|
||||||
#dataset : torch::Tensor
|
#dataset : torch::Tensor
|
||||||
@@ -157,8 +165,8 @@ __
|
|||||||
#states : std::map<std::string,std::vector<int>>
|
#states : std::map<std::string,std::vector<int>>
|
||||||
#status : status_t
|
#status : status_t
|
||||||
}
|
}
|
||||||
class "bayesnet::KDB" as C_0001112865019015250005
|
class "bayesnet::KDB" as C_0008902920152122000044
|
||||||
class C_0001112865019015250005 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0008902920152122000044 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+KDB(int k, float theta = 0.03) : void
|
+KDB(int k, float theta = 0.03) : void
|
||||||
+~KDB() = default : void
|
+~KDB() = default : void
|
||||||
..
|
..
|
||||||
@@ -167,8 +175,26 @@ class C_0001112865019015250005 #aliceblue;line:blue;line.dotted;text:blue {
|
|||||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||||
__
|
__
|
||||||
}
|
}
|
||||||
class "bayesnet::TAN" as C_0001760994424884323017
|
class "bayesnet::SPODE" as C_0004096182510460307610
|
||||||
class C_0001760994424884323017 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0004096182510460307610 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+SPODE(int root) : void
|
||||||
|
+~SPODE() = default : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::SPnDE" as C_0016268916386101512883
|
||||||
|
class C_0016268916386101512883 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+SPnDE(std::vector<int> parents) : void
|
||||||
|
+~SPnDE() = default : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+graph(const std::string & name = "SPnDE") const : std::vector<std::string>
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::TAN" as C_0014087955399074584137
|
||||||
|
class C_0014087955399074584137 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+TAN() : void
|
+TAN() : void
|
||||||
+~TAN() = default : void
|
+~TAN() = default : void
|
||||||
..
|
..
|
||||||
@@ -176,8 +202,8 @@ class C_0001760994424884323017 #aliceblue;line:blue;line.dotted;text:blue {
|
|||||||
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
||||||
__
|
__
|
||||||
}
|
}
|
||||||
class "bayesnet::Proposal" as C_0002219995589162262979
|
class "bayesnet::Proposal" as C_0017759964713298103839
|
||||||
class C_0002219995589162262979 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0017759964713298103839 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+Proposal(torch::Tensor & pDataset, std::vector<std::string> & features_, std::string & className_) : void
|
+Proposal(torch::Tensor & pDataset, std::vector<std::string> & features_, std::string & className_) : void
|
||||||
+~Proposal() : void
|
+~Proposal() : void
|
||||||
..
|
..
|
||||||
@@ -190,74 +216,42 @@ __
|
|||||||
#discretizers : map<std::string,mdlp::CPPFImdlp *>
|
#discretizers : map<std::string,mdlp::CPPFImdlp *>
|
||||||
#y : torch::Tensor
|
#y : torch::Tensor
|
||||||
}
|
}
|
||||||
class "bayesnet::TANLd" as C_0001668829096702037834
|
class "bayesnet::KDBLd" as C_0002756018222998454702
|
||||||
class C_0001668829096702037834 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0002756018222998454702 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+TANLd() : void
|
+KDBLd(int k) : void
|
||||||
+~TANLd() = default : void
|
+~KDBLd() = default : void
|
||||||
..
|
..
|
||||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : TANLd &
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : KDBLd &
|
||||||
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||||
+predict(torch::Tensor & X) : torch::Tensor
|
+predict(torch::Tensor & X) : torch::Tensor
|
||||||
{static} +version() : std::string
|
{static} +version() : std::string
|
||||||
__
|
__
|
||||||
}
|
}
|
||||||
abstract "bayesnet::FeatureSelect" as C_0001695326193250580823
|
class "bayesnet::SPODELd" as C_0010957245114062042836
|
||||||
abstract C_0001695326193250580823 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0010957245114062042836 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+FeatureSelect(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
+SPODELd(int root) : void
|
||||||
+~FeatureSelect() : void
|
+~SPODELd() = default : void
|
||||||
..
|
..
|
||||||
#computeMeritCFS() : double
|
+commonFit(const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||||
#computeSuFeatures(const int a, const int b) : double
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||||
#computeSuLabels() : void
|
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||||
{abstract} +fit() = 0 : void
|
+graph(const std::string & name = "SPODELd") const : std::vector<std::string>
|
||||||
+getFeatures() const : std::vector<int>
|
+predict(torch::Tensor & X) : torch::Tensor
|
||||||
+getScores() const : std::vector<double>
|
{static} +version() : std::string
|
||||||
#initialize() : void
|
|
||||||
#symmetricalUncertainty(int a, int b) : double
|
|
||||||
__
|
|
||||||
#fitted : bool
|
|
||||||
#maxFeatures : int
|
|
||||||
#selectedFeatures : std::vector<int>
|
|
||||||
#selectedScores : std::vector<double>
|
|
||||||
#suFeatures : std::map<std::pair<int,int>,double>
|
|
||||||
#suLabels : std::vector<double>
|
|
||||||
#weights : const torch::Tensor &
|
|
||||||
}
|
|
||||||
class "bayesnet::CFS" as C_0000011627355691342494
|
|
||||||
class C_0000011627355691342494 #aliceblue;line:blue;line.dotted;text:blue {
|
|
||||||
+CFS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
|
||||||
+~CFS() : void
|
|
||||||
..
|
|
||||||
+fit() : void
|
|
||||||
__
|
__
|
||||||
}
|
}
|
||||||
class "bayesnet::FCBF" as C_0000144682015341746929
|
class "bayesnet::TANLd" as C_0013350632773616302678
|
||||||
class C_0000144682015341746929 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0013350632773616302678 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+FCBF(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
+TANLd() : void
|
||||||
+~FCBF() : void
|
+~TANLd() = default : void
|
||||||
..
|
..
|
||||||
+fit() : void
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : TANLd &
|
||||||
|
+graph(const std::string & name = "TANLd") const : std::vector<std::string>
|
||||||
|
+predict(torch::Tensor & X) : torch::Tensor
|
||||||
__
|
__
|
||||||
}
|
}
|
||||||
class "bayesnet::IWSS" as C_0000008268514674428553
|
class "bayesnet::Ensemble" as C_0015881931090842884611
|
||||||
class C_0000008268514674428553 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0015881931090842884611 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+IWSS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
|
||||||
+~IWSS() : void
|
|
||||||
..
|
|
||||||
+fit() : void
|
|
||||||
__
|
|
||||||
}
|
|
||||||
class "bayesnet::SPODE" as C_0000512022813807538451
|
|
||||||
class C_0000512022813807538451 #aliceblue;line:blue;line.dotted;text:blue {
|
|
||||||
+SPODE(int root) : void
|
|
||||||
+~SPODE() = default : void
|
|
||||||
..
|
|
||||||
#buildModel(const torch::Tensor & weights) : void
|
|
||||||
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
|
||||||
__
|
|
||||||
}
|
|
||||||
class "bayesnet::Ensemble" as C_0001985241386355360576
|
|
||||||
class C_0001985241386355360576 #aliceblue;line:blue;line.dotted;text:blue {
|
|
||||||
+Ensemble(bool predict_voting = true) : void
|
+Ensemble(bool predict_voting = true) : void
|
||||||
+~Ensemble() = default : void
|
+~Ensemble() = default : void
|
||||||
..
|
..
|
||||||
@@ -280,7 +274,7 @@ class C_0001985241386355360576 #aliceblue;line:blue;line.dotted;text:blue {
|
|||||||
+score(torch::Tensor & X, torch::Tensor & y) : float
|
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||||
+show() const : std::vector<std::string>
|
+show() const : std::vector<std::string>
|
||||||
+topological_order() : std::vector<std::string>
|
+topological_order() : std::vector<std::string>
|
||||||
#trainModel(const torch::Tensor & weights) : void
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||||
#voting(torch::Tensor & votes) : torch::Tensor
|
#voting(torch::Tensor & votes) : torch::Tensor
|
||||||
__
|
__
|
||||||
#models : std::vector<std::unique_ptr<Classifier>>
|
#models : std::vector<std::unique_ptr<Classifier>>
|
||||||
@@ -288,41 +282,223 @@ __
|
|||||||
#predict_voting : bool
|
#predict_voting : bool
|
||||||
#significanceModels : std::vector<double>
|
#significanceModels : std::vector<double>
|
||||||
}
|
}
|
||||||
class "bayesnet::(anonymous_45089536)" as C_0001186398587753535158
|
class "bayesnet::A2DE" as C_0001410789567057647859
|
||||||
class C_0001186398587753535158 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0001410789567057647859 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+A2DE(bool predict_voting = false) : void
|
||||||
|
+~A2DE() : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+graph(const std::string & title = "A2DE") const : std::vector<std::string>
|
||||||
|
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::AODE" as C_0006288892608974306258
|
||||||
|
class C_0006288892608974306258 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+AODE(bool predict_voting = false) : void
|
||||||
|
+~AODE() : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+graph(const std::string & title = "AODE") const : std::vector<std::string>
|
||||||
|
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
abstract "bayesnet::FeatureSelect" as C_0013562609546004646591
|
||||||
|
abstract C_0013562609546004646591 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+FeatureSelect(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||||
|
+~FeatureSelect() : void
|
||||||
|
..
|
||||||
|
#computeMeritCFS() : double
|
||||||
|
#computeSuFeatures(const int a, const int b) : double
|
||||||
|
#computeSuLabels() : void
|
||||||
|
{abstract} +fit() = 0 : void
|
||||||
|
+getFeatures() const : std::vector<int>
|
||||||
|
+getScores() const : std::vector<double>
|
||||||
|
#initialize() : void
|
||||||
|
#symmetricalUncertainty(int a, int b) : double
|
||||||
|
__
|
||||||
|
#fitted : bool
|
||||||
|
#maxFeatures : int
|
||||||
|
#selectedFeatures : std::vector<int>
|
||||||
|
#selectedScores : std::vector<double>
|
||||||
|
#suFeatures : std::map<std::pair<int,int>,double>
|
||||||
|
#suLabels : std::vector<double>
|
||||||
|
#weights : const torch::Tensor &
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60342586)" as C_0005584545181746538542
|
||||||
|
class C_0005584545181746538542 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
__
|
__
|
||||||
+CFS : std::string
|
+CFS : std::string
|
||||||
+FCBF : std::string
|
+FCBF : std::string
|
||||||
+IWSS : std::string
|
+IWSS : std::string
|
||||||
}
|
}
|
||||||
class "bayesnet::(anonymous_45090163)" as C_0000602764946063116717
|
class "bayesnet::(anonymous_60343240)" as C_0016227156982041949444
|
||||||
class C_0000602764946063116717 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0016227156982041949444 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
__
|
__
|
||||||
+ASC : std::string
|
+ASC : std::string
|
||||||
+DESC : std::string
|
+DESC : std::string
|
||||||
+RAND : std::string
|
+RAND : std::string
|
||||||
}
|
}
|
||||||
class "bayesnet::BoostAODE" as C_0000358471592399852382
|
class "bayesnet::Boost" as C_0009819322948617116148
|
||||||
class C_0000358471592399852382 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0009819322948617116148 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+Boost(bool predict_voting = false) : void
|
||||||
|
+~Boost() = default : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
#featureSelection(torch::Tensor & weights_) : std::vector<int>
|
||||||
|
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||||
|
#update_weights(torch::Tensor & ytrain, torch::Tensor & ypred, torch::Tensor & weights) : std::tuple<torch::Tensor &,double,bool>
|
||||||
|
#update_weights_block(int k, torch::Tensor & ytrain, torch::Tensor & weights) : std::tuple<torch::Tensor &,double,bool>
|
||||||
|
__
|
||||||
|
#X_test : torch::Tensor
|
||||||
|
#X_train : torch::Tensor
|
||||||
|
#bisection : bool
|
||||||
|
#block_update : bool
|
||||||
|
#convergence : bool
|
||||||
|
#convergence_best : bool
|
||||||
|
#featureSelector : FeatureSelect *
|
||||||
|
#maxTolerance : int
|
||||||
|
#order_algorithm : std::string
|
||||||
|
#selectFeatures : bool
|
||||||
|
#select_features_algorithm : std::string
|
||||||
|
#threshold : double
|
||||||
|
#y_test : torch::Tensor
|
||||||
|
#y_train : torch::Tensor
|
||||||
|
}
|
||||||
|
class "bayesnet::AODELd" as C_0003898187834670349177
|
||||||
|
class C_0003898187834670349177 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+AODELd(bool predict_voting = true) : void
|
||||||
|
+~AODELd() = default : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+fit(torch::Tensor & X_, torch::Tensor & y_, const std::vector<std::string> & features_, const std::string & className_, std::map<std::string,std::vector<int>> & states_, const Smoothing_t smoothing) : AODELd &
|
||||||
|
+graph(const std::string & name = "AODELd") const : std::vector<std::string>
|
||||||
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60275628)" as C_0009086919615463763584
|
||||||
|
class C_0009086919615463763584 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60276282)" as C_0015251985607563196159
|
||||||
|
class C_0015251985607563196159 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::BoostA2DE" as C_0000272055465257861326
|
||||||
|
class C_0000272055465257861326 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+BoostA2DE(bool predict_voting = false) : void
|
||||||
|
+~BoostA2DE() = default : void
|
||||||
|
..
|
||||||
|
+graph(const std::string & title = "BoostA2DE") const : std::vector<std::string>
|
||||||
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60275502)" as C_0016033655851510053155
|
||||||
|
class C_0016033655851510053155 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60276156)" as C_0000379522761622473555
|
||||||
|
class C_0000379522761622473555 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::BoostAODE" as C_0002867772739198819061
|
||||||
|
class C_0002867772739198819061 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+BoostAODE(bool predict_voting = false) : void
|
+BoostAODE(bool predict_voting = false) : void
|
||||||
+~BoostAODE() = default : void
|
+~BoostAODE() = default : void
|
||||||
..
|
..
|
||||||
#buildModel(const torch::Tensor & weights) : void
|
|
||||||
+graph(const std::string & title = "BoostAODE") const : std::vector<std::string>
|
+graph(const std::string & title = "BoostAODE") const : std::vector<std::string>
|
||||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||||
#trainModel(const torch::Tensor & weights) : void
|
|
||||||
__
|
__
|
||||||
}
|
}
|
||||||
class "bayesnet::MST" as C_0000131858426172291700
|
class "bayesnet::CFS" as C_0000093018845530739957
|
||||||
class C_0000131858426172291700 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0000093018845530739957 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+CFS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||||
|
+~CFS() : void
|
||||||
|
..
|
||||||
|
+fit() : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::FCBF" as C_0001157456122733975432
|
||||||
|
class C_0001157456122733975432 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+FCBF(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||||
|
+~FCBF() : void
|
||||||
|
..
|
||||||
|
+fit() : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::IWSS" as C_0000066148117395428429
|
||||||
|
class C_0000066148117395428429 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+IWSS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||||
|
+~IWSS() : void
|
||||||
|
..
|
||||||
|
+fit() : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60730495)" as C_0004857727320042830573
|
||||||
|
class C_0004857727320042830573 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60731150)" as C_0000076541533312623385
|
||||||
|
class C_0000076541533312623385 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60653004)" as C_0001444063444142949758
|
||||||
|
class C_0001444063444142949758 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60653658)" as C_0007139277546931322856
|
||||||
|
class C_0007139277546931322856 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60731375)" as C_0010493853592456211189
|
||||||
|
class C_0010493853592456211189 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60732030)" as C_0007011438637915849564
|
||||||
|
class C_0007011438637915849564 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::MST" as C_0001054867409378333602
|
||||||
|
class C_0001054867409378333602 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+MST() = default : void
|
+MST() = default : void
|
||||||
+MST(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : void
|
+MST(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : void
|
||||||
..
|
..
|
||||||
|
+insertElement(std::list<int> & variables, int variable) : void
|
||||||
+maximumSpanningTree() : std::vector<std::pair<int,int>>
|
+maximumSpanningTree() : std::vector<std::pair<int,int>>
|
||||||
|
+reorder(std::vector<std::pair<float,std::pair<int,int>>> T, int root_original) : std::vector<std::pair<int,int>>
|
||||||
__
|
__
|
||||||
}
|
}
|
||||||
class "bayesnet::Graph" as C_0001197041682001898467
|
class "bayesnet::Graph" as C_0009576333456015187741
|
||||||
class C_0001197041682001898467 #aliceblue;line:blue;line.dotted;text:blue {
|
class C_0009576333456015187741 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
+Graph(int V) : void
|
+Graph(int V) : void
|
||||||
..
|
..
|
||||||
+addEdge(int u, int v, float wt) : void
|
+addEdge(int u, int v, float wt) : void
|
||||||
@@ -332,81 +508,73 @@ class C_0001197041682001898467 #aliceblue;line:blue;line.dotted;text:blue {
|
|||||||
+union_set(int u, int v) : void
|
+union_set(int u, int v) : void
|
||||||
__
|
__
|
||||||
}
|
}
|
||||||
class "bayesnet::KDBLd" as C_0000344502277874806837
|
C_0010428199432536647474 --> C_0010428199432536647474 : -parents
|
||||||
class C_0000344502277874806837 #aliceblue;line:blue;line.dotted;text:blue {
|
C_0010428199432536647474 --> C_0010428199432536647474 : -children
|
||||||
+KDBLd(int k) : void
|
C_0009493661199123436603 ..> C_0013393078277439680282
|
||||||
+~KDBLd() = default : void
|
C_0009493661199123436603 o-- C_0010428199432536647474 : -nodes
|
||||||
..
|
C_0002617087915615796317 ..> C_0013393078277439680282
|
||||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : KDBLd &
|
C_0002617087915615796317 ..> C_0005907365846270811004
|
||||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
C_0016351972983202413152 ..> C_0013393078277439680282
|
||||||
+predict(torch::Tensor & X) : torch::Tensor
|
C_0016351972983202413152 o-- C_0009493661199123436603 : #model
|
||||||
{static} +version() : std::string
|
C_0016351972983202413152 o-- C_0005895723015084986588 : #metrics
|
||||||
__
|
C_0016351972983202413152 o-- C_0005907365846270811004 : #status
|
||||||
}
|
C_0002617087915615796317 <|-- C_0016351972983202413152
|
||||||
class "bayesnet::AODE" as C_0000786111576121788282
|
|
||||||
class C_0000786111576121788282 #aliceblue;line:blue;line.dotted;text:blue {
|
|
||||||
+AODE(bool predict_voting = false) : void
|
|
||||||
+~AODE() : void
|
|
||||||
..
|
|
||||||
#buildModel(const torch::Tensor & weights) : void
|
|
||||||
+graph(const std::string & title = "AODE") const : std::vector<std::string>
|
|
||||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
|
||||||
__
|
|
||||||
}
|
|
||||||
class "bayesnet::SPODELd" as C_0001369655639257755354
|
|
||||||
class C_0001369655639257755354 #aliceblue;line:blue;line.dotted;text:blue {
|
|
||||||
+SPODELd(int root) : void
|
|
||||||
+~SPODELd() = default : void
|
|
||||||
..
|
|
||||||
+commonFit(const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
|
||||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
|
||||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
|
||||||
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
|
||||||
+predict(torch::Tensor & X) : torch::Tensor
|
|
||||||
{static} +version() : std::string
|
|
||||||
__
|
|
||||||
}
|
|
||||||
class "bayesnet::AODELd" as C_0000487273479333793647
|
|
||||||
class C_0000487273479333793647 #aliceblue;line:blue;line.dotted;text:blue {
|
|
||||||
+AODELd(bool predict_voting = true) : void
|
|
||||||
+~AODELd() = default : void
|
|
||||||
..
|
|
||||||
#buildModel(const torch::Tensor & weights) : void
|
|
||||||
+fit(torch::Tensor & X_, torch::Tensor & y_, const std::vector<std::string> & features_, const std::string & className_, std::map<std::string,std::vector<int>> & states_) : AODELd &
|
|
||||||
+graph(const std::string & name = "AODELd") const : std::vector<std::string>
|
|
||||||
#trainModel(const torch::Tensor & weights) : void
|
|
||||||
__
|
|
||||||
}
|
|
||||||
C_0001303524929067080934 --> C_0001303524929067080934 : -parents
|
|
||||||
C_0001303524929067080934 --> C_0001303524929067080934 : -children
|
|
||||||
C_0001186707649890429575 o-- C_0001303524929067080934 : -nodes
|
|
||||||
C_0000327135989451974539 ..> C_0000738420730783851375
|
|
||||||
C_0002043996622900301644 o-- C_0001186707649890429575 : #model
|
|
||||||
C_0002043996622900301644 o-- C_0000736965376885623323 : #metrics
|
|
||||||
C_0002043996622900301644 o-- C_0000738420730783851375 : #status
|
|
||||||
C_0000327135989451974539 <|-- C_0002043996622900301644
|
|
||||||
C_0002043996622900301644 <|-- C_0001112865019015250005
|
|
||||||
C_0002043996622900301644 <|-- C_0001760994424884323017
|
|
||||||
C_0002219995589162262979 ..> C_0001186707649890429575
|
|
||||||
C_0001760994424884323017 <|-- C_0001668829096702037834
|
|
||||||
C_0002219995589162262979 <|-- C_0001668829096702037834
|
|
||||||
C_0000736965376885623323 <|-- C_0001695326193250580823
|
|
||||||
C_0001695326193250580823 <|-- C_0000011627355691342494
|
|
||||||
C_0001695326193250580823 <|-- C_0000144682015341746929
|
|
||||||
C_0001695326193250580823 <|-- C_0000008268514674428553
|
|
||||||
C_0002043996622900301644 <|-- C_0000512022813807538451
|
|
||||||
C_0001985241386355360576 o-- C_0002043996622900301644 : #models
|
|
||||||
C_0002043996622900301644 <|-- C_0001985241386355360576
|
|
||||||
C_0000358471592399852382 --> C_0001695326193250580823 : -featureSelector
|
|
||||||
C_0001985241386355360576 <|-- C_0000358471592399852382
|
|
||||||
C_0001112865019015250005 <|-- C_0000344502277874806837
|
|
||||||
C_0002219995589162262979 <|-- C_0000344502277874806837
|
|
||||||
C_0001985241386355360576 <|-- C_0000786111576121788282
|
|
||||||
C_0000512022813807538451 <|-- C_0001369655639257755354
|
|
||||||
C_0002219995589162262979 <|-- C_0001369655639257755354
|
|
||||||
C_0001985241386355360576 <|-- C_0000487273479333793647
|
|
||||||
C_0002219995589162262979 <|-- C_0000487273479333793647
|
|
||||||
|
|
||||||
'Generated with clang-uml, version 0.5.1
|
C_0016351972983202413152 <|-- C_0008902920152122000044
|
||||||
'LLVM version clang version 17.0.6 (Fedora 17.0.6-2.fc39)
|
|
||||||
|
C_0016351972983202413152 <|-- C_0004096182510460307610
|
||||||
|
|
||||||
|
C_0016351972983202413152 <|-- C_0016268916386101512883
|
||||||
|
|
||||||
|
C_0016351972983202413152 <|-- C_0014087955399074584137
|
||||||
|
|
||||||
|
C_0017759964713298103839 ..> C_0009493661199123436603
|
||||||
|
C_0002756018222998454702 ..> C_0013393078277439680282
|
||||||
|
C_0008902920152122000044 <|-- C_0002756018222998454702
|
||||||
|
|
||||||
|
C_0017759964713298103839 <|-- C_0002756018222998454702
|
||||||
|
|
||||||
|
C_0010957245114062042836 ..> C_0013393078277439680282
|
||||||
|
C_0004096182510460307610 <|-- C_0010957245114062042836
|
||||||
|
|
||||||
|
C_0017759964713298103839 <|-- C_0010957245114062042836
|
||||||
|
|
||||||
|
C_0013350632773616302678 ..> C_0013393078277439680282
|
||||||
|
C_0014087955399074584137 <|-- C_0013350632773616302678
|
||||||
|
|
||||||
|
C_0017759964713298103839 <|-- C_0013350632773616302678
|
||||||
|
|
||||||
|
C_0015881931090842884611 ..> C_0013393078277439680282
|
||||||
|
C_0015881931090842884611 o-- C_0016351972983202413152 : #models
|
||||||
|
C_0016351972983202413152 <|-- C_0015881931090842884611
|
||||||
|
|
||||||
|
C_0015881931090842884611 <|-- C_0001410789567057647859
|
||||||
|
|
||||||
|
C_0015881931090842884611 <|-- C_0006288892608974306258
|
||||||
|
|
||||||
|
C_0005895723015084986588 <|-- C_0013562609546004646591
|
||||||
|
|
||||||
|
C_0009819322948617116148 --> C_0013562609546004646591 : #featureSelector
|
||||||
|
C_0015881931090842884611 <|-- C_0009819322948617116148
|
||||||
|
|
||||||
|
C_0003898187834670349177 ..> C_0013393078277439680282
|
||||||
|
C_0015881931090842884611 <|-- C_0003898187834670349177
|
||||||
|
|
||||||
|
C_0017759964713298103839 <|-- C_0003898187834670349177
|
||||||
|
|
||||||
|
C_0000272055465257861326 ..> C_0013393078277439680282
|
||||||
|
C_0009819322948617116148 <|-- C_0000272055465257861326
|
||||||
|
|
||||||
|
C_0002867772739198819061 ..> C_0013393078277439680282
|
||||||
|
C_0009819322948617116148 <|-- C_0002867772739198819061
|
||||||
|
|
||||||
|
C_0013562609546004646591 <|-- C_0000093018845530739957
|
||||||
|
|
||||||
|
C_0013562609546004646591 <|-- C_0001157456122733975432
|
||||||
|
|
||||||
|
C_0013562609546004646591 <|-- C_0000066148117395428429
|
||||||
|
|
||||||
|
|
||||||
|
'Generated with clang-uml, version 0.5.5
|
||||||
|
'LLVM version clang version 18.1.8 (Fedora 18.1.8-5.fc41)
|
||||||
@enduml
|
@enduml
|
||||||
|
File diff suppressed because one or more lines are too long
Before Width: | Height: | Size: 139 KiB After Width: | Height: | Size: 196 KiB |
@@ -1,128 +1,314 @@
|
|||||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
<!-- Generated by graphviz version 8.1.0 (20230707.0739)
|
<!-- Generated by graphviz version 12.1.0 (20240811.2233)
|
||||||
-->
|
-->
|
||||||
<!-- Title: BayesNet Pages: 1 -->
|
<!-- Title: BayesNet Pages: 1 -->
|
||||||
<svg width="1632pt" height="288pt"
|
<svg width="3725pt" height="432pt"
|
||||||
viewBox="0.00 0.00 1631.95 287.80" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
viewBox="0.00 0.00 3724.84 431.80" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 283.8)">
|
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 427.8)">
|
||||||
<title>BayesNet</title>
|
<title>BayesNet</title>
|
||||||
<polygon fill="white" stroke="none" points="-4,4 -4,-283.8 1627.95,-283.8 1627.95,4 -4,4"/>
|
<polygon fill="white" stroke="none" points="-4,4 -4,-427.8 3720.84,-427.8 3720.84,4 -4,4"/>
|
||||||
<!-- node1 -->
|
<!-- node0 -->
|
||||||
<g id="node1" class="node">
|
<g id="node1" class="node">
|
||||||
|
<title>node0</title>
|
||||||
|
<polygon fill="none" stroke="black" points="1655.43,-398.35 1655.43,-413.26 1625.69,-423.8 1583.63,-423.8 1553.89,-413.26 1553.89,-398.35 1583.63,-387.8 1625.69,-387.8 1655.43,-398.35"/>
|
||||||
|
<text text-anchor="middle" x="1604.66" y="-401.53" font-family="Times,serif" font-size="12.00">BayesNet</text>
|
||||||
|
</g>
|
||||||
|
<!-- node1 -->
|
||||||
|
<g id="node2" class="node">
|
||||||
<title>node1</title>
|
<title>node1</title>
|
||||||
<polygon fill="none" stroke="black" points="826.43,-254.35 826.43,-269.26 796.69,-279.8 754.63,-279.8 724.89,-269.26 724.89,-254.35 754.63,-243.8 796.69,-243.8 826.43,-254.35"/>
|
<polygon fill="none" stroke="black" points="413.32,-257.8 372.39,-273.03 206.66,-279.8 40.93,-273.03 0,-257.8 114.69,-245.59 298.64,-245.59 413.32,-257.8"/>
|
||||||
<text text-anchor="middle" x="775.66" y="-257.53" font-family="Times,serif" font-size="12.00">BayesNet</text>
|
<text text-anchor="middle" x="206.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10.so</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node1 -->
|
||||||
|
<g id="edge1" class="edge">
|
||||||
|
<title>node0->node1</title>
|
||||||
|
<path fill="none" stroke="black" d="M1553.59,-400.53C1451.65,-391.91 1215.69,-371.61 1017.66,-351.8 773.36,-327.37 488.07,-295.22 329.31,-277.01"/>
|
||||||
|
<polygon fill="black" stroke="black" points="329.93,-273.56 319.6,-275.89 329.14,-280.51 329.93,-273.56"/>
|
||||||
</g>
|
</g>
|
||||||
<!-- node2 -->
|
<!-- node2 -->
|
||||||
<g id="node2" class="node">
|
<g id="node3" class="node">
|
||||||
<title>node2</title>
|
<title>node2</title>
|
||||||
<polygon fill="none" stroke="black" points="413.32,-185.8 372.39,-201.03 206.66,-207.8 40.93,-201.03 0,-185.8 114.69,-173.59 298.64,-173.59 413.32,-185.8"/>
|
<polygon fill="none" stroke="black" points="894.21,-257.8 848.35,-273.03 662.66,-279.8 476.98,-273.03 431.12,-257.8 559.61,-245.59 765.71,-245.59 894.21,-257.8"/>
|
||||||
<text text-anchor="middle" x="206.66" y="-185.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10.so</text>
|
<text text-anchor="middle" x="662.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10_cuda.so</text>
|
||||||
</g>
|
</g>
|
||||||
<!-- node1->node2 -->
|
<!-- node0->node2 -->
|
||||||
<g id="edge1" class="edge">
|
<g id="edge2" class="edge">
|
||||||
<title>node1->node2</title>
|
<title>node0->node2</title>
|
||||||
<path fill="none" stroke="black" d="M724.41,-254.5C634.7,-243.46 447.04,-220.38 324.01,-205.24"/>
|
<path fill="none" stroke="black" d="M1555.34,-397.37C1408.12,-375.18 969.52,-309.06 767.13,-278.55"/>
|
||||||
<polygon fill="black" stroke="black" points="324.77,-201.69 314.42,-203.94 323.92,-208.63 324.77,-201.69"/>
|
<polygon fill="black" stroke="black" points="767.81,-275.12 757.4,-277.09 766.77,-282.04 767.81,-275.12"/>
|
||||||
</g>
|
</g>
|
||||||
<!-- node3 -->
|
<!-- node3 -->
|
||||||
<g id="node3" class="node">
|
<g id="node4" class="node">
|
||||||
<title>node3</title>
|
<title>node3</title>
|
||||||
<polygon fill="none" stroke="black" points="857.68,-185.8 815.49,-201.03 644.66,-207.8 473.84,-201.03 431.65,-185.8 549.86,-173.59 739.46,-173.59 857.68,-185.8"/>
|
<polygon fill="none" stroke="black" points="1338.68,-257.8 1296.49,-273.03 1125.66,-279.8 954.84,-273.03 912.65,-257.8 1030.86,-245.59 1220.46,-245.59 1338.68,-257.8"/>
|
||||||
<text text-anchor="middle" x="644.66" y="-185.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libkineto.a</text>
|
<text text-anchor="middle" x="1125.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libkineto.a</text>
|
||||||
</g>
|
</g>
|
||||||
<!-- node1->node3 -->
|
<!-- node0->node3 -->
|
||||||
<g id="edge2" class="edge">
|
<g id="edge3" class="edge">
|
||||||
<title>node1->node3</title>
|
<title>node0->node3</title>
|
||||||
<path fill="none" stroke="black" d="M747.56,-245.79C729.21,-235.98 704.97,-223.03 684.63,-212.16"/>
|
<path fill="none" stroke="black" d="M1566.68,-393.54C1484.46,-369.17 1289.3,-311.32 1188.44,-281.41"/>
|
||||||
<polygon fill="black" stroke="black" points="686.47,-208.64 676,-207.02 683.17,-214.82 686.47,-208.64"/>
|
<polygon fill="black" stroke="black" points="1189.53,-278.09 1178.95,-278.6 1187.54,-284.8 1189.53,-278.09"/>
|
||||||
</g>
|
</g>
|
||||||
<!-- node4 -->
|
<!-- node4 -->
|
||||||
<g id="node4" class="node">
|
|
||||||
<title>node4</title>
|
|
||||||
<polygon fill="none" stroke="black" points="939.33,-182.35 939.33,-197.26 920.78,-207.8 894.54,-207.8 875.99,-197.26 875.99,-182.35 894.54,-171.8 920.78,-171.8 939.33,-182.35"/>
|
|
||||||
<text text-anchor="middle" x="907.66" y="-185.53" font-family="Times,serif" font-size="12.00">mdlp</text>
|
|
||||||
</g>
|
|
||||||
<!-- node1->node4 -->
|
|
||||||
<g id="edge3" class="edge">
|
|
||||||
<title>node1->node4</title>
|
|
||||||
<path fill="none" stroke="black" d="M803.66,-245.96C824.66,-234.82 853.45,-219.56 875.41,-207.91"/>
|
|
||||||
<polygon fill="black" stroke="black" points="876.78,-210.61 883.97,-202.84 873.5,-204.43 876.78,-210.61"/>
|
|
||||||
</g>
|
|
||||||
<!-- node9 -->
|
|
||||||
<g id="node5" class="node">
|
<g id="node5" class="node">
|
||||||
<title>node9</title>
|
<title>node4</title>
|
||||||
<polygon fill="none" stroke="black" points="1107.74,-195.37 1032.66,-207.8 957.58,-195.37 986.26,-175.24 1079.06,-175.24 1107.74,-195.37"/>
|
<polygon fill="none" stroke="black" points="1552.26,-257.8 1532.93,-273.03 1454.66,-279.8 1376.4,-273.03 1357.07,-257.8 1411.23,-245.59 1498.1,-245.59 1552.26,-257.8"/>
|
||||||
<text text-anchor="middle" x="1032.66" y="-185.53" font-family="Times,serif" font-size="12.00">torch_library</text>
|
<text text-anchor="middle" x="1454.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/lib64/libcuda.so</text>
|
||||||
</g>
|
</g>
|
||||||
<!-- node1->node9 -->
|
<!-- node0->node4 -->
|
||||||
<g id="edge4" class="edge">
|
<g id="edge4" class="edge">
|
||||||
<title>node1->node9</title>
|
<title>node0->node4</title>
|
||||||
<path fill="none" stroke="black" d="M815.25,-250.02C860.25,-237.77 933.77,-217.74 982.68,-204.42"/>
|
<path fill="none" stroke="black" d="M1586.27,-387.39C1559.5,-362.05 1509.72,-314.92 1479.65,-286.46"/>
|
||||||
<polygon fill="black" stroke="black" points="983.3,-207.61 992.02,-201.6 981.46,-200.85 983.3,-207.61"/>
|
<polygon fill="black" stroke="black" points="1482.13,-283.99 1472.46,-279.65 1477.31,-289.07 1482.13,-283.99"/>
|
||||||
</g>
|
|
||||||
<!-- node10 -->
|
|
||||||
<g id="node6" class="node">
|
|
||||||
<title>node10</title>
|
|
||||||
<polygon fill="none" stroke="black" points="1159.81,-113.8 1086.89,-129.03 791.66,-135.8 496.43,-129.03 423.52,-113.8 627.82,-101.59 955.5,-101.59 1159.81,-113.8"/>
|
|
||||||
<text text-anchor="middle" x="791.66" y="-113.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch.so" -Wl,--as-needed</text>
|
|
||||||
</g>
|
|
||||||
<!-- node9->node10 -->
|
|
||||||
<g id="edge5" class="edge">
|
|
||||||
<title>node9->node10</title>
|
|
||||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M985.62,-175.14C949.2,-164.56 898.31,-149.78 857.79,-138.01"/>
|
|
||||||
<polygon fill="black" stroke="black" points="859.04,-134.44 848.46,-135.01 857.09,-141.16 859.04,-134.44"/>
|
|
||||||
</g>
|
</g>
|
||||||
<!-- node5 -->
|
<!-- node5 -->
|
||||||
<g id="node7" class="node">
|
<g id="node6" class="node">
|
||||||
<title>node5</title>
|
<title>node5</title>
|
||||||
<polygon fill="none" stroke="black" points="1371.56,-123.37 1274.66,-135.8 1177.77,-123.37 1214.78,-103.24 1334.55,-103.24 1371.56,-123.37"/>
|
<polygon fill="none" stroke="black" points="1873.26,-257.8 1843.23,-273.03 1721.66,-279.8 1600.09,-273.03 1570.06,-257.8 1654.19,-245.59 1789.13,-245.59 1873.26,-257.8"/>
|
||||||
<text text-anchor="middle" x="1274.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch_cpu_library</text>
|
<text text-anchor="middle" x="1721.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libcudart.so</text>
|
||||||
</g>
|
</g>
|
||||||
<!-- node9->node5 -->
|
<!-- node0->node5 -->
|
||||||
<g id="edge6" class="edge">
|
<g id="edge5" class="edge">
|
||||||
<title>node9->node5</title>
|
<title>node0->node5</title>
|
||||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1079.61,-175.22C1120.66,-163.35 1180.2,-146.13 1222.68,-133.84"/>
|
<path fill="none" stroke="black" d="M1619.76,-387.77C1628.83,-377.46 1640.53,-363.98 1650.66,-351.8 1668.32,-330.59 1687.84,-306.03 1701.94,-288.1"/>
|
||||||
<polygon fill="black" stroke="black" points="1223.46,-136.97 1232.09,-130.83 1221.51,-130.24 1223.46,-136.97"/>
|
<polygon fill="black" stroke="black" points="1704.43,-290.59 1707.84,-280.56 1698.92,-286.27 1704.43,-290.59"/>
|
||||||
</g>
|
</g>
|
||||||
<!-- node6 -->
|
<!-- node6 -->
|
||||||
<g id="node8" class="node">
|
<g id="node7" class="node">
|
||||||
<title>node6</title>
|
<title>node6</title>
|
||||||
<polygon fill="none" stroke="black" points="1191.4,-27.9 1114.6,-43.12 803.66,-49.9 492.72,-43.12 415.93,-27.9 631.1,-15.68 976.22,-15.68 1191.4,-27.9"/>
|
<polygon fill="none" stroke="black" points="2231.79,-257.8 2198.1,-273.03 2061.66,-279.8 1925.23,-273.03 1891.53,-257.8 1985.95,-245.59 2137.38,-245.59 2231.79,-257.8"/>
|
||||||
<text text-anchor="middle" x="803.66" y="-27.63" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cpu.so" -Wl,--as-needed</text>
|
<text text-anchor="middle" x="2061.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libnvToolsExt.so</text>
|
||||||
</g>
|
</g>
|
||||||
<!-- node5->node6 -->
|
<!-- node0->node6 -->
|
||||||
<g id="edge7" class="edge">
|
<g id="edge6" class="edge">
|
||||||
<title>node5->node6</title>
|
<title>node0->node6</title>
|
||||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1210.16,-105.31C1130.55,-91.13 994.37,-66.87 901.77,-50.38"/>
|
<path fill="none" stroke="black" d="M1642.06,-393.18C1721.31,-368.56 1906.71,-310.95 2002.32,-281.24"/>
|
||||||
<polygon fill="black" stroke="black" points="902.44,-46.77 891.98,-48.46 901.22,-53.66 902.44,-46.77"/>
|
<polygon fill="black" stroke="black" points="2003.28,-284.61 2011.79,-278.3 2001.21,-277.92 2003.28,-284.61"/>
|
||||||
</g>
|
</g>
|
||||||
<!-- node7 -->
|
<!-- node7 -->
|
||||||
<g id="node9" class="node">
|
<g id="node8" class="node">
|
||||||
<title>node7</title>
|
<title>node7</title>
|
||||||
<polygon fill="none" stroke="black" points="1339.72,-37.46 1274.66,-49.9 1209.61,-37.46 1234.46,-17.34 1314.87,-17.34 1339.72,-37.46"/>
|
<polygon fill="none" stroke="black" points="2541.44,-257.8 2512.56,-273.03 2395.66,-279.8 2278.76,-273.03 2249.89,-257.8 2330.79,-245.59 2460.54,-245.59 2541.44,-257.8"/>
|
||||||
<text text-anchor="middle" x="1274.66" y="-27.63" font-family="Times,serif" font-size="12.00">caffe2::mkl</text>
|
<text text-anchor="middle" x="2395.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libnvrtc.so</text>
|
||||||
</g>
|
</g>
|
||||||
<!-- node5->node7 -->
|
<!-- node0->node7 -->
|
||||||
<g id="edge8" class="edge">
|
<g id="edge7" class="edge">
|
||||||
<title>node5->node7</title>
|
<title>node0->node7</title>
|
||||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1274.66,-102.95C1274.66,-91.56 1274.66,-75.07 1274.66,-60.95"/>
|
<path fill="none" stroke="black" d="M1651.19,-396.45C1780.36,-373.26 2144.76,-307.85 2311.05,-277.99"/>
|
||||||
<polygon fill="black" stroke="black" points="1278.16,-61.27 1274.66,-51.27 1271.16,-61.27 1278.16,-61.27"/>
|
<polygon fill="black" stroke="black" points="2311.47,-281.47 2320.7,-276.26 2310.24,-274.58 2311.47,-281.47"/>
|
||||||
</g>
|
</g>
|
||||||
<!-- node8 -->
|
<!-- node8 -->
|
||||||
<g id="node10" class="node">
|
<g id="node9" class="node">
|
||||||
<title>node8</title>
|
<title>node8</title>
|
||||||
<polygon fill="none" stroke="black" points="1623.95,-41.76 1490.66,-63.8 1357.37,-41.76 1408.28,-6.09 1573.04,-6.09 1623.95,-41.76"/>
|
<polygon fill="none" stroke="black" points="1642.01,-326.35 1642.01,-341.26 1620.13,-351.8 1589.19,-351.8 1567.31,-341.26 1567.31,-326.35 1589.19,-315.8 1620.13,-315.8 1642.01,-326.35"/>
|
||||||
<text text-anchor="middle" x="1490.66" y="-34.75" font-family="Times,serif" font-size="12.00">dummy</text>
|
<text text-anchor="middle" x="1604.66" y="-329.53" font-family="Times,serif" font-size="12.00">fimdlp</text>
|
||||||
<text text-anchor="middle" x="1490.66" y="-20.5" font-family="Times,serif" font-size="12.00">(protobuf::libprotobuf)</text>
|
|
||||||
</g>
|
</g>
|
||||||
<!-- node5->node8 -->
|
<!-- node0->node8 -->
|
||||||
|
<g id="edge8" class="edge">
|
||||||
|
<title>node0->node8</title>
|
||||||
|
<path fill="none" stroke="black" d="M1604.66,-387.5C1604.66,-380.21 1604.66,-371.53 1604.66,-363.34"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1608.16,-363.42 1604.66,-353.42 1601.16,-363.42 1608.16,-363.42"/>
|
||||||
|
</g>
|
||||||
|
<!-- node19 -->
|
||||||
|
<g id="node10" class="node">
|
||||||
|
<title>node19</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2709.74,-267.37 2634.66,-279.8 2559.58,-267.37 2588.26,-247.24 2681.06,-247.24 2709.74,-267.37"/>
|
||||||
|
<text text-anchor="middle" x="2634.66" y="-257.53" font-family="Times,serif" font-size="12.00">torch_library</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node19 -->
|
||||||
|
<g id="edge29" class="edge">
|
||||||
|
<title>node0->node19</title>
|
||||||
|
<path fill="none" stroke="black" d="M1655.87,-399.32C1798.23,-383.79 2210.64,-336.94 2550.66,-279.8 2559.43,-278.33 2568.68,-276.62 2577.72,-274.86"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2578.38,-278.3 2587.5,-272.92 2577.01,-271.43 2578.38,-278.3"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node1 -->
|
||||||
<g id="edge9" class="edge">
|
<g id="edge9" class="edge">
|
||||||
<title>node5->node8</title>
|
<title>node8->node1</title>
|
||||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1310.82,-102.76C1341.68,-90.77 1386.88,-73.21 1424.25,-58.7"/>
|
<path fill="none" stroke="black" d="M1566.84,-331.58C1419.81,-326.72 872.06,-307.69 421.66,-279.8 401.07,-278.53 379.38,-277.02 358.03,-275.43"/>
|
||||||
<polygon fill="black" stroke="black" points="1425.01,-61.77 1433.06,-54.89 1422.47,-55.25 1425.01,-61.77"/>
|
<polygon fill="black" stroke="black" points="358.3,-271.94 348.06,-274.67 357.77,-278.92 358.3,-271.94"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node2 -->
|
||||||
|
<g id="edge10" class="edge">
|
||||||
|
<title>node8->node2</title>
|
||||||
|
<path fill="none" stroke="black" d="M1566.86,-330C1445.11,-320.95 1057.97,-292.18 831.67,-275.36"/>
|
||||||
|
<polygon fill="black" stroke="black" points="832.09,-271.89 821.86,-274.63 831.57,-278.87 832.09,-271.89"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node3 -->
|
||||||
|
<g id="edge11" class="edge">
|
||||||
|
<title>node8->node3</title>
|
||||||
|
<path fill="none" stroke="black" d="M1567.08,-327.31C1495.4,-316.84 1336.86,-293.67 1230.62,-278.14"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1231.44,-274.72 1221.04,-276.74 1230.42,-281.65 1231.44,-274.72"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node4 -->
|
||||||
|
<g id="edge12" class="edge">
|
||||||
|
<title>node8->node4</title>
|
||||||
|
<path fill="none" stroke="black" d="M1578.53,-320.61C1555.96,-310.08 1522.92,-294.66 1496.64,-282.4"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1498.12,-279.22 1487.58,-278.17 1495.16,-285.57 1498.12,-279.22"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node5 -->
|
||||||
|
<g id="edge13" class="edge">
|
||||||
|
<title>node8->node5</title>
|
||||||
|
<path fill="none" stroke="black" d="M1627.78,-318.97C1644.15,-309.18 1666.44,-295.84 1685.2,-284.62"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1686.83,-287.73 1693.61,-279.59 1683.23,-281.72 1686.83,-287.73"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node6 -->
|
||||||
|
<g id="edge14" class="edge">
|
||||||
|
<title>node8->node6</title>
|
||||||
|
<path fill="none" stroke="black" d="M1642.45,-327.02C1712.36,-316.31 1863.89,-293.1 1964.32,-277.71"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1964.84,-281.18 1974.2,-276.2 1963.78,-274.26 1964.84,-281.18"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node7 -->
|
||||||
|
<g id="edge15" class="edge">
|
||||||
|
<title>node8->node7</title>
|
||||||
|
<path fill="none" stroke="black" d="M1642.33,-330.01C1740.75,-322.64 2013.75,-301.7 2240.66,-279.8 2254.16,-278.5 2268.32,-277.06 2282.35,-275.58"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2282.49,-279.08 2292.06,-274.54 2281.75,-272.12 2282.49,-279.08"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node19 -->
|
||||||
|
<g id="edge16" class="edge">
|
||||||
|
<title>node8->node19</title>
|
||||||
|
<path fill="none" stroke="black" d="M1642.25,-332.63C1770.06,-331.64 2199.48,-324.94 2550.66,-279.8 2560.1,-278.59 2570.07,-276.92 2579.71,-275.1"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2580.21,-278.57 2589.34,-273.21 2578.86,-271.7 2580.21,-278.57"/>
|
||||||
|
</g>
|
||||||
|
<!-- node20 -->
|
||||||
|
<g id="node11" class="node">
|
||||||
|
<title>node20</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2606.81,-185.8 2533.89,-201.03 2238.66,-207.8 1943.43,-201.03 1870.52,-185.8 2074.82,-173.59 2402.5,-173.59 2606.81,-185.8"/>
|
||||||
|
<text text-anchor="middle" x="2238.66" y="-185.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch.so" -Wl,--as-needed</text>
|
||||||
|
</g>
|
||||||
|
<!-- node19->node20 -->
|
||||||
|
<g id="edge17" class="edge">
|
||||||
|
<title>node19->node20</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2583.63,-250.21C2572.76,-248.03 2561.34,-245.79 2550.66,-243.8 2482.14,-231.05 2404.92,-217.93 2344.44,-207.93"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2345.28,-204.52 2334.84,-206.34 2344.14,-211.42 2345.28,-204.52"/>
|
||||||
|
</g>
|
||||||
|
<!-- node9 -->
|
||||||
|
<g id="node12" class="node">
|
||||||
|
<title>node9</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2542.56,-123.37 2445.66,-135.8 2348.77,-123.37 2385.78,-103.24 2505.55,-103.24 2542.56,-123.37"/>
|
||||||
|
<text text-anchor="middle" x="2445.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch_cpu_library</text>
|
||||||
|
</g>
|
||||||
|
<!-- node19->node9 -->
|
||||||
|
<g id="edge18" class="edge">
|
||||||
|
<title>node19->node9</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2635.72,-246.84C2636.4,-227.49 2634.61,-192.58 2615.66,-171.8 2601.13,-155.87 2551.93,-141.56 2510.18,-131.84"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2511.2,-128.48 2500.67,-129.68 2509.65,-135.31 2511.2,-128.48"/>
|
||||||
|
</g>
|
||||||
|
<!-- node13 -->
|
||||||
|
<g id="node16" class="node">
|
||||||
|
<title>node13</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3056.45,-195.37 2953.66,-207.8 2850.87,-195.37 2890.13,-175.24 3017.19,-175.24 3056.45,-195.37"/>
|
||||||
|
<text text-anchor="middle" x="2953.66" y="-185.53" font-family="Times,serif" font-size="12.00">torch_cuda_library</text>
|
||||||
|
</g>
|
||||||
|
<!-- node19->node13 -->
|
||||||
|
<g id="edge22" class="edge">
|
||||||
|
<title>node19->node13</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2685.21,-249.71C2741.11,-237.45 2831.21,-217.67 2891.42,-204.46"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2891.8,-207.96 2900.82,-202.4 2890.3,-201.13 2891.8,-207.96"/>
|
||||||
|
</g>
|
||||||
|
<!-- node10 -->
|
||||||
|
<g id="node13" class="node">
|
||||||
|
<title>node10</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2362.4,-27.9 2285.6,-43.12 1974.66,-49.9 1663.72,-43.12 1586.93,-27.9 1802.1,-15.68 2147.22,-15.68 2362.4,-27.9"/>
|
||||||
|
<text text-anchor="middle" x="1974.66" y="-27.63" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cpu.so" -Wl,--as-needed</text>
|
||||||
|
</g>
|
||||||
|
<!-- node9->node10 -->
|
||||||
|
<g id="edge19" class="edge">
|
||||||
|
<title>node9->node10</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2381.16,-105.31C2301.63,-91.15 2165.65,-66.92 2073.05,-50.43"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2073.93,-47.03 2063.48,-48.72 2072.71,-53.92 2073.93,-47.03"/>
|
||||||
|
</g>
|
||||||
|
<!-- node11 -->
|
||||||
|
<g id="node14" class="node">
|
||||||
|
<title>node11</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2510.72,-37.46 2445.66,-49.9 2380.61,-37.46 2405.46,-17.34 2485.87,-17.34 2510.72,-37.46"/>
|
||||||
|
<text text-anchor="middle" x="2445.66" y="-27.63" font-family="Times,serif" font-size="12.00">caffe2::mkl</text>
|
||||||
|
</g>
|
||||||
|
<!-- node9->node11 -->
|
||||||
|
<g id="edge20" class="edge">
|
||||||
|
<title>node9->node11</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2445.66,-102.95C2445.66,-91.68 2445.66,-75.4 2445.66,-61.37"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2449.16,-61.78 2445.66,-51.78 2442.16,-61.78 2449.16,-61.78"/>
|
||||||
|
</g>
|
||||||
|
<!-- node12 -->
|
||||||
|
<g id="node15" class="node">
|
||||||
|
<title>node12</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2794.95,-41.76 2661.66,-63.8 2528.37,-41.76 2579.28,-6.09 2744.04,-6.09 2794.95,-41.76"/>
|
||||||
|
<text text-anchor="middle" x="2661.66" y="-34.75" font-family="Times,serif" font-size="12.00">dummy</text>
|
||||||
|
<text text-anchor="middle" x="2661.66" y="-20.5" font-family="Times,serif" font-size="12.00">(protobuf::libprotobuf)</text>
|
||||||
|
</g>
|
||||||
|
<!-- node9->node12 -->
|
||||||
|
<g id="edge21" class="edge">
|
||||||
|
<title>node9->node12</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2481.82,-102.76C2512.55,-90.82 2557.5,-73.36 2594.77,-58.89"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2595.6,-62.32 2603.65,-55.44 2593.06,-55.79 2595.6,-62.32"/>
|
||||||
|
</g>
|
||||||
|
<!-- node13->node9 -->
|
||||||
|
<g id="edge28" class="edge">
|
||||||
|
<title>node13->node9</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2880.59,-179.79C2799.97,-169.71 2666.42,-152.57 2551.66,-135.8 2540.2,-134.13 2528.06,-132.27 2516.24,-130.41"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2516.96,-126.98 2506.54,-128.86 2515.87,-133.89 2516.96,-126.98"/>
|
||||||
|
</g>
|
||||||
|
<!-- node14 -->
|
||||||
|
<g id="node17" class="node">
|
||||||
|
<title>node14</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3346.69,-113.8 3268.85,-129.03 2953.66,-135.8 2638.48,-129.03 2560.63,-113.8 2778.75,-101.59 3128.58,-101.59 3346.69,-113.8"/>
|
||||||
|
<text text-anchor="middle" x="2953.66" y="-113.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cuda.so" -Wl,--as-needed</text>
|
||||||
|
</g>
|
||||||
|
<!-- node13->node14 -->
|
||||||
|
<g id="edge23" class="edge">
|
||||||
|
<title>node13->node14</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2953.66,-174.97C2953.66,-167.13 2953.66,-157.01 2953.66,-147.53"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2957.16,-147.59 2953.66,-137.59 2950.16,-147.59 2957.16,-147.59"/>
|
||||||
|
</g>
|
||||||
|
<!-- node15 -->
|
||||||
|
<g id="node18" class="node">
|
||||||
|
<title>node15</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3514.74,-123.37 3439.66,-135.8 3364.58,-123.37 3393.26,-103.24 3486.06,-103.24 3514.74,-123.37"/>
|
||||||
|
<text text-anchor="middle" x="3439.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch::cudart</text>
|
||||||
|
</g>
|
||||||
|
<!-- node13->node15 -->
|
||||||
|
<g id="edge24" class="edge">
|
||||||
|
<title>node13->node15</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3028.35,-180.51C3109.24,-171.17 3241.96,-154.78 3355.66,-135.8 3364.43,-134.34 3373.69,-132.63 3382.72,-130.88"/>
|
||||||
|
<polygon fill="black" stroke="black" points="3383.38,-134.31 3392.51,-128.93 3382.02,-127.45 3383.38,-134.31"/>
|
||||||
|
</g>
|
||||||
|
<!-- node17 -->
|
||||||
|
<g id="node20" class="node">
|
||||||
|
<title>node17</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3716.84,-123.37 3624.66,-135.8 3532.48,-123.37 3567.69,-103.24 3681.63,-103.24 3716.84,-123.37"/>
|
||||||
|
<text text-anchor="middle" x="3624.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch::nvtoolsext</text>
|
||||||
|
</g>
|
||||||
|
<!-- node13->node17 -->
|
||||||
|
<g id="edge26" class="edge">
|
||||||
|
<title>node13->node17</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3033.64,-183.25C3144.1,-175.14 3349.47,-158.53 3523.66,-135.8 3534.84,-134.35 3546.67,-132.57 3558.15,-130.72"/>
|
||||||
|
<polygon fill="black" stroke="black" points="3558.68,-134.18 3567.98,-129.1 3557.54,-127.27 3558.68,-134.18"/>
|
||||||
|
</g>
|
||||||
|
<!-- node16 -->
|
||||||
|
<g id="node19" class="node">
|
||||||
|
<title>node16</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3510.78,-27.9 3496.7,-43.12 3439.66,-49.9 3382.63,-43.12 3368.54,-27.9 3408.01,-15.68 3471.31,-15.68 3510.78,-27.9"/>
|
||||||
|
<text text-anchor="middle" x="3439.66" y="-27.63" font-family="Times,serif" font-size="12.00">CUDA::cudart</text>
|
||||||
|
</g>
|
||||||
|
<!-- node15->node16 -->
|
||||||
|
<g id="edge25" class="edge">
|
||||||
|
<title>node15->node16</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3439.66,-102.95C3439.66,-91.68 3439.66,-75.4 3439.66,-61.37"/>
|
||||||
|
<polygon fill="black" stroke="black" points="3443.16,-61.78 3439.66,-51.78 3436.16,-61.78 3443.16,-61.78"/>
|
||||||
|
</g>
|
||||||
|
<!-- node18 -->
|
||||||
|
<g id="node21" class="node">
|
||||||
|
<title>node18</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3714.32,-27.9 3696.56,-43.12 3624.66,-49.9 3552.77,-43.12 3535.01,-27.9 3584.76,-15.68 3664.56,-15.68 3714.32,-27.9"/>
|
||||||
|
<text text-anchor="middle" x="3624.66" y="-27.63" font-family="Times,serif" font-size="12.00">CUDA::nvToolsExt</text>
|
||||||
|
</g>
|
||||||
|
<!-- node17->node18 -->
|
||||||
|
<g id="edge27" class="edge">
|
||||||
|
<title>node17->node18</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3624.66,-102.95C3624.66,-91.68 3624.66,-75.4 3624.66,-61.37"/>
|
||||||
|
<polygon fill="black" stroke="black" points="3628.16,-61.78 3624.66,-51.78 3621.16,-61.78 3628.16,-61.78"/>
|
||||||
</g>
|
</g>
|
||||||
</g>
|
</g>
|
||||||
</svg>
|
</svg>
|
||||||
|
Before Width: | Height: | Size: 7.1 KiB After Width: | Height: | Size: 18 KiB |
Submodule lib/catch2 deleted from 029fe3b460
Submodule lib/folding updated: 2ac43e32ac...9652853d69
2
lib/json
2
lib/json
Submodule lib/json updated: 378e091795...620034ecec
@@ -268,3 +268,35 @@ TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
|
|||||||
REQUIRE_THROWS_WITH(clf.score(raw.Xv, raw.yv), message);
|
REQUIRE_THROWS_WITH(clf.score(raw.Xv, raw.yv), message);
|
||||||
REQUIRE_THROWS_WITH(clf.score(raw.Xt, raw.yt), message);
|
REQUIRE_THROWS_WITH(clf.score(raw.Xt, raw.yt), message);
|
||||||
}
|
}
|
||||||
|
TEST_CASE("TAN & SPODE with hyperparameters", "[Models]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
auto clf = bayesnet::TAN();
|
||||||
|
clf.setHyperparameters({
|
||||||
|
{"parent", 1},
|
||||||
|
});
|
||||||
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
|
auto score = clf.score(raw.Xv, raw.yv);
|
||||||
|
REQUIRE(score == Catch::Approx(0.973333).epsilon(raw.epsilon));
|
||||||
|
auto clf2 = bayesnet::SPODE(0);
|
||||||
|
clf2.setHyperparameters({
|
||||||
|
{"parent", 1},
|
||||||
|
});
|
||||||
|
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
|
auto score2 = clf2.score(raw.Xv, raw.yv);
|
||||||
|
REQUIRE(score2 == Catch::Approx(0.973333).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
|
TEST_CASE("TAN & SPODE with invalid hyperparameters", "[Models]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
auto clf = bayesnet::TAN();
|
||||||
|
clf.setHyperparameters({
|
||||||
|
{"parent", 5},
|
||||||
|
});
|
||||||
|
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||||
|
auto clf2 = bayesnet::SPODE(0);
|
||||||
|
clf2.setHyperparameters({
|
||||||
|
{"parent", 5},
|
||||||
|
});
|
||||||
|
REQUIRE_THROWS_AS(clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||||
|
}
|
@@ -136,8 +136,16 @@ TEST_CASE("Oddities", "[BoostAODE]")
|
|||||||
clf.setHyperparameters(hyper.value());
|
clf.setHyperparameters(hyper.value());
|
||||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
|
auto bad_hyper_fit2 = nlohmann::json{
|
||||||
|
{ { "alpha_block", true }, { "block_update", true } },
|
||||||
|
{ { "bisection", false }, { "block_update", true } },
|
||||||
|
};
|
||||||
|
for (const auto& hyper : bad_hyper_fit2.items()) {
|
||||||
|
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||||
|
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||||
|
}
|
||||||
|
}
|
||||||
TEST_CASE("Bisection Best", "[BoostAODE]")
|
TEST_CASE("Bisection Best", "[BoostAODE]")
|
||||||
{
|
{
|
||||||
auto clf = bayesnet::BoostAODE();
|
auto clf = bayesnet::BoostAODE();
|
||||||
@@ -180,7 +188,6 @@ TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
|
|||||||
auto score_last = clf.score(raw.X_test, raw.y_test);
|
auto score_last = clf.score(raw.X_test, raw.y_test);
|
||||||
REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
|
REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST_CASE("Block Update", "[BoostAODE]")
|
TEST_CASE("Block Update", "[BoostAODE]")
|
||||||
{
|
{
|
||||||
auto clf = bayesnet::BoostAODE();
|
auto clf = bayesnet::BoostAODE();
|
||||||
@@ -211,3 +218,18 @@ TEST_CASE("Block Update", "[BoostAODE]")
|
|||||||
// }
|
// }
|
||||||
// std::cout << "Score " << score << std::endl;
|
// std::cout << "Score " << score << std::endl;
|
||||||
}
|
}
|
||||||
|
TEST_CASE("Alphablock", "[BoostAODE]")
|
||||||
|
{
|
||||||
|
auto clf_alpha = bayesnet::BoostAODE();
|
||||||
|
auto clf_no_alpha = bayesnet::BoostAODE();
|
||||||
|
auto raw = RawDatasets("diabetes", true);
|
||||||
|
clf_alpha.setHyperparameters({
|
||||||
|
{"alpha_block", true},
|
||||||
|
});
|
||||||
|
clf_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
|
clf_no_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
|
auto score_alpha = clf_alpha.score(raw.X_test, raw.y_test);
|
||||||
|
auto score_no_alpha = clf_no_alpha.score(raw.X_test, raw.y_test);
|
||||||
|
REQUIRE(score_alpha == Catch::Approx(0.720779f).epsilon(raw.epsilon));
|
||||||
|
REQUIRE(score_no_alpha == Catch::Approx(0.733766f).epsilon(raw.epsilon));
|
||||||
|
}
|
@@ -17,7 +17,7 @@
|
|||||||
|
|
||||||
std::map<std::string, std::string> modules = {
|
std::map<std::string, std::string> modules = {
|
||||||
{ "mdlp", "2.0.1" },
|
{ "mdlp", "2.0.1" },
|
||||||
{ "Folding", "1.1.0" },
|
{ "Folding", "1.1.1" },
|
||||||
{ "json", "3.11" },
|
{ "json", "3.11" },
|
||||||
{ "ArffFiles", "1.1.0" }
|
{ "ArffFiles", "1.1.0" }
|
||||||
};
|
};
|
||||||
|
Submodule tests/lib/catch2 updated: 506276c592...0321d2fce3
Reference in New Issue
Block a user