Compare commits

..

17 Commits

Author SHA1 Message Date
06de13df98 Add date/time to header of report best 2023-09-25 10:04:53 +02:00
de4fa6a04f Add color to totals 2023-09-23 10:30:39 +02:00
3a7bf4e672 Fix ranking order mistake 2023-09-23 01:33:23 +02:00
cd0bc02a74 Add report/build all with totals and ranks 2023-09-23 01:14:02 +02:00
c8597a794e Begin report all models 2023-09-22 18:13:32 +02:00
b30416364d Fix mistake in best results file name 2023-09-22 14:14:39 +02:00
3a16589220 Add best config for debug in vscode 2023-09-22 01:04:36 +02:00
c4f9187e2a Complete best build and report 2023-09-22 01:03:55 +02:00
c4d0a5b4e6 Split Result from Results 2023-09-21 23:30:17 +02:00
7bfafe555f Begin BestResults build 2023-09-21 23:04:11 +02:00
337b6f7e79 Rename BestResult to BestScore 2023-09-21 19:30:07 +02:00
5fa0b957dd Fix mistake in idx range in manage 2023-09-20 19:12:07 +02:00
67252fc41d Fix CMakeLists libxlsxwriter for Linux 2023-09-20 19:02:53 +02:00
94ae9456a0 Fix libxslxwriter linking problem 2023-09-20 18:50:11 +02:00
781993e326 Resolve some warnings 2023-09-20 17:54:15 +02:00
8257a6ae39 Add message of not exist Best Results 2023-09-20 13:50:34 +02:00
fc81730dfc Merge pull request 'Exchange OpenXLSX to libxlsxwriter' (#8) from libxlsxwriter into main
Add multiple sheets to excel file
Add format and color to sheets
Add comparison with ZeroR
Add comparison with Best Results
Separate contextual menu from general in manage
2023-09-20 11:17:16 +00:00
20 changed files with 721 additions and 265 deletions

14
.vscode/launch.json vendored
View File

@@ -37,6 +37,20 @@
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "best",
"program": "${workspaceFolder}/build/src/Platform/best",
"args": [
"-m",
"BoostAODE",
"-s",
"accuracy",
"--build",
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",

View File

@@ -54,6 +54,7 @@ endif (ENABLE_CLANG_TIDY)
add_git_submodule("lib/mdlp")
add_git_submodule("lib/argparse")
add_git_submodule("lib/json")
find_library(XLSXWRITER_LIB libxlsxwriter.dylib PATHS /usr/local/lib)
# Subdirectories
# --------------

View File

@@ -19,13 +19,14 @@ copy: ## Copy binary files to selected folder
@cp build/src/Platform/main $(dest)
@cp build/src/Platform/list $(dest)
@cp build/src/Platform/manage $(dest)
@cp build/src/Platform/best $(dest)
@echo ">>> Done"
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the main and BayesNetSample
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32
cmake --build build -t main -t BayesNetSample -t manage -t list -t best -j 32
clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ...";
@@ -40,7 +41,7 @@ debug: ## Build a debug version of the project
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
cmake --build build -t main -t BayesNetSample -t manage -t list unit_tests -j 32;
cmake --build build -t main -t BayesNetSample -t manage -t list -t best -t unit_tests -j 32;
@echo ">>> Done";
release: ## Build a Release version of the project
@@ -48,7 +49,7 @@ release: ## Build a Release version of the project
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32;
cmake --build build -t main -t BayesNetSample -t manage -t list -t best -j 32;
@echo ">>> Done";
test: ## Run tests

View File

@@ -104,180 +104,180 @@ int main(int argc, char** argv)
for (int i = 0; i < 10; i++) {
cout << weights_.index({ i }).item<double>() << endl;
}
// map<string, bool> datasets = {
// {"diabetes", true},
// {"ecoli", true},
// {"glass", true},
// {"iris", true},
// {"kdd_JapaneseVowels", false},
// {"letter", true},
// {"liver-disorders", true},
// {"mfeat-factors", true},
// };
// auto valid_datasets = vector<string>();
// transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
// [](const pair<string, bool>& pair) { return pair.first; });
// argparse::ArgumentParser program("BayesNetSample");
// program.add_argument("-d", "--dataset")
// .help("Dataset file name")
// .action([valid_datasets](const std::string& value) {
// if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
// return value;
// }
// throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
// }
// );
// program.add_argument("-p", "--path")
// .help(" folder where the data files are located, default")
// .default_value(string{ PATH }
// );
// program.add_argument("-m", "--model")
// .help("Model to use " + platform::Models::instance()->toString())
// .action([](const std::string& value) {
// static const vector<string> choices = platform::Models::instance()->getNames();
// if (find(choices.begin(), choices.end(), value) != choices.end()) {
// return value;
// }
// throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
// }
// );
// program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
// program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
// program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
// program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
// program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
// try {
// auto k = stoi(value);
// if (k < 2) {
// throw runtime_error("Number of folds must be greater than 1");
// }
// return k;
// }
// catch (const runtime_error& err) {
// throw runtime_error(err.what());
// }
// catch (...) {
// throw runtime_error("Number of folds must be an integer");
// }});
// program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
// bool class_last, stratified, tensors, dump_cpt;
// string model_name, file_name, path, complete_file_name;
// int nFolds, seed;
// try {
// program.parse_args(argc, argv);
// file_name = program.get<string>("dataset");
// path = program.get<string>("path");
// model_name = program.get<string>("model");
// complete_file_name = path + file_name + ".arff";
// stratified = program.get<bool>("stratified");
// tensors = program.get<bool>("tensors");
// nFolds = program.get<int>("folds");
// seed = program.get<int>("seed");
// dump_cpt = program.get<bool>("dumpcpt");
// class_last = datasets[file_name];
// if (!file_exists(complete_file_name)) {
// throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
// }
// }
// catch (const exception& err) {
// cerr << err.what() << endl;
// cerr << program;
// exit(1);
// }
map<string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
auto valid_datasets = vector<string>();
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
[](const pair<string, bool>& pair) { return pair.first; });
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
.action([valid_datasets](const std::string& value) {
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
}
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
}
);
program.add_argument("-p", "--path")
.help(" folder where the data files are located, default")
.default_value(string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const vector<string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, stratified, tensors, dump_cpt;
string model_name, file_name, path, complete_file_name;
int nFolds, seed;
try {
program.parse_args(argc, argv);
file_name = program.get<string>("dataset");
path = program.get<string>("path");
model_name = program.get<string>("model");
complete_file_name = path + file_name + ".arff";
stratified = program.get<bool>("stratified");
tensors = program.get<bool>("tensors");
nFolds = program.get<int>("folds");
seed = program.get<int>("seed");
dump_cpt = program.get<bool>("dumpcpt");
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
/*
* Begin Processing
*/
// auto handler = ArffFiles();
// handler.load(complete_file_name, class_last);
// // Get Dataset X, y
// vector<mdlp::samples_t>& X = handler.getX();
// mdlp::labels_t& y = handler.getY();
// // Get className & Features
// auto className = handler.getClassName();
// vector<string> features;
// auto attributes = handler.getAttributes();
// transform(attributes.begin(), attributes.end(), back_inserter(features),
// [](const pair<string, string>& item) { return item.first; });
// // Discretize Dataset
// auto [Xd, maxes] = discretize(X, y, features);
// maxes[className] = *max_element(y.begin(), y.end()) + 1;
// map<string, vector<int>> states;
// for (auto feature : features) {
// states[feature] = vector<int>(maxes[feature]);
// }
// states[className] = vector<int>(maxes[className]);
// auto clf = platform::Models::instance()->create(model_name);
// clf->fit(Xd, y, features, className, states);
// if (dump_cpt) {
// cout << "--- CPT Tables ---" << endl;
// clf->dump_cpt();
// }
// auto lines = clf->show();
// for (auto line : lines) {
// cout << line << endl;
// }
// cout << "--- Topological Order ---" << endl;
// auto order = clf->topological_order();
// for (auto name : order) {
// cout << name << ", ";
// }
// cout << "end." << endl;
// auto score = clf->score(Xd, y);
// cout << "Score: " << score << endl;
// auto graph = clf->graph();
// auto dot_file = model_name + "_" + file_name;
// ofstream file(dot_file + ".dot");
// file << graph;
// file.close();
// cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
// cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
// string stratified_string = stratified ? " Stratified" : "";
// cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
// cout << "==========================================" << endl;
// torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
// torch::Tensor yt = torch::tensor(y, torch::kInt32);
// for (int i = 0; i < features.size(); ++i) {
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
// }
// float total_score = 0, total_score_train = 0, score_train, score_test;
// platform::Fold* fold;
// if (stratified)
// fold = new platform::StratifiedKFold(nFolds, y, seed);
// else
// fold = new platform::KFold(nFolds, y.size(), seed);
// for (auto i = 0; i < nFolds; ++i) {
// auto [train, test] = fold->getFold(i);
// cout << "Fold: " << i + 1 << endl;
// if (tensors) {
// auto ttrain = torch::tensor(train, torch::kInt64);
// auto ttest = torch::tensor(test, torch::kInt64);
// torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
// torch::Tensor ytraint = yt.index({ ttrain });
// torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
// torch::Tensor ytestt = yt.index({ ttest });
// clf->fit(Xtraint, ytraint, features, className, states);
// auto temp = clf->predict(Xtraint);
// score_train = clf->score(Xtraint, ytraint);
// score_test = clf->score(Xtestt, ytestt);
// } else {
// auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
// auto [Xtest, ytest] = extract_indices(test, Xd, y);
// clf->fit(Xtrain, ytrain, features, className, states);
// score_train = clf->score(Xtrain, ytrain);
// score_test = clf->score(Xtest, ytest);
// }
// if (dump_cpt) {
// cout << "--- CPT Tables ---" << endl;
// clf->dump_cpt();
// }
// total_score_train += score_train;
// total_score += score_test;
// cout << "Score Train: " << score_train << endl;
// cout << "Score Test : " << score_test << endl;
// cout << "-------------------------------------------------------------------------------" << endl;
// }
// cout << "**********************************************************************************" << endl;
// cout << "Average Score Train: " << total_score_train / nFolds << endl;
// cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
auto handler = ArffFiles();
handler.load(complete_file_name, class_last);
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features),
[](const pair<string, string>& item) { return item.first; });
// Discretize Dataset
auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name);
clf->fit(Xd, y, features, className, states);
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
auto lines = clf->show();
for (auto line : lines) {
cout << line << endl;
}
cout << "--- Topological Order ---" << endl;
auto order = clf->topological_order();
for (auto name : order) {
cout << name << ", ";
}
cout << "end." << endl;
auto score = clf->score(Xd, y);
cout << "Score: " << score << endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
string stratified_string = stratified ? " Stratified" : "";
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
cout << "==========================================" << endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
}
float total_score = 0, total_score_train = 0, score_train, score_test;
platform::Fold* fold;
if (stratified)
fold = new platform::StratifiedKFold(nFolds, y, seed);
else
fold = new platform::KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
cout << "Fold: " << i + 1 << endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states);
auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt);
} else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states);
score_train = clf->score(Xtrain, ytrain);
score_test = clf->score(Xtest, ytest);
}
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
total_score_train += score_train;
total_score += score_test;
cout << "Score Train: " << score_train << endl;
cout << "Score Test : " << score_test << endl;
cout << "-------------------------------------------------------------------------------" << endl;
}
cout << "**********************************************************************************" << endl;
cout << "Average Score Train: " << total_score_train / nFolds << endl;
cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
}

305
src/Platform/BestResults.cc Normal file
View File

@@ -0,0 +1,305 @@
#include <filesystem>
#include <fstream>
#include <iostream>
#include <sstream>
#include <set>
#include "BestResults.h"
#include "Result.h"
#include "Colors.h"
namespace fs = std::filesystem;
// function ftime_to_string, Code taken from
// https://stackoverflow.com/a/58237530/1389271
template <typename TP>
std::string ftime_to_string(TP tp)
{
using namespace std::chrono;
auto sctp = time_point_cast<system_clock::duration>(tp - TP::clock::now()
+ system_clock::now());
auto tt = system_clock::to_time_t(sctp);
std::tm* gmt = std::gmtime(&tt);
std::stringstream buffer;
buffer << std::put_time(gmt, "%Y-%m-%d %H:%M");
return buffer.str();
}
namespace platform {
string BestResults::build()
{
auto files = loadResultFiles();
if (files.size() == 0) {
cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl;
exit(1);
}
json bests;
for (const auto& file : files) {
auto result = Result(path, file);
auto data = result.load();
for (auto const& item : data.at("results")) {
bool update = false;
if (bests.contains(item.at("dataset").get<string>())) {
if (item.at("score").get<double>() > bests[item.at("dataset").get<string>()].at(0).get<double>()) {
update = true;
}
} else {
update = true;
}
if (update) {
bests[item.at("dataset").get<string>()] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
}
}
}
string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
cout << Colors::MAGENTA() << "File " << bestFileName << " already exists and it shall be overwritten." << Colors::RESET() << endl;
}
ofstream file(bestFileName);
file << bests;
file.close();
return bestFileName;
}
string BestResults::bestResultFile()
{
return "best_results_" + score + "_" + model + ".json";
}
pair<string, string> getModelScore(string name)
{
// results_accuracy_BoostAODE_MacBookpro16_2023-09-06_12:27:00_1.json
int i = 0;
auto pos = name.find("_");
auto pos2 = name.find("_", pos + 1);
string score = name.substr(pos + 1, pos2 - pos - 1);
pos = name.find("_", pos2 + 1);
string model = name.substr(pos2 + 1, pos - pos2 - 1);
return { model, score };
}
vector<string> BestResults::loadResultFiles()
{
vector<string> files;
using std::filesystem::directory_iterator;
string fileModel, fileScore;
for (const auto& file : directory_iterator(path)) {
auto fileName = file.path().filename().string();
if (fileName.find(".json") != string::npos && fileName.find("results_") == 0) {
tie(fileModel, fileScore) = getModelScore(fileName);
if (score == fileScore && (model == fileModel || model == "any")) {
files.push_back(fileName);
}
}
}
return files;
}
json BestResults::loadFile(const string& fileName)
{
ifstream resultData(fileName);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + fileName + "]");
}
set<string> BestResults::getModels()
{
set<string> models;
auto files = loadResultFiles();
if (files.size() == 0) {
cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl;
exit(1);
}
string fileModel, fileScore;
for (const auto& file : files) {
// extract the model from the file name
tie(fileModel, fileScore) = getModelScore(file);
// add the model to the vector of models
models.insert(fileModel);
}
return models;
}
void BestResults::buildAll()
{
auto models = getModels();
for (const auto& model : models) {
cout << "Building best results for model: " << model << endl;
this->model = model;
build();
}
model = "any";
}
void BestResults::reportSingle()
{
string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << endl;
exit(1);
}
auto date = ftime_to_string(filesystem::last_write_time(bestFileName));
auto data = loadFile(bestFileName);
cout << Colors::GREEN() << "Best results for " << model << " and " << score << " as of " << date << endl;
cout << "--------------------------------------------------------" << endl;
cout << Colors::GREEN() << " # Dataset Score File Hyperparameters" << endl;
cout << "=== ========================= =========== ================================================================== ================================================= " << endl;
auto i = 0;
bool odd = true;
for (auto const& item : data.items()) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << setw(25) << left << item.key() << " ";
cout << setw(11) << setprecision(9) << fixed << item.value().at(0).get<double>() << " ";
cout << setw(66) << item.value().at(2).get<string>() << " ";
cout << item.value().at(1) << " ";
cout << endl;
odd = !odd;
}
}
json BestResults::buildTableResults(set<string> models)
{
int numberOfDatasets = 0;
bool first = true;
json origin;
json table;
auto maxDate = filesystem::file_time_type::max();
for (const auto& model : models) {
this->model = model;
string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << endl;
exit(1);
}
auto dateWrite = filesystem::last_write_time(bestFileName);
if (dateWrite < maxDate) {
maxDate = dateWrite;
}
auto data = loadFile(bestFileName);
if (first) {
// Get the number of datasets of the first file and check that is the same for all the models
first = false;
numberOfDatasets = data.size();
origin = data;
} else {
if (numberOfDatasets != data.size()) {
cerr << Colors::MAGENTA() << "The number of datasets in the best results files is not the same for all the models." << Colors::RESET() << endl;
exit(1);
}
}
table[model] = data;
}
table["dateTable"] = ftime_to_string(maxDate);
return table;
}
void BestResults::printTableResults(set<string> models, json table)
{
cout << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<string>() << endl;
cout << "------------------------------------------------" << endl;
cout << Colors::GREEN() << " # Dataset ";
for (const auto& model : models) {
cout << setw(12) << left << model << " ";
}
cout << endl;
cout << "=== ========================= ";
for (const auto& model : models) {
cout << "============ ";
}
cout << endl;
auto i = 0;
bool odd = true;
map<string, double> totals;
map<string, int> ranks;
for (const auto& model : models) {
totals[model] = 0.0;
}
json origin = table.begin().value();
for (auto const& item : origin.items()) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << setw(25) << left << item.key() << " ";
double maxValue = 0;
vector<pair<string, double>> ranksOrder;
// Find out the max value for this dataset
for (const auto& model : models) {
double value = table[model].at(item.key()).at(0).get<double>();
if (value > maxValue) {
maxValue = value;
}
ranksOrder.push_back({ model, value });
}
// sort the ranksOrder vector by value
sort(ranksOrder.begin(), ranksOrder.end(), [](const pair<string, double>& a, const pair<string, double>& b) {
return a.second > b.second;
});
// Assign the ranks
for (int i = 0; i < ranksOrder.size(); i++) {
ranks[ranksOrder[i].first] = i + 1;
}
// Print the row with red colors on max values
for (const auto& model : models) {
string efectiveColor = color;
double value = table[model].at(item.key()).at(0).get<double>();
if (value == maxValue) {
efectiveColor = Colors::RED();
}
totals[model] += value;
cout << efectiveColor << setw(12) << setprecision(10) << fixed << value << " ";
}
cout << endl;
odd = !odd;
}
cout << Colors::GREEN() << "=== ========================= ";
for (const auto& model : models) {
cout << "============ ";
}
cout << endl;
cout << Colors::GREEN() << setw(30) << " Totals...................";
double max = 0.0;
for (const auto& total : totals) {
if (total.second > max) {
max = total.second;
}
}
for (const auto& model : models) {
string efectiveColor = Colors::GREEN();
if (totals[model] == max) {
efectiveColor = Colors::RED();
}
cout << efectiveColor << setw(12) << setprecision(9) << fixed << totals[model] << " ";
}
// Output the averaged ranks
cout << endl;
int min = 1;
for (const auto& rank : ranks) {
if (rank.second < min) {
min = rank.second;
}
}
cout << Colors::GREEN() << setw(30) << " Averaged ranks...........";
for (const auto& model : models) {
string efectiveColor = Colors::GREEN();
if (ranks[model] == min) {
efectiveColor = Colors::RED();
}
cout << efectiveColor << setw(12) << setprecision(10) << fixed << (double)ranks[model] / (double)origin.size() << " ";
}
cout << endl;
}
void BestResults::reportAll()
{
auto models = getModels();
// Build the table of results
json table = buildTableResults(models);
// Print the table of results
printTableResults(models, table);
}
}

View File

@@ -0,0 +1,28 @@
#ifndef BESTRESULTS_H
#define BESTRESULTS_H
#include <string>
#include <set>
#include <nlohmann/json.hpp>
using namespace std;
using json = nlohmann::json;
namespace platform {
class BestResults {
public:
explicit BestResults(const string& path, const string& score, const string& model) : path(path), score(score), model(model) {}
string build();
void reportSingle();
void reportAll();
void buildAll();
private:
set<string> getModels();
vector<string> loadResultFiles();
json buildTableResults(set<string> models);
void printTableResults(set<string> models, json table);
string bestResultFile();
json loadFile(const string& fileName);
string path;
string score;
string model;
};
}
#endif //BESTRESULTS_H

View File

@@ -1,7 +1,7 @@
#ifndef BESTRESULT_H
#define BESTRESULT_H
#ifndef BESTSCORE_H
#define BESTSCORE_H
#include <string>
class BestResult {
class BestScore {
public:
static std::string title() { return "STree_default (linear-ovo)"; }
static double score() { return 22.109799; }

View File

@@ -4,13 +4,16 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc ReportConsole.cc ReportBase.cc)
add_executable(manage manage.cc Results.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc platformUtils.cc)
add_executable(manage manage.cc Results.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc platformUtils.cc)
add_executable(list list.cc platformUtils Datasets.cc)
add_executable(best best.cc BestResults.cc Result.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
if (${CMAKE_HOST_SYSTEM_NAME} MATCHES "Linux")
target_link_libraries(manage "${TORCH_LIBRARIES}" libxlsxwriter.so ArffFiles mdlp stdc++fs)
target_link_libraries(best stdc++fs)
else()
target_link_libraries(manage "${TORCH_LIBRARIES}" libxlsxwriter.so ArffFiles mdlp)
target_link_libraries(manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
endif()
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -2,7 +2,7 @@
#include <locale>
#include "Datasets.h"
#include "ReportBase.h"
#include "BestResult.h"
#include "BestScore.h"
namespace platform {
@@ -94,6 +94,8 @@ namespace platform {
ifstream resultData(Paths::results() + "/" + fileName);
if (resultData.is_open()) {
bestResults = json::parse(resultData);
} else {
existBestFile = false;
}
}
try {
@@ -101,7 +103,12 @@ namespace platform {
}
catch (exception) {
value = 1.0;
}
return value;
}
bool ReportBase::getExistBestFile()
{
return existBestFile;
}
}

View File

@@ -28,6 +28,7 @@ namespace platform {
json data;
string fromVector(const string& key);
string fVector(const string& title, const json& data, const int width, const int precision);
bool getExistBestFile();
virtual void header() = 0;
virtual void body() = 0;
virtual void showSummary() = 0;
@@ -35,10 +36,11 @@ namespace platform {
map<string, int> summary;
double margin;
map<string, string> meaning;
bool compare;
private:
double bestResult(const string& dataset, const string& model);
bool compare;
json bestResults;
bool existBestFile = true;
};
};
#endif

View File

@@ -1,7 +1,7 @@
#include <sstream>
#include <locale>
#include "ReportConsole.h"
#include "BestResult.h"
#include "BestScore.h"
namespace platform {
@@ -99,11 +99,14 @@ namespace platform {
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
showSummary();
auto score = data["score_name"].get<string>();
if (score == BestResult::scoreName()) {
if (score == BestScore::scoreName()) {
stringstream oss;
oss << score << " compared to " << BestResult::title() << " .: " << totalScore / BestResult::score();
oss << score << " compared to " << BestScore::title() << " .: " << totalScore / BestScore::score();
cout << headerLine(oss.str());
}
if (!getExistBestFile() && compare) {
cout << headerLine("*** Best Results File not found. Couldn't compare any result!");
}
cout << string(MAXL, '*') << endl << Colors::RESET();
}
}

View File

@@ -18,7 +18,7 @@ namespace platform {
void header() override;
void body() override;
void footer(double totalScore);
void showSummary();
void showSummary() override;
};
};
#endif

View File

@@ -1,7 +1,7 @@
#include <sstream>
#include <locale>
#include "ReportExcel.h"
#include "BestResult.h"
#include "BestScore.h"
namespace platform {
@@ -162,11 +162,11 @@ namespace platform {
strcpy(line, data["title"].get<string>().c_str());
lxw_doc_properties properties = {
.title = line,
.subject = "Machine learning results",
.author = "Ricardo Montañana Gómez",
.manager = "Dr. J. A. Gámez, Dr. J. M. Puerta",
.company = "UCLM",
.comments = "Created with libxlsxwriter and c++",
.subject = (char*)"Machine learning results",
.author = (char*)"Ricardo Montañana Gómez",
.manager = (char*)"Dr. J. A. Gámez, Dr. J. M. Puerta",
.company = (char*)"UCLM",
.comments = (char*)"Created with libxlsxwriter and c++",
};
workbook_set_properties(workbook, &properties);
}
@@ -322,9 +322,12 @@ namespace platform {
showSummary();
row += 4 + summary.size();
auto score = data["score_name"].get<string>();
if (score == BestResult::scoreName()) {
worksheet_merge_range(worksheet, row, 1, row, 5, (score + " compared to " + BestResult::title() + " .:").c_str(), efectiveStyle("text"));
writeDouble(row, 6, totalScore / BestResult::score(), "result");
if (score == BestScore::scoreName()) {
worksheet_merge_range(worksheet, row, 1, row, 5, (score + " compared to " + BestScore::title() + " .:").c_str(), efectiveStyle("text"));
writeDouble(row, 6, totalScore / BestScore::score(), "result");
}
if (!getExistBestFile() && compare) {
worksheet_write_string(worksheet, row + 1, 0, "*** Best Results File not found. Couldn't compare any result!", styles["summaryStyle"]);
}
}
}

View File

@@ -21,7 +21,6 @@ namespace platform {
void setProperties();
void createFile();
void closeFile();
void showSummary();
lxw_workbook* workbook;
lxw_worksheet* worksheet;
map<string, lxw_format*> styles;
@@ -33,6 +32,7 @@ namespace platform {
const string fileName = "some_results.xlsx";
void header() override;
void body() override;
void showSummary() override;
void footer(double totalScore, int row);
void createStyle(const string& name, lxw_format* style, bool odd);
void addColor(lxw_format* style, bool odd);

51
src/Platform/Result.cc Normal file
View File

@@ -0,0 +1,51 @@
#include <filesystem>
#include <fstream>
#include <sstream>
#include "Result.h"
#include "Colors.h"
#include "BestScore.h"
namespace platform {
Result::Result(const string& path, const string& filename)
: path(path)
, filename(filename)
{
auto data = load();
date = data["date"];
score = 0;
for (const auto& result : data["results"]) {
score += result["score"].get<double>();
}
scoreName = data["score_name"];
if (scoreName == BestScore::scoreName()) {
score /= BestScore::score();
}
title = data["title"];
duration = data["duration"];
model = data["model"];
complete = data["results"].size() > 1;
}
json Result::load() const
{
ifstream resultData(path + "/" + filename);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
}
string Result::to_string() const
{
stringstream oss;
oss << date << " ";
oss << setw(12) << left << model << " ";
oss << setw(11) << left << scoreName << " ";
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
auto completeString = isComplete() ? "C" : "P";
oss << setw(1) << " " << completeString << " ";
oss << setw(9) << setprecision(3) << fixed << duration << " ";
oss << setw(50) << left << title << " ";
return oss.str();
}
}

37
src/Platform/Result.h Normal file
View File

@@ -0,0 +1,37 @@
#ifndef RESULT_H
#define RESULT_H
#include <map>
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
namespace platform {
using namespace std;
using json = nlohmann::json;
class Result {
public:
Result(const string& path, const string& filename);
json load() const;
string to_string() const;
string getFilename() const { return filename; };
string getDate() const { return date; };
double getScore() const { return score; };
string getTitle() const { return title; };
double getDuration() const { return duration; };
string getModel() const { return model; };
string getScoreName() const { return scoreName; };
bool isComplete() const { return complete; };
private:
string path;
string filename;
string date;
double score;
string title;
double duration;
string model;
string scoreName;
bool complete;
};
};
#endif

View File

@@ -3,37 +3,9 @@
#include "Results.h"
#include "ReportConsole.h"
#include "ReportExcel.h"
#include "BestResult.h"
#include "BestScore.h"
#include "Colors.h"
namespace platform {
Result::Result(const string& path, const string& filename)
: path(path)
, filename(filename)
{
auto data = load();
date = data["date"];
score = 0;
for (const auto& result : data["results"]) {
score += result["score"].get<double>();
}
scoreName = data["score_name"];
if (scoreName == BestResult::scoreName()) {
score /= BestResult::score();
}
title = data["title"];
duration = data["duration"];
model = data["model"];
complete = data["results"].size() > 1;
}
json Result::load() const
{
ifstream resultData(path + "/" + filename);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
}
void Results::load()
{
using std::filesystem::directory_iterator;
@@ -48,19 +20,9 @@ namespace platform {
files.push_back(result);
}
}
}
string Result::to_string() const
{
stringstream oss;
oss << date << " ";
oss << setw(12) << left << model << " ";
oss << setw(11) << left << scoreName << " ";
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
auto completeString = isComplete() ? "C" : "P";
oss << setw(1) << " " << completeString << " ";
oss << setw(9) << setprecision(3) << fixed << duration << " ";
oss << setw(50) << left << title << " ";
return oss.str();
if (max == 0) {
max = files.size();
}
}
void Results::show() const
{
@@ -164,7 +126,7 @@ namespace platform {
if (indexList) {
// The value is about the files list
index = idx;
if (index >= 0 && index < files.size()) {
if (index >= 0 && index < max) {
report(index, false);
indexList = false;
continue;
@@ -300,7 +262,7 @@ namespace platform {
if (openExcel) {
workbook_close(workbook);
}
cout << "Done!" << endl;
cout << Colors::RESET() << "Done!" << endl;
}
}

View File

@@ -5,34 +5,11 @@
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
#include "Result.h"
namespace platform {
using namespace std;
using json = nlohmann::json;
class Result {
public:
Result(const string& path, const string& filename);
json load() const;
string to_string() const;
string getFilename() const { return filename; };
string getDate() const { return date; };
double getScore() const { return score; };
string getTitle() const { return title; };
double getDuration() const { return duration; };
string getModel() const { return model; };
string getScoreName() const { return scoreName; };
bool isComplete() const { return complete; };
private:
string path;
string filename;
string date;
double score;
string title;
double duration;
string model;
string scoreName;
bool complete;
};
class Results {
public:
Results(const string& path, const int max, const string& model, const string& score, bool complete, bool partial, bool compare) :

63
src/Platform/best.cc Normal file
View File

@@ -0,0 +1,63 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include "Paths.h"
#include "BestResults.h"
#include "Colors.h"
using namespace std;
argparse::ArgumentParser manageArguments(int argc, char** argv)
{
argparse::ArgumentParser program("best");
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
program.add_argument("--report").help("report of best score results file").default_value(false).implicit_value(true);
try {
program.parse_args(argc, argv);
auto model = program.get<string>("model");
auto score = program.get<string>("score");
auto build = program.get<bool>("build");
auto report = program.get<bool>("report");
if (model == "" || score == "") {
throw runtime_error("Model and score name must be supplied");
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
return program;
}
int main(int argc, char** argv)
{
auto program = manageArguments(argc, argv);
auto model = program.get<string>("model");
auto score = program.get<string>("score");
auto build = program.get<bool>("build");
auto report = program.get<bool>("report");
if (!report && !build) {
cerr << "Either build, report or both, have to be selected to do anything!" << endl;
cerr << program;
exit(1);
}
auto results = platform::BestResults(platform::Paths::results(), score, model);
if (build) {
if (model == "any") {
results.buildAll();
} else {
string fileName = results.build();
cout << Colors::GREEN() << fileName << " created!" << Colors::RESET() << endl;
}
}
if (report) {
if (model == "any") {
results.reportAll();
} else {
results.reportSingle();
}
}
return 0;
}

View File

@@ -8,7 +8,6 @@
#include "ArffFiles.h"
#include "CPPFImdlp.h"
using namespace std;
const string PATH = "../../data/";
bool file_exists(const std::string& name);
vector<string> split(const string& text, char delimiter);