Compare commits

..

98 Commits

Author SHA1 Message Date
92820555da Simple fix 2023-10-28 10:56:47 +02:00
5a3af51826 Activate best score in odte 2023-10-25 10:23:42 +02:00
a8f9800631 Fix mistake when no results in manage 2023-10-24 19:44:23 +02:00
84cec0c1e0 Add results files affected in best results excel 2023-10-24 16:18:52 +02:00
130139f644 Update formulas to use letters in ranges in excel 2023-10-24 13:06:31 +02:00
651f84b562 Fix mistake in conditional format in bestresults 2023-10-24 11:18:19 +02:00
553ab0fa22 Add conditional format to BestResults Excel 2023-10-24 10:56:41 +02:00
4975feabff Fix mistake in node count 2023-10-23 22:46:10 +02:00
32293af69f Fix header in manage 2023-10-23 17:04:59 +02:00
858664be2d Add total number of results in manage 2023-10-23 16:22:15 +02:00
1f705f6018 Refactor BestScore and add experiment to .env 2023-10-23 16:12:52 +02:00
7bcd2eed06 Add variable width of dataset name in reports 2023-10-22 22:58:52 +02:00
833acefbb3 Fix index limits mistake in manage 2023-10-22 20:21:50 +02:00
26b649ebae Refactor ManageResults and CommandParser 2023-10-22 20:03:34 +02:00
080eddf9cd Fix hyperparameters output in b_best 2023-10-20 22:52:48 +02:00
04e754b2f5 Adjust filename and hyperparameters in reports 2023-10-20 11:12:46 +02:00
38423048bd Add excel to best report of model 2023-10-19 18:12:55 +02:00
64fc97b892 Rename utilities sources to match final names 2023-10-19 09:57:04 +02:00
2c2159f192 Add quiet mode to b_main
Reduce output when --quiet is set, not showing fold info
2023-10-17 21:51:53 +02:00
6765552a7c Update submodule versions 2023-10-16 19:21:57 +02:00
f72aa5b9a6 Merge pull request 'Create Boost_CFS' (#11) from Boost_CFS into main
Add hyper parameter to BoostAODE. This hyper parameter decides if we select features with cfs/fcbf/iwss before start building models and build a Spode with the selected features.
The hyperparameter is select_features
2023-10-15 09:22:14 +00:00
fa7fe081ad Fix xlsx library finding 2023-10-15 11:19:58 +02:00
660e783517 Update validation for feature selection 2023-10-14 13:32:09 +02:00
b35532dd9e Implement IWSS and FCBF too for BoostAODE 2023-10-14 13:12:04 +02:00
6ef49385ea Remove unneeded method declaration FeatureSelect 2023-10-14 11:30:32 +02:00
6d5a25cdc8 Refactor CFS class creating abstract base class 2023-10-14 11:27:46 +02:00
d00b08cbe8 Fix Header for Linux 2023-10-13 14:26:47 +02:00
977ff6fddb Update CMakeLists for Linux 2023-10-13 14:01:52 +02:00
54b8939f35 Prepare BoostAODE first try 2023-10-13 13:46:22 +02:00
5022a4dc90 Complete CFS tested with Python mufs 2023-10-13 12:29:25 +02:00
40d1dad5d8 Begin CFS implementation 2023-10-11 21:17:26 +02:00
47e2b138c5 Complete first working cfs 2023-10-11 11:33:29 +02:00
e7ded68267 First cfs working version 2023-10-10 23:00:38 +02:00
ca833a34f5 try openssl sha256 2023-10-10 18:16:43 +02:00
df9b4c48d2 Begin CFS initialization 2023-10-10 13:39:11 +02:00
f288bbd6fa Begin adding cfs to BoostAODE 2023-10-10 11:52:39 +02:00
7d8aca4f59 Add Locale shared config to reports 2023-10-09 19:41:29 +02:00
8fdad78a8c Continue Test Network 2023-10-09 11:25:30 +02:00
e3ae073333 Continue test Network 2023-10-08 15:54:58 +02:00
4b732e76c2 MST change unordered_set to list 2023-10-07 19:08:13 +02:00
fe5fead27e Begin Fix Test MST 2023-10-07 01:43:26 +02:00
8c3864f3c8 Complete Folding Test 2023-10-07 01:23:36 +02:00
1287160c47 Refactor makefile to use variables 2023-10-07 00:16:25 +02:00
2f58807322 Begin refactor CMakeLists debug/release paths 2023-10-06 19:32:29 +02:00
17e079edd5 Begin Test Folding 2023-10-06 17:08:54 +02:00
b9e0028e9d Refactor Makefile 2023-10-06 01:28:27 +02:00
e0d39fe631 Fix BayesMetrics Test 2023-10-06 01:14:55 +02:00
36b0277576 Add Maximum Spanning Tree test 2023-10-05 15:45:36 +02:00
da8d018ec4 Refactor Makefile 2023-10-05 11:45:00 +02:00
5f0676691c Add First BayesMetrics Tests 2023-10-05 01:14:16 +02:00
3448fb1299 Refactor Tests and add BayesMetrics test 2023-10-04 23:19:23 +02:00
5e938d5cca Add ranks sheet to excel best results 2023-10-04 16:26:57 +02:00
55e742438f Add constant references to Statistics 2023-10-04 13:40:45 +02:00
c4ae3fe429 Add Control model rank info to report 2023-10-04 12:42:35 +02:00
93e4ff94db Add significance level as parameter in best 2023-10-02 15:46:40 +02:00
57c27f739c Remove unused code in BestResults 2023-10-02 15:31:02 +02:00
a434d7f1ae Add a Linux config in launch.json 2023-09-30 18:44:21 +02:00
294666c516 Fix a Linux problem in Datasets 2023-09-30 18:43:47 +02:00
fd04e78ad9 Restore sample.cc 2023-09-29 18:50:25 +02:00
66ec1b343b Remove platformUtils and split Datasets & Dataset 2023-09-29 18:20:46 +02:00
bb423da42f Add csv and R_dat files to platform 2023-09-29 13:52:50 +02:00
db17c14042 Change names of executables to b_... 2023-09-29 09:17:50 +02:00
a4401cb78f Linux CMakeLists.txt adjustment 2023-09-29 00:30:47 +02:00
9d3d9cc6c6 Complete Excel output for bestResults with Friedman test 2023-09-28 18:52:37 +02:00
cfcf3c16df Add best results Excel 2023-09-28 17:12:04 +02:00
85202260f3 Separate specific Excel methods to ExcelFile 2023-09-28 13:07:11 +02:00
82acb3cab5 Enhance output of Best results reports 2023-09-28 12:08:56 +02:00
623ceed396 Merge pull request 'Add Friedman Test & post hoc tests to BestResults' (#10) from boost into main
Reviewed-on: #10
2023-09-28 07:44:55 +00:00
926de2bebd Add boost info to README 2023-09-28 09:44:33 +02:00
71704e3547 Enhance output info in Statistics 2023-09-28 01:27:18 +02:00
3b06534327 Remove duplicated code in BestResults 2023-09-28 00:59:34 +02:00
ac89a451e3 Duplicate statistics tests in class 2023-09-28 00:45:15 +02:00
00c6cf663b Fix order of output in posthoc 2023-09-27 19:11:47 +02:00
5043c12be8 Complete posthoc with Holm adjust 2023-09-27 18:34:16 +02:00
11320e2cc7 Complete friedman test as in exreport 2023-09-27 12:36:03 +02:00
ce66483b65 Update boost version requirement for Linux 2023-09-26 14:12:53 +02:00
cab8e14b2d Add friedman hyperparameter 2023-09-26 11:26:59 +02:00
f0d0abe891 Add boost library link to linux build 2023-09-26 01:07:50 +02:00
dcba146e12 Begin adding Friedman test to BestResults 2023-09-26 01:04:59 +02:00
3ea0285119 Fix ranks to match friedman test ranks 2023-09-25 18:38:12 +02:00
e3888e1503 Merge pull request 'bestResults' (#9) from bestResults into main
Reviewed-on: https://gitea.rmontanana.es:3000/rmontanana/BayesNet/pulls/9

Add best results management, build, report, build all & report all
2023-09-25 12:02:17 +00:00
06de13df98 Add date/time to header of report best 2023-09-25 10:04:53 +02:00
de4fa6a04f Add color to totals 2023-09-23 10:30:39 +02:00
3a7bf4e672 Fix ranking order mistake 2023-09-23 01:33:23 +02:00
cd0bc02a74 Add report/build all with totals and ranks 2023-09-23 01:14:02 +02:00
c8597a794e Begin report all models 2023-09-22 18:13:32 +02:00
b30416364d Fix mistake in best results file name 2023-09-22 14:14:39 +02:00
3a16589220 Add best config for debug in vscode 2023-09-22 01:04:36 +02:00
c4f9187e2a Complete best build and report 2023-09-22 01:03:55 +02:00
c4d0a5b4e6 Split Result from Results 2023-09-21 23:30:17 +02:00
7bfafe555f Begin BestResults build 2023-09-21 23:04:11 +02:00
337b6f7e79 Rename BestResult to BestScore 2023-09-21 19:30:07 +02:00
5fa0b957dd Fix mistake in idx range in manage 2023-09-20 19:12:07 +02:00
67252fc41d Fix CMakeLists libxlsxwriter for Linux 2023-09-20 19:02:53 +02:00
94ae9456a0 Fix libxslxwriter linking problem 2023-09-20 18:50:11 +02:00
781993e326 Resolve some warnings 2023-09-20 17:54:15 +02:00
8257a6ae39 Add message of not exist Best Results 2023-09-20 13:50:34 +02:00
fc81730dfc Merge pull request 'Exchange OpenXLSX to libxlsxwriter' (#8) from libxlsxwriter into main
Add multiple sheets to excel file
Add format and color to sheets
Add comparison with ZeroR
Add comparison with Best Results
Separate contextual menu from general in manage
2023-09-20 11:17:16 +00:00
80 changed files with 3852 additions and 1339 deletions

4
.gitignore vendored
View File

@@ -31,7 +31,9 @@
*.exe
*.out
*.app
build/
build/**
build_debug/**
build_release/**
*.dSYM/**
cmake-build*/**
.idea

18
.vscode/c_cpp_properties.json vendored Normal file
View File

@@ -0,0 +1,18 @@
{
"configurations": [
{
"name": "Mac",
"includePath": [
"${workspaceFolder}/**"
],
"defines": [],
"macFrameworkPath": [
"/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
],
"cStandard": "c17",
"cppStandard": "c++17",
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
}
],
"version": 4
}

40
.vscode/launch.json vendored
View File

@@ -22,26 +22,38 @@
"type": "lldb",
"request": "launch",
"name": "experiment",
"program": "${workspaceFolder}/build/src/Platform/main",
"program": "${workspaceFolder}/build/src/Platform/b_main",
"args": [
"-m",
"BoostAODE",
"-p",
"/Users/rmontanana/Code/discretizbench/datasets",
"TAN",
"--stratified",
"-d",
"mfeat-morphological",
"zoo",
"--discretize"
// "--hyperparameters",
// "{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "/Users/rmontanana/Code/odtebench",
},
{
"type": "lldb",
"request": "launch",
"name": "best",
"program": "${workspaceFolder}/build/src/Platform/b_best",
"args": [
"-m",
"BoostAODE",
"-s",
"accuracy",
"--build",
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "manage",
"program": "${workspaceFolder}/build/src/Platform/manage",
"program": "${workspaceFolder}/build/src/Platform/b_manage",
"args": [
"-n",
"20"
@@ -52,9 +64,21 @@
"type": "lldb",
"request": "launch",
"name": "list",
"program": "${workspaceFolder}/build/src/Platform/list",
"program": "${workspaceFolder}/build/src/Platform/b_list",
"args": [],
"cwd": "/Users/rmontanana/Code/discretizbench",
//"cwd": "/Users/rmontanana/Code/discretizbench",
"cwd": "/home/rmontanana/Code/covbench",
},
{
"type": "lldb",
"request": "launch",
"name": "test",
"program": "${workspaceFolder}/build/tests/unit_tests",
"args": [
"-c=\"Metrics Test\"",
// "-s",
],
"cwd": "${workspaceFolder}/build/tests",
},
{
"name": "Build & debug active file",

View File

@@ -30,11 +30,21 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" OFF)
# Boost Library
set(Boost_USE_STATIC_LIBS OFF)
set(Boost_USE_MULTITHREADED ON)
set(Boost_USE_STATIC_RUNTIME OFF)
find_package(Boost 1.66.0 REQUIRED)
if(Boost_FOUND)
message("Boost_INCLUDE_DIRS=${Boost_INCLUDE_DIRS}")
include_directories(${Boost_INCLUDE_DIRS})
endif()
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
# CMakes modules
# --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
include(AddGitSubmodule)
if (CODE_COVERAGE)
enable_testing()
@@ -55,6 +65,11 @@ add_git_submodule("lib/mdlp")
add_git_submodule("lib/argparse")
add_git_submodule("lib/json")
find_library(XLSXWRITER_LIB NAMES libxlsxwriter.dylib libxlsxwriter.so PATHS ${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/lib)
message("XLSXWRITER_LIB=${XLSXWRITER_LIB}")
# Subdirectories
# --------------
add_subdirectory(config)
@@ -63,7 +78,7 @@ add_subdirectory(src/BayesNet)
add_subdirectory(src/Platform)
add_subdirectory(sample)
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.hpp)
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform/*.cc ${BayesNet_SOURCE_DIR}/src/Platform/*.cpp)

119
Makefile
View File

@@ -1,6 +1,26 @@
SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: coverage setup help build test
.PHONY: coverage setup help build test clean debug release
f_release = build_release
f_debug = build_debug
app_targets = b_best b_list b_main b_manage
test_targets = unit_tests_bayesnet unit_tests_platform
n_procs = -j 16
define ClearTests
@for t in $(test_targets); do \
if [ -f $(f_debug)/tests/$$t ]; then \
echo ">>> Cleaning $$t..." ; \
rm -f $(f_debug)/tests/$$t ; \
fi ; \
done
@nfiles="$(find . -name "*.gcda" -print0)" ; \
if test "${nfiles}" != "" ; then \
find . -name "*.gcda" -print0 | xargs -0 rm 2>/dev/null ;\
fi ;
endef
setup: ## Install dependencies for tests and coverage
@if [ "$(shell uname)" = "Darwin" ]; then \
@@ -11,62 +31,85 @@ setup: ## Install dependencies for tests and coverage
pip install gcovr; \
fi
dest ?= ../discretizbench
copy: ## Copy binary files to selected folder
dest ?= ${HOME}/bin
install: ## Copy binary files to bin folder
@echo "Destination folder: $(dest)"
make build
make buildr
@echo ">>> Copying files to $(dest)"
@cp build/src/Platform/main $(dest)
@cp build/src/Platform/list $(dest)
@cp build/src/Platform/manage $(dest)
@echo ">>> Done"
@cp $(f_release)/src/Platform/b_main $(dest)
@cp $(f_release)/src/Platform/b_list $(dest)
@cp $(f_release)/src/Platform/b_manage $(dest)
@cp $(f_release)/src/Platform/b_best $(dest)
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
@echo ">>> Creating dependency graph diagram of the project...";
$(MAKE) debug
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the main and BayesNetSample
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32
buildd: ## Build the debug targets
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ...";
find . -name "*.gcda" -print0 | xargs -0 rm
buildr: ## Build the release targets
cmake --build $(f_release) -t $(app_targets) $(n_procs)
clean: ## Clean the tests info
@echo ">>> Cleaning Debug BayesNet tests...";
$(call ClearTests)
@echo ">>> Done";
clang-uml: ## Create uml class and sequence diagrams
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
cmake --build build -t main -t BayesNetSample -t manage -t list unit_tests -j 32;
@echo ">>> Building Debug BayesNet...";
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
@mkdir $(f_debug);
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON
@echo ">>> Done";
release: ## Build a Release version of the project
@echo ">>> Building Release BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32;
@echo ">>> Building Release BayesNet...";
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
@mkdir $(f_release);
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
@echo ">>> Done";
test: ## Run tests
@echo "* Running tests...";
find . -name "*.gcda" -print0 | xargs -0 rm
@cd build; \
cmake --build . --target unit_tests ;
@cd build/tests; \
./unit_tests;
opt = ""
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet & Platform tests...";
@$(MAKE) clean
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
@for t in $(test_targets); do \
if [ -f $(f_debug)/tests/$$t ]; then \
cd $(f_debug)/tests ; \
./$$t $(opt) ; \
fi ; \
done
@echo ">>> Done";
opt = ""
testp: ## Run platform tests (opt="-s") to verbose output the tests, (opt="-c='Stratified Fold Test'") to run only that section
@echo ">>> Running Platform tests...";
@$(MAKE) clean
@cmake --build $(f_debug) --target unit_tests_platform $(n_procs)
@if [ -f $(f_debug)/tests/unit_tests_platform ]; then cd $(f_debug)/tests ; ./unit_tests_platform $(opt) ; fi ;
@echo ">>> Done";
opt = ""
testb: ## Run BayesNet tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet tests...";
@$(MAKE) clean
@cmake --build $(f_debug) --target unit_tests_bayesnet $(n_procs)
@if [ -f $(f_debug)/tests/unit_tests_bayesnet ]; then cd $(f_debug)/tests ; ./unit_tests_bayesnet $(opt) ; fi ;
@echo ">>> Done";
coverage: ## Run tests and generate coverage report (build/index.html)
@echo "*Building tests...";
find . -name "*.gcda" -print0 | xargs -0 rm
@cd build; \
cmake --build . --target unit_tests ;
@cd build/tests; \
./unit_tests;
gcovr ;
@echo ">>> Building tests with coverage...";
@$(MAKE) test
@cd $(f_debug) ; \
gcovr --config ../gcovr.cfg tests ;
@echo ">>> Done";
help: ## Show help message
@IFS=$$'\n' ; \

View File

@@ -1,21 +1,37 @@
# BayesNet
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
Bayesian Network Classifier with libtorch from scratch
## 0. Setup
### libxlswriter
Before compiling BayesNet.
### boost library
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
The best option is install the packages that the Linux distribution have in its repository. If this is the case:
```bash
sudo dnf install boost-devel
```
If this is not possible and the compressed packaged is installed, the following environment variable has to be set:
```bash
export BOOST_ROOT=/path/to/library/
```
### libxlswriter
```bash
cd lib/libxlsxwriter
make
sudo make install
make install DESTDIR=/home/rmontanana/Code PREFIX=
```
It has to be installed in /usr/local/lib otherwise CMakeLists.txt has to be modified accordingly
Environment variable has to be set:
```bash

View File

@@ -4,7 +4,7 @@
#include <map>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "ArffFiles.h"
#include "ArffFiles.h"v
#include "BayesMetrics.h"
#include "CPPFImdlp.h"
#include "Folding.h"
@@ -58,226 +58,180 @@ pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vect
int main(int argc, char** argv)
{
torch::Tensor weights_ = torch::full({ 10 }, 1.0 / 10, torch::kFloat64);
torch::Tensor y_ = torch::tensor({ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }, torch::kInt32);
torch::Tensor ypred = torch::tensor({ 1, 1, 1, 0, 0, 1, 1, 1, 1, 0 }, torch::kInt32);
cout << "Initial weights_: " << endl;
for (int i = 0; i < 10; i++) {
cout << weights_.index({ i }).item<double>() << ", ";
map<string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
auto valid_datasets = vector<string>();
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
[](const pair<string, bool>& pair) { return pair.first; });
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
.action([valid_datasets](const std::string& value) {
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
}
cout << "end." << endl;
cout << "y_: " << endl;
for (int i = 0; i < 10; i++) {
cout << y_.index({ i }).item<int>() << ", ";
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
}
cout << "end." << endl;
cout << "ypred: " << endl;
for (int i = 0; i < 10; i++) {
cout << ypred.index({ i }).item<int>() << ", ";
);
program.add_argument("-p", "--path")
.help(" folder where the data files are located, default")
.default_value(string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const vector<string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
cout << "end." << endl;
auto mask_wrong = ypred != y_;
auto mask_right = ypred == y_;
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
double epsilon_t = masked_weights.sum().item<double>();
cout << "epsilon_t: " << epsilon_t << endl;
double wt = (1 - epsilon_t) / epsilon_t;
cout << "wt: " << wt << endl;
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
cout << "alpha_t: " << alpha_t << endl;
// Step 3.2: Update weights for next classifier
// Step 3.2.1: Update weights of wrong samples
cout << "exp(alpha_t): " << exp(alpha_t) << endl;
cout << "exp(-alpha_t): " << exp(-alpha_t) << endl;
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
// Step 3.2.2: Update weights of right samples
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
// Step 3.3: Normalise the weights
double totalWeights = torch::sum(weights_).item<double>();
cout << "totalWeights: " << totalWeights << endl;
cout << "Before normalization: " << endl;
for (int i = 0; i < 10; i++) {
cout << weights_.index({ i }).item<double>() << endl;
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
weights_ = weights_ / totalWeights;
cout << "After normalization: " << endl;
for (int i = 0; i < 10; i++) {
cout << weights_.index({ i }).item<double>() << endl;
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, stratified, tensors, dump_cpt;
string model_name, file_name, path, complete_file_name;
int nFolds, seed;
try {
program.parse_args(argc, argv);
file_name = program.get<string>("dataset");
path = program.get<string>("path");
model_name = program.get<string>("model");
complete_file_name = path + file_name + ".arff";
stratified = program.get<bool>("stratified");
tensors = program.get<bool>("tensors");
nFolds = program.get<int>("folds");
seed = program.get<int>("seed");
dump_cpt = program.get<bool>("dumpcpt");
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
// map<string, bool> datasets = {
// {"diabetes", true},
// {"ecoli", true},
// {"glass", true},
// {"iris", true},
// {"kdd_JapaneseVowels", false},
// {"letter", true},
// {"liver-disorders", true},
// {"mfeat-factors", true},
// };
// auto valid_datasets = vector<string>();
// transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
// [](const pair<string, bool>& pair) { return pair.first; });
// argparse::ArgumentParser program("BayesNetSample");
// program.add_argument("-d", "--dataset")
// .help("Dataset file name")
// .action([valid_datasets](const std::string& value) {
// if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
// return value;
// }
// throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
// }
// );
// program.add_argument("-p", "--path")
// .help(" folder where the data files are located, default")
// .default_value(string{ PATH }
// );
// program.add_argument("-m", "--model")
// .help("Model to use " + platform::Models::instance()->toString())
// .action([](const std::string& value) {
// static const vector<string> choices = platform::Models::instance()->getNames();
// if (find(choices.begin(), choices.end(), value) != choices.end()) {
// return value;
// }
// throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
// }
// );
// program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
// program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
// program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
// program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
// program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
// try {
// auto k = stoi(value);
// if (k < 2) {
// throw runtime_error("Number of folds must be greater than 1");
// }
// return k;
// }
// catch (const runtime_error& err) {
// throw runtime_error(err.what());
// }
// catch (...) {
// throw runtime_error("Number of folds must be an integer");
// }});
// program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
// bool class_last, stratified, tensors, dump_cpt;
// string model_name, file_name, path, complete_file_name;
// int nFolds, seed;
// try {
// program.parse_args(argc, argv);
// file_name = program.get<string>("dataset");
// path = program.get<string>("path");
// model_name = program.get<string>("model");
// complete_file_name = path + file_name + ".arff";
// stratified = program.get<bool>("stratified");
// tensors = program.get<bool>("tensors");
// nFolds = program.get<int>("folds");
// seed = program.get<int>("seed");
// dump_cpt = program.get<bool>("dumpcpt");
// class_last = datasets[file_name];
// if (!file_exists(complete_file_name)) {
// throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
// }
// }
// catch (const exception& err) {
// cerr << err.what() << endl;
// cerr << program;
// exit(1);
// }
/*
* Begin Processing
*/
// auto handler = ArffFiles();
// handler.load(complete_file_name, class_last);
// // Get Dataset X, y
// vector<mdlp::samples_t>& X = handler.getX();
// mdlp::labels_t& y = handler.getY();
// // Get className & Features
// auto className = handler.getClassName();
// vector<string> features;
// auto attributes = handler.getAttributes();
// transform(attributes.begin(), attributes.end(), back_inserter(features),
// [](const pair<string, string>& item) { return item.first; });
// // Discretize Dataset
// auto [Xd, maxes] = discretize(X, y, features);
// maxes[className] = *max_element(y.begin(), y.end()) + 1;
// map<string, vector<int>> states;
// for (auto feature : features) {
// states[feature] = vector<int>(maxes[feature]);
// }
// states[className] = vector<int>(maxes[className]);
// auto clf = platform::Models::instance()->create(model_name);
// clf->fit(Xd, y, features, className, states);
// if (dump_cpt) {
// cout << "--- CPT Tables ---" << endl;
// clf->dump_cpt();
// }
// auto lines = clf->show();
// for (auto line : lines) {
// cout << line << endl;
// }
// cout << "--- Topological Order ---" << endl;
// auto order = clf->topological_order();
// for (auto name : order) {
// cout << name << ", ";
// }
// cout << "end." << endl;
// auto score = clf->score(Xd, y);
// cout << "Score: " << score << endl;
// auto graph = clf->graph();
// auto dot_file = model_name + "_" + file_name;
// ofstream file(dot_file + ".dot");
// file << graph;
// file.close();
// cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
// cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
// string stratified_string = stratified ? " Stratified" : "";
// cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
// cout << "==========================================" << endl;
// torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
// torch::Tensor yt = torch::tensor(y, torch::kInt32);
// for (int i = 0; i < features.size(); ++i) {
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
// }
// float total_score = 0, total_score_train = 0, score_train, score_test;
// platform::Fold* fold;
// if (stratified)
// fold = new platform::StratifiedKFold(nFolds, y, seed);
// else
// fold = new platform::KFold(nFolds, y.size(), seed);
// for (auto i = 0; i < nFolds; ++i) {
// auto [train, test] = fold->getFold(i);
// cout << "Fold: " << i + 1 << endl;
// if (tensors) {
// auto ttrain = torch::tensor(train, torch::kInt64);
// auto ttest = torch::tensor(test, torch::kInt64);
// torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
// torch::Tensor ytraint = yt.index({ ttrain });
// torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
// torch::Tensor ytestt = yt.index({ ttest });
// clf->fit(Xtraint, ytraint, features, className, states);
// auto temp = clf->predict(Xtraint);
// score_train = clf->score(Xtraint, ytraint);
// score_test = clf->score(Xtestt, ytestt);
// } else {
// auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
// auto [Xtest, ytest] = extract_indices(test, Xd, y);
// clf->fit(Xtrain, ytrain, features, className, states);
// score_train = clf->score(Xtrain, ytrain);
// score_test = clf->score(Xtest, ytest);
// }
// if (dump_cpt) {
// cout << "--- CPT Tables ---" << endl;
// clf->dump_cpt();
// }
// total_score_train += score_train;
// total_score += score_test;
// cout << "Score Train: " << score_train << endl;
// cout << "Score Test : " << score_test << endl;
// cout << "-------------------------------------------------------------------------------" << endl;
// }
// cout << "**********************************************************************************" << endl;
// cout << "Average Score Train: " << total_score_train / nFolds << endl;
// cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
auto handler = ArffFiles();
handler.load(complete_file_name, class_last);
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features),
[](const pair<string, string>& item) { return item.first; });
// Discretize Dataset
auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name);
clf->fit(Xd, y, features, className, states);
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
auto lines = clf->show();
for (auto line : lines) {
cout << line << endl;
}
cout << "--- Topological Order ---" << endl;
auto order = clf->topological_order();
for (auto name : order) {
cout << name << ", ";
}
cout << "end." << endl;
auto score = clf->score(Xd, y);
cout << "Score: " << score << endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
string stratified_string = stratified ? " Stratified" : "";
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
cout << "==========================================" << endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
}
float total_score = 0, total_score_train = 0, score_train, score_test;
platform::Fold* fold;
if (stratified)
fold = new platform::StratifiedKFold(nFolds, y, seed);
else
fold = new platform::KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
cout << "Fold: " << i + 1 << endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states);
auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt);
} else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states);
score_train = clf->score(Xtrain, ytrain);
score_test = clf->score(Xtest, ytest);
}
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
total_score_train += score_train;
total_score += score_test;
cout << "Score Train: " << score_train << endl;
cout << "Score Test : " << score_test << endl;
cout << "-------------------------------------------------------------------------------" << endl;
}
cout << "**********************************************************************************" << endl;
cout << "Average Score Train: " << total_score_train / nFolds << endl;
cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
}

View File

@@ -1,7 +1,7 @@
#include "BayesMetrics.h"
#include "Mst.h"
namespace bayesnet {
//samples is nxm tensor used to fit the model
//samples is n+1xm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
: samples(samples)
, features(features)
@@ -60,17 +60,7 @@ namespace bayesnet {
{
return scoresKBest;
}
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
{
vector<pair<string, string>> result;
for (int i = 0; i < source.size(); ++i) {
string temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
{
auto result = vector<double>();

View File

@@ -8,20 +8,39 @@ namespace bayesnet {
using namespace torch;
class Metrics {
private:
Tensor samples; // nxm tensor used to fit the model
vector<string> features;
string className;
int classNumStates = 0;
vector<double> scoresKBest;
vector<int> featuresKBest; // sorted indices of the features
double entropy(const Tensor& feature, const Tensor& weights);
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<pair<string, string>> doCombinations(const vector<string>&);
protected:
Tensor samples; // n+1xm tensor used to fit the model where samples[-1] is the y vector
string className;
double entropy(const Tensor& feature, const Tensor& weights);
vector<string> features;
template <class T>
vector<pair<T, T>> doCombinations(const vector<T>& source)
{
vector<pair<T, T>> result;
for (int i = 0; i < source.size(); ++i) {
T temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
template <class T>
T pop_first(vector<T>& v)
{
T temp = v[0];
v.erase(v.begin());
return temp;
}
public:
Metrics() = default;
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending=false, unsigned k = 0);
vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
vector<double> getScoresKBest() const;
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python

View File

@@ -1,36 +1,22 @@
#include "BoostAODE.h"
#include <set>
#include "BayesMetrics.h"
#include <functional>
#include <limits.h>
#include "BoostAODE.h"
#include "Colors.h"
#include "Folding.h"
#include <limits.h>
#include "Paths.h"
#include "CFS.h"
#include "FCBF.h"
#include "IWSS.h"
namespace bayesnet {
BoostAODE::BoostAODE() : Ensemble() {}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
}
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending", "convergence" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("repeatSparent")) {
repeatSparent = hyperparameters["repeatSparent"];
}
if (hyperparameters.contains("maxModels")) {
maxModels = hyperparameters["maxModels"];
}
if (hyperparameters.contains("ascending")) {
ascending = hyperparameters["ascending"];
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
}
}
void BoostAODE::validationInit()
{
models.clear();
n_models = 0;
// Prepare the validation dataset
auto y_ = dataset.index({ -1, "..." });
if (convergence) {
// Prepare train & validation sets from train data
@@ -56,18 +42,79 @@ namespace bayesnet {
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
y_train = y_;
}
}
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("repeatSparent")) {
repeatSparent = hyperparameters["repeatSparent"];
}
if (hyperparameters.contains("maxModels")) {
maxModels = hyperparameters["maxModels"];
}
if (hyperparameters.contains("ascending")) {
ascending = hyperparameters["ascending"];
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
}
if (hyperparameters.contains("threshold")) {
threshold = hyperparameters["threshold"];
}
if (hyperparameters.contains("select_features")) {
auto selectedAlgorithm = hyperparameters["select_features"];
vector<string> algos = { "IWSS", "FCBF", "CFS" };
selectFeatures = true;
algorithm = selectedAlgorithm;
if (find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
throw invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
}
}
}
unordered_set<int> BoostAODE::initializeModels()
{
unordered_set<int> featuresUsed;
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
int maxFeatures = 0;
if (algorithm == "CFS") {
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
} else if (algorithm == "IWSS") {
if (threshold < 0 || threshold >0.5) {
throw invalid_argument("Invalid threshold value for IWSS [0, 0.5]");
}
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
} else if (algorithm == "FCBF") {
if (threshold < 1e-7 || threshold > 1) {
throw invalid_argument("Invalid threshold value [1e-7, 1]");
}
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
}
featureSelector->fit();
auto cfsFeatures = featureSelector->getFeatures();
for (const int& feature : cfsFeatures) {
// cout << "Feature: [" << feature << "] " << feature << " " << features.at(feature) << endl;
featuresUsed.insert(feature);
unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
models.push_back(std::move(model));
significanceModels.push_back(1.0);
n_models++;
}
delete featureSelector;
return featuresUsed;
}
void BoostAODE::trainModel(const torch::Tensor& weights)
{
models.clear();
n_models = 0;
unordered_set<int> featuresUsed;
if (selectFeatures) {
featuresUsed = initializeModels();
}
if (maxModels == 0)
maxModels = .1 * n > 10 ? .1 * n : n;
validationInit();
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
bool exitCondition = false;
unordered_set<int> featuresUsed;
// Variables to control the accuracy finish condition
double priorAccuracy = 0.0;
double delta = 1.0;
@@ -78,7 +125,7 @@ namespace bayesnet {
// Step 0: Set the finish condition
// if not repeatSparent a finish condition is run out of features
// n_models == maxModels
// epsiolon sub t > 0.5 => inverse the weights policy
// epsilon sub t > 0.5 => inverse the weights policy
// validation error is not decreasing
while (!exitCondition) {
// Step 1: Build ranking with mutual information
@@ -86,16 +133,16 @@ namespace bayesnet {
unique_ptr<Classifier> model;
auto feature = featureSelection[0];
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
bool found = false;
for (auto feat : featureSelection) {
bool used = true;
for (const auto& feat : featureSelection) {
if (find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
continue;
}
found = true;
used = false;
feature = feat;
break;
}
if (!found) {
if (used) {
exitCondition = true;
continue;
}
@@ -135,7 +182,7 @@ namespace bayesnet {
count++;
}
}
exitCondition = n_models == maxModels && repeatSparent || epsilon_t > 0.5 || count > tolerance;
exitCondition = n_models >= maxModels && repeatSparent || epsilon_t > 0.5 || count > tolerance;
}
if (featuresUsed.size() != features.size()) {
status = WARNING;

View File

@@ -1,7 +1,9 @@
#ifndef BOOSTAODE_H
#define BOOSTAODE_H
#include "Ensemble.h"
#include <map>
#include "SPODE.h"
#include "FeatureSelect.h"
namespace bayesnet {
class BoostAODE : public Ensemble {
public:
@@ -15,11 +17,16 @@ namespace bayesnet {
private:
torch::Tensor dataset_;
torch::Tensor X_train, y_train, X_test, y_test;
void validationInit();
bool repeatSparent = false;
unordered_set<int> initializeModels();
// Hyperparameters
bool repeatSparent = false; // if true, a feature can be selected more than once
int maxModels = 0;
bool ascending = false; //Process KBest features ascending or descending order
bool convergence = false; //if true, stop when the model does not improve
bool selectFeatures = false; // if true, use feature selection
string algorithm = ""; // Selected feature selection algorithm
FeatureSelect* featureSelector = nullptr;
double threshold = -1;
};
}
#endif

72
src/BayesNet/CFS.cc Normal file
View File

@@ -0,0 +1,72 @@
#include "CFS.h"
#include <limits>
#include "bayesnetUtils.h"
namespace bayesnet {
void CFS::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto continueCondition = true;
auto feature = featureOrder[0];
selectedFeatures.push_back(feature);
selectedScores.push_back(suLabels[feature]);
selectedFeatures.erase(selectedFeatures.begin());
while (continueCondition) {
double merit = numeric_limits<double>::lowest();
int bestFeature = -1;
for (auto feature : featureOrder) {
selectedFeatures.push_back(feature);
// Compute merit with selectedFeatures
auto meritNew = computeMeritCFS();
if (meritNew > merit) {
merit = meritNew;
bestFeature = feature;
}
selectedFeatures.pop_back();
}
if (bestFeature == -1) {
// meritNew has to be nan due to constant features
break;
}
selectedFeatures.push_back(bestFeature);
selectedScores.push_back(merit);
featureOrder.erase(remove(featureOrder.begin(), featureOrder.end(), bestFeature), featureOrder.end());
continueCondition = computeContinueCondition(featureOrder);
}
fitted = true;
}
bool CFS::computeContinueCondition(const vector<int>& featureOrder)
{
if (selectedFeatures.size() == maxFeatures || featureOrder.size() == 0) {
return false;
}
if (selectedScores.size() >= 5) {
/*
"To prevent the best first search from exploring the entire
feature subset search space, a stopping criterion is imposed.
The search will terminate if five consecutive fully expanded
subsets show no improvement over the current best subset."
as stated in Mark A.Hall Thesis
*/
double item_ant = numeric_limits<double>::lowest();
int num = 0;
vector<double> lastFive(selectedScores.end() - 5, selectedScores.end());
for (auto item : lastFive) {
if (item_ant == numeric_limits<double>::lowest()) {
item_ant = item;
}
if (item > item_ant) {
break;
} else {
num++;
item_ant = item;
}
}
if (num == 5) {
return false;
}
}
return true;
}
}

21
src/BayesNet/CFS.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef CFS_H
#define CFS_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
using namespace std;
namespace bayesnet {
class CFS : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
CFS(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights)
{
}
virtual ~CFS() {};
void fit() override;
private:
bool computeContinueCondition(const vector<int>& featureOrder);
};
}
#endif

View File

@@ -5,5 +5,5 @@ include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
Mst.cc Proposal.cc CFS.cc FCBF.cc IWSS.cc FeatureSelect.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")

View File

@@ -137,7 +137,7 @@ namespace bayesnet {
int Classifier::getNumberOfNodes() const
{
// Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0;
return fitted ? model.getFeatures().size() : 0;
}
int Classifier::getNumberOfEdges() const
{

44
src/BayesNet/FCBF.cc Normal file
View File

@@ -0,0 +1,44 @@
#include "bayesnetUtils.h"
#include "FCBF.h"
namespace bayesnet {
FCBF::FCBF(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
{
if (threshold < 1e-7) {
throw std::invalid_argument("Threshold cannot be less than 1e-7");
}
}
void FCBF::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto featureOrderCopy = featureOrder;
for (const auto& feature : featureOrder) {
// Don't self compare
featureOrderCopy.erase(featureOrderCopy.begin());
if (suLabels.at(feature) == 0.0) {
// The feature has been removed from the list
continue;
}
if (suLabels.at(feature) < threshold) {
break;
}
// Remove redundant features
for (const auto& featureCopy : featureOrderCopy) {
double value = computeSuFeatures(feature, featureCopy);
if (value >= suLabels.at(featureCopy)) {
// Remove feature from list
suLabels[featureCopy] = 0.0;
}
}
selectedFeatures.push_back(feature);
selectedScores.push_back(suLabels[feature]);
if (selectedFeatures.size() == maxFeatures) {
break;
}
}
fitted = true;
}
}

18
src/BayesNet/FCBF.h Normal file
View File

@@ -0,0 +1,18 @@
#ifndef FCBF_H
#define FCBF_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
using namespace std;
namespace bayesnet {
class FCBF : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
FCBF(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
virtual ~FCBF() {};
void fit() override;
private:
double threshold = -1;
};
}
#endif

View File

@@ -0,0 +1,79 @@
#include "FeatureSelect.h"
#include <limits>
#include "bayesnetUtils.h"
namespace bayesnet {
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
{
}
void FeatureSelect::initialize()
{
selectedFeatures.clear();
selectedScores.clear();
}
double FeatureSelect::symmetricalUncertainty(int a, int b)
{
/*
Compute symmetrical uncertainty. Normalize* information gain (mutual
information) with the entropies of the features in order to compensate
the bias due to high cardinality features. *Range [0, 1]
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
*/
auto x = samples.index({ a, "..." });
auto y = samples.index({ b, "..." });
auto mu = mutualInformation(x, y, weights);
auto hx = entropy(x, weights);
auto hy = entropy(y, weights);
return 2.0 * mu / (hx + hy);
}
void FeatureSelect::computeSuLabels()
{
// Compute Simmetrical Uncertainty between features and labels
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
for (int i = 0; i < features.size(); ++i) {
suLabels.push_back(symmetricalUncertainty(i, -1));
}
}
double FeatureSelect::computeSuFeatures(const int firstFeature, const int secondFeature)
{
// Compute Simmetrical Uncertainty between features
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
try {
return suFeatures.at({ firstFeature, secondFeature });
}
catch (const out_of_range& e) {
double result = symmetricalUncertainty(firstFeature, secondFeature);
suFeatures[{firstFeature, secondFeature}] = result;
return result;
}
}
double FeatureSelect::computeMeritCFS()
{
double result;
double rcf = 0;
for (auto feature : selectedFeatures) {
rcf += suLabels[feature];
}
double rff = 0;
int n = selectedFeatures.size();
for (const auto& item : doCombinations(selectedFeatures)) {
rff += computeSuFeatures(item.first, item.second);
}
return rcf / sqrt(n + (n * n - n) * rff);
}
vector<int> FeatureSelect::getFeatures() const
{
if (!fitted) {
throw runtime_error("FeatureSelect not fitted");
}
return selectedFeatures;
}
vector<double> FeatureSelect::getScores() const
{
if (!fitted) {
throw runtime_error("FeatureSelect not fitted");
}
return selectedScores;
}
}

View File

@@ -0,0 +1,31 @@
#ifndef FEATURE_SELECT_H
#define FEATURE_SELECT_H
#include <torch/torch.h>
#include <vector>
#include "BayesMetrics.h"
using namespace std;
namespace bayesnet {
class FeatureSelect : public Metrics {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
FeatureSelect(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights);
virtual ~FeatureSelect() {};
virtual void fit() = 0;
vector<int> getFeatures() const;
vector<double> getScores() const;
protected:
void initialize();
void computeSuLabels();
double computeSuFeatures(const int a, const int b);
double symmetricalUncertainty(int a, int b);
double computeMeritCFS();
const torch::Tensor& weights;
int maxFeatures;
vector<int> selectedFeatures;
vector<double> selectedScores;
vector<double> suLabels;
map<pair<int, int>, double> suFeatures;
bool fitted = false;
};
}
#endif

47
src/BayesNet/IWSS.cc Normal file
View File

@@ -0,0 +1,47 @@
#include "IWSS.h"
#include <limits>
#include "bayesnetUtils.h"
namespace bayesnet {
IWSS::IWSS(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
{
if (threshold < 0 || threshold > .5) {
throw std::invalid_argument("Threshold has to be in [0, 0.5]");
}
}
void IWSS::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto featureOrderCopy = featureOrder;
// Add first and second features to result
// First with its own score
auto first_feature = pop_first(featureOrderCopy);
selectedFeatures.push_back(first_feature);
selectedScores.push_back(suLabels.at(first_feature));
// Second with the score of the candidates
selectedFeatures.push_back(pop_first(featureOrderCopy));
auto merit = computeMeritCFS();
selectedScores.push_back(merit);
for (const auto feature : featureOrderCopy) {
selectedFeatures.push_back(feature);
// Compute merit with selectedFeatures
auto meritNew = computeMeritCFS();
double delta = merit != 0.0 ? abs(merit - meritNew) / merit : 0.0;
if (meritNew > merit || delta < threshold) {
if (meritNew > merit) {
merit = meritNew;
}
selectedScores.push_back(meritNew);
} else {
selectedFeatures.pop_back();
break;
}
if (selectedFeatures.size() == maxFeatures) {
break;
}
}
fitted = true;
}
}

18
src/BayesNet/IWSS.h Normal file
View File

@@ -0,0 +1,18 @@
#ifndef IWSS_H
#define IWSS_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
using namespace std;
namespace bayesnet {
class IWSS : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y vector
IWSS(const torch::Tensor& samples, const vector<string>& features, const string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
virtual ~IWSS() {};
void fit() override;
private:
double threshold = -1;
};
}
#endif

View File

@@ -1,5 +1,6 @@
#include "Mst.h"
#include <vector>
#include <list>
/*
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
@@ -34,7 +35,7 @@ namespace bayesnet {
void Graph::kruskal_algorithm()
{
// sort the edges ordered on decreasing weight
sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
stable_sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
for (int i = 0; i < G.size(); i++) {
int uSt, vEd;
uSt = find_set(G[i].second.first);
@@ -55,15 +56,24 @@ namespace bayesnet {
}
}
void insertElement(list<int>& variables, int variable)
{
if (find(variables.begin(), variables.end(), variable) == variables.end()) {
variables.push_front(variable);
}
}
vector<pair<int, int>> reorder(vector<pair<float, pair<int, int>>> T, int root_original)
{
// Create the edges of a DAG from the MST
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
auto result = vector<pair<int, int>>();
auto visited = vector<int>();
auto nextVariables = unordered_set<int>();
nextVariables.emplace(root_original);
auto nextVariables = list<int>();
nextVariables.push_front(root_original);
while (nextVariables.size() > 0) {
int root = *nextVariables.begin();
nextVariables.erase(nextVariables.begin());
int root = nextVariables.front();
nextVariables.pop_front();
for (int i = 0; i < T.size(); ++i) {
auto [weight, edge] = T[i];
auto [from, to] = edge;
@@ -71,10 +81,10 @@ namespace bayesnet {
visited.insert(visited.begin(), i);
if (from == root) {
result.push_back({ from, to });
nextVariables.emplace(to);
insertElement(nextVariables, to);
} else {
result.push_back({ to, from });
nextVariables.emplace(from);
insertElement(nextVariables, from);
}
}
}
@@ -99,7 +109,6 @@ namespace bayesnet {
{
auto num_features = features.size();
Graph g(num_features);
// Make a complete graph
for (int i = 0; i < num_features - 1; ++i) {
for (int j = i + 1; j < num_features; ++j) {

View File

@@ -157,7 +157,7 @@ namespace bayesnet {
completeFit(states, weights);
}
// input_data comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<double>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
@@ -201,7 +201,6 @@ namespace bayesnet {
}
if (proba)
return result;
else
return result.argmax(1);
}
// Return mxn tensor of probabilities

View File

@@ -39,7 +39,10 @@ namespace bayesnet {
int getNumEdges() const;
int getClassNumStates() const;
string getClassName() const;
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
/*
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
*/
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<double>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions

View File

@@ -14,8 +14,8 @@ namespace bayesnet {
int numStates; // number of states of the variable
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
vector<int64_t> dimensions; // dimensions of the cpTable
public:
vector<pair<string, string>> combinations(const vector<string>&);
public:
explicit Node(const string&);
void clear();
void addParent(Node*);

View File

@@ -1,10 +0,0 @@
#ifndef BESTRESULT_H
#define BESTRESULT_H
#include <string>
class BestResult {
public:
static std::string title() { return "STree_default (linear-ovo)"; }
static double score() { return 22.109799; }
static std::string scoreName() { return "accuracy"; }
};
#endif

344
src/Platform/BestResults.cc Normal file
View File

@@ -0,0 +1,344 @@
#include <filesystem>
#include <set>
#include <fstream>
#include <iostream>
#include <sstream>
#include <algorithm>
#include "BestResults.h"
#include "Result.h"
#include "Colors.h"
#include "Statistics.h"
#include "BestResultsExcel.h"
#include "CLocale.h"
namespace fs = std::filesystem;
// function ftime_to_string, Code taken from
// https://stackoverflow.com/a/58237530/1389271
template <typename TP>
std::string ftime_to_string(TP tp)
{
using namespace std::chrono;
auto sctp = time_point_cast<system_clock::duration>(tp - TP::clock::now()
+ system_clock::now());
auto tt = system_clock::to_time_t(sctp);
std::tm* gmt = std::gmtime(&tt);
std::stringstream buffer;
buffer << std::put_time(gmt, "%Y-%m-%d %H:%M");
return buffer.str();
}
namespace platform {
string BestResults::build()
{
auto files = loadResultFiles();
if (files.size() == 0) {
cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl;
exit(1);
}
json bests;
for (const auto& file : files) {
auto result = Result(path, file);
auto data = result.load();
for (auto const& item : data.at("results")) {
bool update = false;
// Check if results file contains only one dataset
auto datasetName = item.at("dataset").get<string>();
if (bests.contains(datasetName)) {
if (item.at("score").get<double>() > bests[datasetName].at(0).get<double>()) {
update = true;
}
} else {
update = true;
}
if (update) {
bests[datasetName] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
}
}
}
string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
cout << Colors::MAGENTA() << "File " << bestFileName << " already exists and it shall be overwritten." << Colors::RESET() << endl;
}
ofstream file(bestFileName);
file << bests;
file.close();
return bestFileName;
}
string BestResults::bestResultFile()
{
return "best_results_" + score + "_" + model + ".json";
}
pair<string, string> getModelScore(string name)
{
// results_accuracy_BoostAODE_MacBookpro16_2023-09-06_12:27:00_1.json
int i = 0;
auto pos = name.find("_");
auto pos2 = name.find("_", pos + 1);
string score = name.substr(pos + 1, pos2 - pos - 1);
pos = name.find("_", pos2 + 1);
string model = name.substr(pos2 + 1, pos - pos2 - 1);
return { model, score };
}
vector<string> BestResults::loadResultFiles()
{
vector<string> files;
using std::filesystem::directory_iterator;
string fileModel, fileScore;
for (const auto& file : directory_iterator(path)) {
auto fileName = file.path().filename().string();
if (fileName.find(".json") != string::npos && fileName.find("results_") == 0) {
tie(fileModel, fileScore) = getModelScore(fileName);
if (score == fileScore && (model == fileModel || model == "any")) {
files.push_back(fileName);
}
}
}
return files;
}
json BestResults::loadFile(const string& fileName)
{
ifstream resultData(fileName);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + fileName + "]");
}
vector<string> BestResults::getModels()
{
set<string> models;
vector<string> result;
auto files = loadResultFiles();
if (files.size() == 0) {
cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << endl;
exit(1);
}
string fileModel, fileScore;
for (const auto& file : files) {
// extract the model from the file name
tie(fileModel, fileScore) = getModelScore(file);
// add the model to the vector of models
models.insert(fileModel);
}
result = vector<string>(models.begin(), models.end());
return result;
}
vector<string> BestResults::getDatasets(json table)
{
vector<string> datasets;
for (const auto& dataset : table.items()) {
datasets.push_back(dataset.key());
}
return datasets;
}
void BestResults::buildAll()
{
auto models = getModels();
for (const auto& model : models) {
cout << "Building best results for model: " << model << endl;
this->model = model;
build();
}
model = "any";
}
void BestResults::listFile()
{
string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << endl;
exit(1);
}
auto temp = ConfigLocale();
auto date = ftime_to_string(filesystem::last_write_time(bestFileName));
auto data = loadFile(bestFileName);
auto datasets = getDatasets(data);
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
int maxFileName = 0;
int maxHyper = 15;
for (auto const& item : data.items()) {
maxHyper = max(maxHyper, (int)item.value().at(1).dump().size());
maxFileName = max(maxFileName, (int)item.value().at(2).get<string>().size());
}
stringstream oss;
oss << Colors::GREEN() << "Best results for " << model << " as of " << date << endl;
cout << oss.str();
cout << string(oss.str().size() - 8, '-') << endl;
cout << Colors::GREEN() << " # " << setw(maxDatasetName + 1) << left << "Dataset" << "Score " << setw(maxFileName) << "File" << " Hyperparameters" << endl;
cout << "=== " << string(maxDatasetName, '=') << " =========== " << string(maxFileName, '=') << " " << string(maxHyper, '=') << endl;
auto i = 0;
bool odd = true;
double total = 0;
for (auto const& item : data.items()) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
double value = item.value().at(0).get<double>();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << setw(maxDatasetName) << left << item.key() << " ";
cout << setw(11) << setprecision(9) << fixed << value << " ";
cout << setw(maxFileName) << item.value().at(2).get<string>() << " ";
cout << item.value().at(1) << " ";
cout << endl;
total += value;
odd = !odd;
}
cout << Colors::GREEN() << "=== " << string(maxDatasetName, '=') << " ===========" << endl;
cout << setw(5 + maxDatasetName) << "Total.................. " << setw(11) << setprecision(8) << fixed << total << endl;
}
json BestResults::buildTableResults(vector<string> models)
{
json table;
auto maxDate = filesystem::file_time_type::max();
for (const auto& model : models) {
this->model = model;
string bestFileName = path + bestResultFile();
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << endl;
exit(1);
}
auto dateWrite = filesystem::last_write_time(bestFileName);
if (dateWrite < maxDate) {
maxDate = dateWrite;
}
auto data = loadFile(bestFileName);
table[model] = data;
}
table["dateTable"] = ftime_to_string(maxDate);
return table;
}
void BestResults::printTableResults(vector<string> models, json table)
{
stringstream oss;
oss << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<string>() << endl;
cout << oss.str();
cout << string(oss.str().size() - 8, '-') << endl;
cout << Colors::GREEN() << " # " << setw(maxDatasetName + 1) << left << string("Dataset");
for (const auto& model : models) {
cout << setw(maxModelName) << left << model << " ";
}
cout << endl;
cout << "=== " << string(maxDatasetName, '=') << " ";
for (const auto& model : models) {
cout << string(maxModelName, '=') << " ";
}
cout << endl;
auto i = 0;
bool odd = true;
map<string, double> totals;
int nDatasets = table.begin().value().size();
for (const auto& model : models) {
totals[model] = 0.0;
}
auto datasets = getDatasets(table.begin().value());
for (auto const& dataset : datasets) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << setw(maxDatasetName) << left << dataset << " ";
double maxValue = 0;
// Find out the max value for this dataset
for (const auto& model : models) {
double value = table[model].at(dataset).at(0).get<double>();
if (value > maxValue) {
maxValue = value;
}
}
// Print the row with red colors on max values
for (const auto& model : models) {
string efectiveColor = color;
double value = table[model].at(dataset).at(0).get<double>();
if (value == maxValue) {
efectiveColor = Colors::RED();
}
totals[model] += value;
cout << efectiveColor << setw(maxModelName) << setprecision(maxModelName - 2) << fixed << value << " ";
}
cout << endl;
odd = !odd;
}
cout << Colors::GREEN() << "=== " << string(maxDatasetName, '=') << " ";
for (const auto& model : models) {
cout << string(maxModelName, '=') << " ";
}
cout << endl;
cout << Colors::GREEN() << setw(5 + maxDatasetName) << " Totals...................";
double max = 0.0;
for (const auto& total : totals) {
if (total.second > max) {
max = total.second;
}
}
for (const auto& model : models) {
string efectiveColor = Colors::GREEN();
if (totals[model] == max) {
efectiveColor = Colors::RED();
}
cout << efectiveColor << right << setw(maxModelName) << setprecision(maxModelName - 4) << fixed << totals[model] << " ";
}
cout << endl;
}
void BestResults::reportSingle(bool excel)
{
listFile();
if (excel) {
auto models = getModels();
// Build the table of results
json table = buildTableResults(models);
vector<string> datasets = getDatasets(table.begin().value());
BestResultsExcel excel(score, datasets);
excel.reportSingle(model, path + bestResultFile());
messageExcelFile(excel.getFileName());
}
}
void BestResults::reportAll(bool excel)
{
auto models = getModels();
// Build the table of results
json table = buildTableResults(models);
vector<string> datasets = getDatasets(table.begin().value());
maxModelName = (*max_element(models.begin(), models.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
maxModelName = max(12, maxModelName);
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
maxDatasetName = max(25, maxDatasetName);
// Print the table of results
printTableResults(models, table);
// Compute the Friedman test
map<string, map<string, float>> ranksModels;
if (friedman) {
Statistics stats(models, datasets, table, significance);
auto result = stats.friedmanTest();
stats.postHocHolmTest(result);
ranksModels = stats.getRanks();
}
if (excel) {
BestResultsExcel excel(score, datasets);
excel.reportAll(models, table, ranksModels, friedman, significance);
if (friedman) {
int idx = -1;
double min = 2000;
// Find out the control model
auto totals = vector<double>(models.size(), 0.0);
for (const auto& dataset : datasets) {
for (int i = 0; i < models.size(); ++i) {
totals[i] += ranksModels[dataset][models[i]];
}
}
for (int i = 0; i < models.size(); ++i) {
if (totals[i] < min) {
min = totals[i];
idx = i;
}
}
model = models.at(idx);
excel.reportSingle(model, path + bestResultFile());
}
messageExcelFile(excel.getFileName());
}
}
void BestResults::messageExcelFile(const string& fileName)
{
cout << Colors::YELLOW() << "** Excel file generated: " << fileName << Colors::RESET() << endl;
}
}

View File

@@ -0,0 +1,37 @@
#ifndef BESTRESULTS_H
#define BESTRESULTS_H
#include <string>
#include <nlohmann/json.hpp>
using namespace std;
using json = nlohmann::json;
namespace platform {
class BestResults {
public:
explicit BestResults(const string& path, const string& score, const string& model, bool friedman, double significance = 0.05)
: path(path), score(score), model(model), friedman(friedman), significance(significance)
{
}
string build();
void reportSingle(bool excel);
void reportAll(bool excel);
void buildAll();
private:
vector<string> getModels();
vector<string> getDatasets(json table);
vector<string> loadResultFiles();
void messageExcelFile(const string& fileName);
json buildTableResults(vector<string> models);
void printTableResults(vector<string> models, json table);
string bestResultFile();
json loadFile(const string& fileName);
void listFile();
string path;
string score;
string model;
bool friedman;
double significance;
int maxModelName = 0;
int maxDatasetName = 0;
};
}
#endif //BESTRESULTS_H

View File

@@ -0,0 +1,300 @@
#include <sstream>
#include "BestResultsExcel.h"
#include "Paths.h"
#include <map>
#include <nlohmann/json.hpp>
#include "Statistics.h"
#include "ReportExcel.h"
namespace platform {
json loadResultData(const string& fileName)
{
json data;
ifstream resultData(fileName);
if (resultData.is_open()) {
data = json::parse(resultData);
} else {
throw invalid_argument("Unable to open result file. [" + fileName + "]");
}
return data;
}
string getColumnName(int colNum)
{
string columnName = "";
if (colNum == 0)
return "A";
while (colNum > 0) {
int modulo = colNum % 26;
columnName = char(65 + modulo) + columnName;
colNum = (int)((colNum - modulo) / 26);
}
return columnName;
}
BestResultsExcel::BestResultsExcel(const string& score, const vector<string>& datasets) : score(score), datasets(datasets)
{
workbook = workbook_new((Paths::excel() + fileName).c_str());
setProperties("Best Results");
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
datasetNameSize = max(datasetNameSize, maxDatasetName);
createFormats();
}
void BestResultsExcel::reportAll(const vector<string>& models, const json& table, const map<string, map<string, float>>& ranks, bool friedman, double significance)
{
this->table = table;
this->models = models;
ranksModels = ranks;
this->friedman = friedman;
this->significance = significance;
worksheet = workbook_add_worksheet(workbook, "Best Results");
int maxModelName = (*max_element(models.begin(), models.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
modelNameSize = max(modelNameSize, maxModelName);
formatColumns();
build();
}
void BestResultsExcel::reportSingle(const string& model, const string& fileName)
{
worksheet = workbook_add_worksheet(workbook, "Report");
if (FILE* fileTest = fopen(fileName.c_str(), "r")) {
fclose(fileTest);
} else {
cerr << "File " << fileName << " doesn't exist." << endl;
exit(1);
}
json data = loadResultData(fileName);
string title = "Best results for " + model;
worksheet_merge_range(worksheet, 0, 0, 0, 4, title.c_str(), styles["headerFirst"]);
// Body header
row = 3;
int col = 1;
writeString(row, 0, "", "bodyHeader");
writeString(row, 1, "Dataset", "bodyHeader");
writeString(row, 2, "Score", "bodyHeader");
writeString(row, 3, "File", "bodyHeader");
writeString(row, 4, "Hyperparameters", "bodyHeader");
auto i = 0;
string hyperparameters;
int hypSize = 22;
map<string, string> files; // map of files imported and their tabs
for (auto const& item : data.items()) {
row++;
writeInt(row, 0, i++, "ints");
writeString(row, 1, item.key().c_str(), "text");
writeDouble(row, 2, item.value().at(0).get<double>(), "result");
auto fileName = item.value().at(2).get<string>();
string hyperlink = "";
try {
hyperlink = files.at(fileName);
}
catch (const out_of_range& oor) {
auto tabName = "table_" + to_string(i);
auto worksheetNew = workbook_add_worksheet(workbook, tabName.c_str());
json data = loadResultData(Paths::results() + fileName);
auto report = ReportExcel(data, false, workbook, worksheetNew);
report.show();
hyperlink = "#table_" + to_string(i);
files[fileName] = hyperlink;
}
hyperlink += "!H" + to_string(i + 6);
string fileNameText = "=HYPERLINK(\"" + hyperlink + "\",\"" + fileName + "\")";
worksheet_write_formula(worksheet, row, 3, fileNameText.c_str(), efectiveStyle("text"));
hyperparameters = item.value().at(1).dump();
if (hyperparameters.size() > hypSize) {
hypSize = hyperparameters.size();
}
writeString(row, 4, hyperparameters, "text");
}
row++;
// Set Totals
writeString(row, 1, "Total", "bodyHeader");
stringstream oss;
auto colName = getColumnName(2);
oss << "=sum(" << colName << "5:" << colName << row << ")";
worksheet_write_formula(worksheet, row, 2, oss.str().c_str(), styles["bodyHeader_odd"]);
// Set format
worksheet_freeze_panes(worksheet, 4, 2);
vector<int> columns_sizes = { 5, datasetNameSize, modelNameSize, 66, hypSize + 1 };
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
}
BestResultsExcel::~BestResultsExcel()
{
workbook_close(workbook);
}
void BestResultsExcel::formatColumns()
{
worksheet_freeze_panes(worksheet, 4, 2);
vector<int> columns_sizes = { 5, datasetNameSize };
for (int i = 0; i < models.size(); ++i) {
columns_sizes.push_back(modelNameSize);
}
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
}
void BestResultsExcel::addConditionalFormat(string formula)
{
// Add conditional format for max/min values in scores/ranks sheets
lxw_format* custom_format = workbook_add_format(workbook);
format_set_bg_color(custom_format, 0xFFC7CE);
format_set_font_color(custom_format, 0x9C0006);
// Create a conditional format object. A static object would also work.
lxw_conditional_format* conditional_format = (lxw_conditional_format*)calloc(1, sizeof(lxw_conditional_format));
conditional_format->type = LXW_CONDITIONAL_TYPE_FORMULA;
string col = getColumnName(models.size() + 1);
stringstream oss;
oss << "=C5=" << formula << "($C5:$" << col << "5)";
auto formulaValue = oss.str();
conditional_format->value_string = formulaValue.c_str();
conditional_format->format = custom_format;
worksheet_conditional_format_range(worksheet, 4, 2, datasets.size() + 3, models.size() + 1, conditional_format);
}
void BestResultsExcel::build()
{
// Create Sheet with scores
header(false);
body(false);
// Add conditional format for max values
addConditionalFormat("max");
footer(false);
if (friedman) {
// Create Sheet with ranks
worksheet = workbook_add_worksheet(workbook, "Ranks");
formatColumns();
header(true);
body(true);
addConditionalFormat("min");
footer(true);
// Create Sheet with Friedman Test
doFriedman();
}
}
string BestResultsExcel::getFileName()
{
return Paths::excel() + fileName;
}
void BestResultsExcel::header(bool ranks)
{
row = 0;
string message = ranks ? "Ranks for score " + score : "Best results for " + score;
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), message.c_str(), styles["headerFirst"]);
// Body header
row = 3;
int col = 1;
writeString(row, 0, "", "bodyHeader");
writeString(row, 1, "Dataset", "bodyHeader");
for (const auto& model : models) {
writeString(row, ++col, model.c_str(), "bodyHeader");
}
}
void BestResultsExcel::body(bool ranks)
{
row = 4;
int i = 0;
json origin = table.begin().value();
for (auto const& item : origin.items()) {
writeInt(row, 0, i++, "ints");
writeString(row, 1, item.key().c_str(), "text");
int col = 1;
for (const auto& model : models) {
double value = ranks ? ranksModels[item.key()][model] : table[model].at(item.key()).at(0).get<double>();
writeDouble(row, ++col, value, "result");
}
++row;
}
}
void BestResultsExcel::footer(bool ranks)
{
// Set Totals
writeString(row, 1, "Total", "bodyHeader");
int col = 1;
for (const auto& model : models) {
stringstream oss;
auto colName = getColumnName(col + 1);
oss << "=SUM(" << colName << "5:" << colName << row << ")";
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
}
if (ranks) {
row++;
writeString(row, 1, "Average ranks", "bodyHeader");
int col = 1;
for (const auto& model : models) {
auto colName = getColumnName(col + 1);
stringstream oss;
oss << "=SUM(" << colName << "5:" << colName << row - 1 << ")/" << datasets.size();
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
}
}
}
void BestResultsExcel::doFriedman()
{
worksheet = workbook_add_worksheet(workbook, "Friedman");
vector<int> columns_sizes = { 5, datasetNameSize };
for (int i = 0; i < models.size(); ++i) {
columns_sizes.push_back(modelNameSize);
}
for (int i = 0; i < columns_sizes.size(); ++i) {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), "Friedman Test", styles["headerFirst"]);
row = 2;
Statistics stats(models, datasets, table, significance, false);
auto result = stats.friedmanTest();
stats.postHocHolmTest(result);
auto friedmanResult = stats.getFriedmanResult();
auto holmResult = stats.getHolmResult();
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between all the classifiers.'", styles["headerSmall"]);
row += 2;
writeString(row, 1, "Friedman Q", "bodyHeader");
writeDouble(row, 2, friedmanResult.statistic, "bodyHeader");
row++;
writeString(row, 1, "Critical χ2 value", "bodyHeader");
writeDouble(row, 2, friedmanResult.criticalValue, "bodyHeader");
row++;
writeString(row, 1, "p-value", "bodyHeader");
writeDouble(row, 2, friedmanResult.pvalue, "bodyHeader");
writeString(row, 3, friedmanResult.reject ? "<" : ">", "bodyHeader");
writeDouble(row, 4, significance, "bodyHeader");
writeString(row, 5, friedmanResult.reject ? "Reject H0" : "Accept H0", "bodyHeader");
row += 3;
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Holm Test", styles["headerFirst"]);
row += 2;
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between the control model and the other models.'", styles["headerSmall"]);
row += 2;
string controlModel = "Control Model: " + holmResult.model;
worksheet_merge_range(worksheet, row, 1, row, 7, controlModel.c_str(), styles["bodyHeader_odd"]);
row++;
writeString(row, 1, "Model", "bodyHeader");
writeString(row, 2, "p-value", "bodyHeader");
writeString(row, 3, "Rank", "bodyHeader");
writeString(row, 4, "Win", "bodyHeader");
writeString(row, 5, "Tie", "bodyHeader");
writeString(row, 6, "Loss", "bodyHeader");
writeString(row, 7, "Reject H0", "bodyHeader");
row++;
bool first = true;
for (const auto& item : holmResult.holmLines) {
writeString(row, 1, item.model, "text");
if (first) {
// Control model info
first = false;
writeString(row, 2, "", "text");
writeDouble(row, 3, item.rank, "result");
writeString(row, 4, "", "text");
writeString(row, 5, "", "text");
writeString(row, 6, "", "text");
writeString(row, 7, "", "textCentered");
} else {
// Rest of the models info
writeDouble(row, 2, item.pvalue, "result");
writeDouble(row, 3, item.rank, "result");
writeInt(row, 4, item.wtl.win, "ints");
writeInt(row, 5, item.wtl.tie, "ints");
writeInt(row, 6, item.wtl.loss, "ints");
writeString(row, 7, item.reject ? "Yes" : "No", "textCentered");
}
row++;
}
}
}

View File

@@ -0,0 +1,40 @@
#ifndef BESTRESULTS_EXCEL_H
#define BESTRESULTS_EXCEL_H
#include "ExcelFile.h"
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
using namespace std;
using json = nlohmann::json;
namespace platform {
class BestResultsExcel : ExcelFile {
public:
BestResultsExcel(const string& score, const vector<string>& datasets);
~BestResultsExcel();
void reportAll(const vector<string>& models, const json& table, const map<string, map<string, float>>& ranks, bool friedman, double significance);
void reportSingle(const string& model, const string& fileName);
string getFileName();
private:
void build();
void header(bool ranks);
void body(bool ranks);
void footer(bool ranks);
void formatColumns();
void doFriedman();
void addConditionalFormat(string formula);
const string fileName = "BestResults.xlsx";
string score;
vector<string> models;
vector<string> datasets;
json table;
map<string, map<string, float>> ranksModels;
bool friedman;
double significance;
int modelNameSize = 12; // Min size of the column
int datasetNameSize = 25; // Min size of the column
};
}
#endif //BESTRESULTS_EXCEL_H

28
src/Platform/BestScore.h Normal file
View File

@@ -0,0 +1,28 @@
#ifndef BESTSCORE_H
#define BESTSCORE_H
#include <string>
#include <map>
#include <utility>
#include "DotEnv.h"
namespace platform {
class BestScore {
public:
static pair<string, double> getScore(const std::string& metric)
{
static map<pair<string, string>, pair<string, double>> data = {
{{"discretiz", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
{{"odte", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
};
auto env = platform::DotEnv();
string experiment = env.get("experiment");
try {
return data[{experiment, metric}];
}
catch (...) {
return { "", 0.0 };
}
}
};
}
#endif

24
src/Platform/CLocale.h Normal file
View File

@@ -0,0 +1,24 @@
#ifndef LOCALE_H
#define LOCALE_H
#include <locale>
#include <iostream>
#include <sstream>
#include <string>
using namespace std;
namespace platform {
struct separation : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
class ConfigLocale {
public:
explicit ConfigLocale()
{
locale mylocale(cout.getloc(), new separation);
locale::global(mylocale);
cout.imbue(mylocale);
}
};
}
#endif

View File

@@ -4,13 +4,14 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc ReportConsole.cc ReportBase.cc)
add_executable(manage manage.cc Results.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc platformUtils.cc)
add_executable(list list.cc platformUtils Datasets.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
if (${CMAKE_HOST_SYSTEM_NAME} MATCHES "Linux")
target_link_libraries(manage "${TORCH_LIBRARIES}" libxlsxwriter.so ArffFiles mdlp stdc++fs)
else()
target_link_libraries(manage "${TORCH_LIBRARIES}" libxlsxwriter.so ArffFiles mdlp)
endif()
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc ReportConsole.cc ReportBase.cc)
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -0,0 +1,87 @@
#include "CommandParser.h"
#include <iostream>
#include <sstream>
#include <algorithm>
#include "Colors.h"
#include "Utils.h"
namespace platform {
void CommandParser::messageError(const string& message)
{
cout << Colors::RED() << message << Colors::RESET() << endl;
}
pair<char, int> CommandParser::parse(const string& color, const vector<tuple<string, char, bool>>& options, const char defaultCommand, const int maxIndex)
{
bool finished = false;
while (!finished) {
stringstream oss;
string line;
oss << color << "Choose option (";
bool first = true;
for (auto& option : options) {
if (first) {
first = false;
} else {
oss << ", ";
}
oss << get<char>(option) << "=" << get<string>(option);
}
oss << "): ";
cout << oss.str();
getline(cin, line);
cout << Colors::RESET();
line = trim(line);
if (line.size() == 0)
continue;
if (all_of(line.begin(), line.end(), ::isdigit)) {
command = defaultCommand;
index = stoi(line);
if (index > maxIndex || index < 0) {
messageError("Index out of range");
continue;
}
finished = true;
break;
}
bool found = false;
for (auto& option : options) {
if (line[0] == get<char>(option)) {
found = true;
// it's a match
line.erase(line.begin());
line = trim(line);
if (get<bool>(option)) {
// The option requires a value
if (line.size() == 0) {
messageError("Option " + get<string>(option) + " requires a value");
break;
}
try {
index = stoi(line);
if (index > maxIndex || index < 0) {
messageError("Index out of range");
break;
}
}
catch (const std::invalid_argument& ia) {
messageError("Invalid value: " + line);
break;
}
} else {
if (line.size() > 0) {
messageError("option " + get<string>(option) + " doesn't accept values");
break;
}
}
command = get<char>(option);
finished = true;
break;
}
}
if (!found) {
messageError("I don't know " + line);
}
}
return { command, index };
}
} /* namespace platform */

View File

@@ -0,0 +1,21 @@
#ifndef COMMAND_PARSER_H
#define COMMAND_PARSER_H
#include <string>
#include <vector>
#include <tuple>
using namespace std;
namespace platform {
class CommandParser {
public:
CommandParser() = default;
pair<char, int> parse(const string& color, const vector<tuple<string, char, bool>>& options, const char defaultCommand, const int maxIndex);
char getCommand() const { return command; };
int getIndex() const { return index; };
private:
void messageError(const string& message);
char command;
int index;
};
} /* namespace platform */
#endif /* COMMAND_PARSER_H */

215
src/Platform/Dataset.cc Normal file
View File

@@ -0,0 +1,215 @@
#include "Dataset.h"
#include "ArffFiles.h"
#include <fstream>
namespace platform {
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{
}
string Dataset::getName() const
{
return name;
}
string Dataset::getClassName() const
{
return className;
}
vector<string> Dataset::getFeatures() const
{
if (loaded) {
return features;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNFeatures() const
{
if (loaded) {
return n_features;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNSamples() const
{
if (loaded) {
return n_samples;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
map<string, vector<int>> Dataset::getStates() const
{
if (loaded) {
return states;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Dataset::getVectors()
{
if (loaded) {
return { Xv, yv };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<int>>&, vector<int>&> Dataset::getVectorsDiscretized()
{
if (loaded) {
return { Xd, yv };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
{
if (loaded) {
buildTensors();
return { X, y };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
void Dataset::load_csv()
{
ifstream file(path + "/" + name + ".csv");
if (file.is_open()) {
string line;
getline(file, line);
vector<string> tokens = split(line, ',');
features = vector<string>(tokens.begin(), tokens.end() - 1);
if (className == "-1") {
className = tokens.back();
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(vector<float>());
}
while (getline(file, line)) {
tokens = split(line, ',');
for (auto i = 0; i < features.size(); ++i) {
Xv[i].push_back(stof(tokens[i]));
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw invalid_argument("Unable to open dataset file.");
}
}
void Dataset::computeStates()
{
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
}
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
}
void Dataset::load_arff()
{
auto arff = ArffFiles();
arff.load(path + "/" + name + ".arff", className);
// Get Dataset X, y
Xv = arff.getX();
yv = arff.getY();
// Get className & Features
className = arff.getClassName();
auto attributes = arff.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
}
vector<string> tokenize(string line)
{
vector<string> tokens;
for (auto i = 0; i < line.size(); ++i) {
if (line[i] == ' ' || line[i] == '\t' || line[i] == '\n') {
string token = line.substr(0, i);
tokens.push_back(token);
line.erase(line.begin(), line.begin() + i + 1);
i = 0;
while (line[i] == ' ' || line[i] == '\t' || line[i] == '\n')
line.erase(line.begin(), line.begin() + i + 1);
}
}
if (line.size() > 0) {
tokens.push_back(line);
}
return tokens;
}
void Dataset::load_rdata()
{
ifstream file(path + "/" + name + "_R.dat");
if (file.is_open()) {
string line;
getline(file, line);
line = ArffFiles::trim(line);
vector<string> tokens = tokenize(line);
transform(tokens.begin(), tokens.end() - 1, back_inserter(features), [](const auto& attribute) { return ArffFiles::trim(attribute); });
if (className == "-1") {
className = ArffFiles::trim(tokens.back());
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(vector<float>());
}
while (getline(file, line)) {
tokens = tokenize(line);
// We have to skip the first token, which is the instance number.
for (auto i = 1; i < features.size() + 1; ++i) {
const float value = stof(tokens[i]);
Xv[i - 1].push_back(value);
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw invalid_argument("Unable to open dataset file.");
}
}
void Dataset::load()
{
if (loaded) {
return;
}
if (fileType == CSV) {
load_csv();
} else if (fileType == ARFF) {
load_arff();
} else if (fileType == RDATA) {
load_rdata();
}
if (discretize) {
Xd = discretizeDataset(Xv, yv);
computeStates();
}
n_samples = Xv[0].size();
n_features = Xv.size();
loaded = true;
}
void Dataset::buildTensors()
{
if (discretize) {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
} else {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
}
for (int i = 0; i < features.size(); ++i) {
if (discretize) {
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
} else {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
}
}
y = torch::tensor(yv, torch::kInt32);
}
vector<mdlp::labels_t> Dataset::discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
vector<mdlp::labels_t> Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
Xd.push_back(xd);
}
return Xd;
}
}

80
src/Platform/Dataset.h Normal file
View File

@@ -0,0 +1,80 @@
#ifndef DATASET_H
#define DATASET_H
#include <torch/torch.h>
#include <map>
#include <vector>
#include <string>
#include "CPPFImdlp.h"
#include "Utils.h"
namespace platform {
using namespace std;
enum fileType_t { CSV, ARFF, RDATA };
class SourceData {
public:
SourceData(string source)
{
if (source == "Surcov") {
path = "datasets/";
fileType = CSV;
} else if (source == "Arff") {
path = "datasets/";
fileType = ARFF;
} else if (source == "Tanveer") {
path = "data/";
fileType = RDATA;
} else {
throw invalid_argument("Unknown source.");
}
}
string getPath()
{
return path;
}
fileType_t getFileType()
{
return fileType;
}
private:
string path;
fileType_t fileType;
};
class Dataset {
private:
string path;
string name;
fileType_t fileType;
string className;
int n_samples{ 0 }, n_features{ 0 };
vector<string> features;
map<string, vector<int>> states;
bool loaded;
bool discretize;
torch::Tensor X, y;
vector<vector<float>> Xv;
vector<vector<int>> Xd;
vector<int> yv;
void buildTensors();
void load_csv();
void load_arff();
void load_rdata();
void computeStates();
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
public:
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&);
string getName() const;
string getClassName() const;
vector<string> getFeatures() const;
map<string, vector<int>> getStates() const;
pair<vector<vector<float>>&, vector<int>&> getVectors();
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
pair<torch::Tensor&, torch::Tensor&> getTensors();
int getNFeatures() const;
int getNSamples() const;
void load();
const bool inline isLoaded() const { return loaded; };
};
};
#endif

View File

@@ -1,22 +1,31 @@
#include "Datasets.h"
#include "platformUtils.h"
#include "ArffFiles.h"
#include <fstream>
namespace platform {
void Datasets::load()
{
ifstream catalog(path + "/all.txt");
auto sd = SourceData(sfileType);
fileType = sd.getFileType();
path = sd.getPath();
ifstream catalog(path + "all.txt");
if (catalog.is_open()) {
string line;
while (getline(catalog, line)) {
if (line.empty() || line[0] == '#') {
continue;
}
vector<string> tokens = split(line, ',');
string name = tokens[0];
string className = tokens[1];
string className;
if (tokens.size() == 1) {
className = "-1";
} else {
className = tokens[1];
}
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType);
}
catalog.close();
} else {
throw invalid_argument("Unable to open catalog file. [" + path + "/all.txt" + "]");
throw invalid_argument("Unable to open catalog file. [" + path + "all.txt" + "]");
}
}
vector<string> Datasets::getNames()
@@ -117,152 +126,4 @@ namespace platform {
{
return datasets.find(name) != datasets.end();
}
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{
}
string Dataset::getName() const
{
return name;
}
string Dataset::getClassName() const
{
return className;
}
vector<string> Dataset::getFeatures() const
{
if (loaded) {
return features;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNFeatures() const
{
if (loaded) {
return n_features;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNSamples() const
{
if (loaded) {
return n_samples;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
map<string, vector<int>> Dataset::getStates() const
{
if (loaded) {
return states;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Dataset::getVectors()
{
if (loaded) {
return { Xv, yv };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<int>>&, vector<int>&> Dataset::getVectorsDiscretized()
{
if (loaded) {
return { Xd, yv };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
{
if (loaded) {
buildTensors();
return { X, y };
} else {
throw invalid_argument("Dataset not loaded.");
}
}
void Dataset::load_csv()
{
ifstream file(path + "/" + name + ".csv");
if (file.is_open()) {
string line;
getline(file, line);
vector<string> tokens = split(line, ',');
features = vector<string>(tokens.begin(), tokens.end() - 1);
className = tokens.back();
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(vector<float>());
}
while (getline(file, line)) {
tokens = split(line, ',');
for (auto i = 0; i < features.size(); ++i) {
Xv[i].push_back(stof(tokens[i]));
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw invalid_argument("Unable to open dataset file.");
}
}
void Dataset::computeStates()
{
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
}
states[className] = vector<int>(*max_element(yv.begin(), yv.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
}
void Dataset::load_arff()
{
auto arff = ArffFiles();
arff.load(path + "/" + name + ".arff", className);
// Get Dataset X, y
Xv = arff.getX();
yv = arff.getY();
// Get className & Features
className = arff.getClassName();
auto attributes = arff.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
}
void Dataset::load()
{
if (loaded) {
return;
}
if (fileType == CSV) {
load_csv();
} else if (fileType == ARFF) {
load_arff();
}
if (discretize) {
Xd = discretizeDataset(Xv, yv);
computeStates();
}
n_samples = Xv[0].size();
n_features = Xv.size();
loaded = true;
}
void Dataset::buildTensors()
{
if (discretize) {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
} else {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
}
for (int i = 0; i < features.size(); ++i) {
if (discretize) {
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
} else {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
}
}
y = torch::tensor(yv, torch::kInt32);
}
}

View File

@@ -1,55 +1,18 @@
#ifndef DATASETS_H
#define DATASETS_H
#include <torch/torch.h>
#include <map>
#include <vector>
#include <string>
#include "Dataset.h"
namespace platform {
using namespace std;
enum fileType_t { CSV, ARFF };
class Dataset {
private:
string path;
string name;
fileType_t fileType;
string className;
int n_samples{ 0 }, n_features{ 0 };
vector<string> features;
map<string, vector<int>> states;
bool loaded;
bool discretize;
torch::Tensor X, y;
vector<vector<float>> Xv;
vector<vector<int>> Xd;
vector<int> yv;
void buildTensors();
void load_csv();
void load_arff();
void computeStates();
public:
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&);
string getName() const;
string getClassName() const;
vector<string> getFeatures() const;
map<string, vector<int>> getStates() const;
pair<vector<vector<float>>&, vector<int>&> getVectors();
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
pair<torch::Tensor&, torch::Tensor&> getTensors();
int getNFeatures() const;
int getNSamples() const;
void load();
const bool inline isLoaded() const { return loaded; };
};
class Datasets {
private:
string path;
fileType_t fileType;
string sfileType;
map<string, unique_ptr<Dataset>> datasets;
bool discretize;
void load(); // Loads the list of datasets
public:
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
explicit Datasets(bool discretize, string sfileType) : discretize(discretize), sfileType(sfileType) { load(); };
vector<string> getNames();
vector<string> getFeatures(const string& name) const;
int getNSamples(const string& name) const;

View File

@@ -4,22 +4,15 @@
#include <map>
#include <fstream>
#include <sstream>
#include "platformUtils.h"
#include <algorithm>
#include <iostream>
#include "Utils.h"
//#include "Dataset.h"
namespace platform {
class DotEnv {
private:
std::map<std::string, std::string> env;
std::string trim(const std::string& str)
{
std::string result = str;
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
return !std::isspace(ch);
}));
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
return !std::isspace(ch);
}).base(), result.end());
return result;
}
public:
DotEnv()
{
@@ -43,7 +36,7 @@ namespace platform {
}
std::string get(const std::string& key)
{
return env[key];
return env.at(key);
}
std::vector<int> getSeeds()
{

168
src/Platform/ExcelFile.cc Normal file
View File

@@ -0,0 +1,168 @@
#include "ExcelFile.h"
namespace platform {
ExcelFile::ExcelFile()
{
setDefault();
}
ExcelFile::ExcelFile(lxw_workbook* workbook) : workbook(workbook)
{
setDefault();
}
ExcelFile::ExcelFile(lxw_workbook* workbook, lxw_worksheet* worksheet) : workbook(workbook), worksheet(worksheet)
{
setDefault();
}
void ExcelFile::setDefault()
{
normalSize = 14; //font size for report body
row = 0;
colorTitle = 0xB1A0C7;
colorOdd = 0xDCE6F1;
colorEven = 0xFDE9D9;
}
lxw_workbook* ExcelFile::getWorkbook()
{
return workbook;
}
void ExcelFile::setProperties(string title)
{
char line[title.size() + 1];
strcpy(line, title.c_str());
lxw_doc_properties properties = {
.title = line,
.subject = (char*)"Machine learning results",
.author = (char*)"Ricardo Montañana Gómez",
.manager = (char*)"Dr. J. A. Gámez, Dr. J. M. Puerta",
.company = (char*)"UCLM",
.comments = (char*)"Created with libxlsxwriter and c++",
};
workbook_set_properties(workbook, &properties);
}
lxw_format* ExcelFile::efectiveStyle(const string& style)
{
lxw_format* efectiveStyle = NULL;
if (style != "") {
string suffix = row % 2 ? "_odd" : "_even";
try {
efectiveStyle = styles.at(style + suffix);
}
catch (const out_of_range& oor) {
try {
efectiveStyle = styles.at(style);
}
catch (const out_of_range& oor) {
throw invalid_argument("Style " + style + " not found");
}
}
}
return efectiveStyle;
}
void ExcelFile::writeString(int row, int col, const string& text, const string& style)
{
worksheet_write_string(worksheet, row, col, text.c_str(), efectiveStyle(style));
}
void ExcelFile::writeInt(int row, int col, const int number, const string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ExcelFile::writeDouble(int row, int col, const double number, const string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ExcelFile::addColor(lxw_format* style, bool odd)
{
uint32_t efectiveColor = odd ? colorEven : colorOdd;
format_set_bg_color(style, lxw_color_t(efectiveColor));
}
void ExcelFile::createStyle(const string& name, lxw_format* style, bool odd)
{
addColor(style, odd);
if (name == "textCentered") {
format_set_align(style, LXW_ALIGN_CENTER);
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "text") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "bodyHeader") {
format_set_bold(style);
format_set_font_size(style, normalSize);
format_set_align(style, LXW_ALIGN_CENTER);
format_set_align(style, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(style, LXW_BORDER_THIN);
format_set_bg_color(style, lxw_color_t(colorTitle));
} else if (name == "result") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "0.0000000");
} else if (name == "time") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "#,##0.000000");
} else if (name == "ints") {
format_set_font_size(style, normalSize);
format_set_num_format(style, "###,##0");
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "floats") {
format_set_border(style, LXW_BORDER_THIN);
format_set_font_size(style, normalSize);
format_set_num_format(style, "#,##0.00");
}
}
void ExcelFile::createFormats()
{
auto styleNames = { "text", "textCentered", "bodyHeader", "result", "time", "ints", "floats" };
lxw_format* style;
for (string name : styleNames) {
lxw_format* style = workbook_add_format(workbook);
style = workbook_add_format(workbook);
createStyle(name, style, true);
styles[name + "_odd"] = style;
style = workbook_add_format(workbook);
createStyle(name, style, false);
styles[name + "_even"] = style;
}
// Header 1st line
lxw_format* headerFirst = workbook_add_format(workbook);
format_set_bold(headerFirst);
format_set_font_size(headerFirst, 18);
format_set_align(headerFirst, LXW_ALIGN_CENTER);
format_set_align(headerFirst, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerFirst, LXW_BORDER_THIN);
format_set_bg_color(headerFirst, lxw_color_t(colorTitle));
// Header rest
lxw_format* headerRest = workbook_add_format(workbook);
format_set_bold(headerRest);
format_set_align(headerRest, LXW_ALIGN_CENTER);
format_set_font_size(headerRest, 16);
format_set_align(headerRest, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerRest, LXW_BORDER_THIN);
format_set_bg_color(headerRest, lxw_color_t(colorOdd));
// Header small
lxw_format* headerSmall = workbook_add_format(workbook);
format_set_bold(headerSmall);
format_set_align(headerSmall, LXW_ALIGN_LEFT);
format_set_font_size(headerSmall, 12);
format_set_border(headerSmall, LXW_BORDER_THIN);
format_set_align(headerSmall, LXW_ALIGN_VERTICAL_CENTER);
format_set_bg_color(headerSmall, lxw_color_t(colorOdd));
// Summary style
lxw_format* summaryStyle = workbook_add_format(workbook);
format_set_bold(summaryStyle);
format_set_font_size(summaryStyle, 16);
format_set_border(summaryStyle, LXW_BORDER_THIN);
format_set_align(summaryStyle, LXW_ALIGN_VERTICAL_CENTER);
styles["headerFirst"] = headerFirst;
styles["headerRest"] = headerRest;
styles["headerSmall"] = headerSmall;
styles["summaryStyle"] = summaryStyle;
}
}

44
src/Platform/ExcelFile.h Normal file
View File

@@ -0,0 +1,44 @@
#ifndef EXCELFILE_H
#define EXCELFILE_H
#include <locale>
#include <string>
#include <map>
#include "xlsxwriter.h"
using namespace std;
namespace platform {
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
class ExcelFile {
public:
ExcelFile();
ExcelFile(lxw_workbook* workbook);
ExcelFile(lxw_workbook* workbook, lxw_worksheet* worksheet);
lxw_workbook* getWorkbook();
protected:
void setProperties(string title);
void writeString(int row, int col, const string& text, const string& style = "");
void writeInt(int row, int col, const int number, const string& style = "");
void writeDouble(int row, int col, const double number, const string& style = "");
void createFormats();
void createStyle(const string& name, lxw_format* style, bool odd);
void addColor(lxw_format* style, bool odd);
lxw_format* efectiveStyle(const string& name);
lxw_workbook* workbook;
lxw_worksheet* worksheet;
map<string, lxw_format*> styles;
int row;
int normalSize; //font size for report body
uint32_t colorTitle;
uint32_t colorOdd;
uint32_t colorEven;
private:
void setDefault();
};
}
#endif // !EXCELFILE_H

View File

@@ -1,8 +1,9 @@
#include <fstream>
#include "Experiment.h"
#include "Datasets.h"
#include "Models.h"
#include "ReportConsole.h"
#include <fstream>
#include "Paths.h"
namespace platform {
using json = nlohmann::json;
string get_date()
@@ -101,12 +102,12 @@ namespace platform {
cout << data.dump(4) << endl;
}
void Experiment::go(vector<string> filesToProcess, const string& path)
void Experiment::go(vector<string> filesToProcess, bool quiet)
{
cout << "*** Starting experiment: " << title << " ***" << endl;
for (auto fileName : filesToProcess) {
cout << "- " << setw(20) << left << fileName << " " << right << flush;
cross_validation(path, fileName);
cross_validation(fileName, quiet);
cout << endl;
}
}
@@ -131,16 +132,18 @@ namespace platform {
cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
}
void Experiment::cross_validation(const string& path, const string& fileName)
void Experiment::cross_validation(const string& fileName, bool quiet)
{
auto datasets = platform::Datasets(path, discretized, platform::ARFF);
auto datasets = platform::Datasets(discretized, Paths::datasets());
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto samples = datasets.getNSamples(fileName);
auto className = datasets.getClassName(fileName);
if (!quiet) {
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
}
// Prepare Result
auto result = Result();
auto [values, counts] = at::_unique(y);
@@ -158,6 +161,7 @@ namespace platform {
Timer train_timer, test_timer;
int item = 0;
for (auto seed : randomSeeds) {
if (!quiet)
cout << "(" << seed << ") doing Fold: " << flush;
Fold* fold;
if (stratified)
@@ -179,9 +183,11 @@ namespace platform {
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
// Train model
clf->fit(X_train, y_train, features, className, states);
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
nodes[item] = clf->getNumberOfNodes();
edges[item] = clf->getNumberOfEdges();
@@ -190,12 +196,14 @@ namespace platform {
// Score train
auto accuracy_train_value = clf->score(X_train, y_train);
// Test model
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
test_timer.start();
auto accuracy_test_value = clf->score(X_test, y_test);
test_time[item] = test_timer.getDuration();
accuracy_train[item] = accuracy_train_value;
accuracy_test[item] = accuracy_test_value;
if (!quiet)
cout << "\b\b\b, " << flush;
// Store results and times in vector
result.addScoreTrain(accuracy_train_value);
@@ -205,6 +213,7 @@ namespace platform {
item++;
clf.reset();
}
if (!quiet)
cout << "end. " << flush;
delete fold;
}

View File

@@ -108,8 +108,8 @@ namespace platform {
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
string get_file_name();
void save(const string& path);
void cross_validation(const string& path, const string& fileName);
void go(vector<string> filesToProcess, const string& path);
void cross_validation(const string& fileName, bool quiet);
void go(vector<string> filesToProcess, bool quiet);
void show();
void report();
};

View File

@@ -47,6 +47,7 @@ namespace platform {
{
stratified_indices = vector<vector<int>>(k);
int fold_size = n / k;
// Compute class counts and indices
auto class_indices = map<int, vector<int>>();
vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
@@ -60,20 +61,26 @@ namespace platform {
}
// Assign indices to folds
for (auto label = 0; label < class_counts.size(); ++label) {
auto num_samples_to_take = class_counts[label] / k;
if (num_samples_to_take == 0)
auto num_samples_to_take = class_counts.at(label) / k;
if (num_samples_to_take == 0) {
cerr << "Warning! The number of samples in class " << label << " (" << class_counts.at(label)
<< ") is less than the number of folds (" << k << ")." << endl;
faulty = true;
continue;
}
auto remainder_samples_to_take = class_counts[label] % k;
for (auto fold = 0; fold < k; ++fold) {
auto it = next(class_indices[label].begin(), num_samples_to_take);
move(class_indices[label].begin(), it, back_inserter(stratified_indices[fold])); // ##
class_indices[label].erase(class_indices[label].begin(), it);
}
auto chosen = vector<bool>(k, false);
while (remainder_samples_to_take > 0) {
int fold = (rand() % static_cast<int>(k));
if (stratified_indices[fold].size() == fold_size + 1) {
if (chosen.at(fold)) {
continue;
}
chosen[fold] = true;
auto it = next(class_indices[label].begin(), 1);
stratified_indices[fold].push_back(*class_indices[label].begin());
class_indices[label].erase(class_indices[label].begin(), it);

View File

@@ -29,10 +29,12 @@ namespace platform {
vector<int> y;
vector<vector<int>> stratified_indices;
void build();
bool faulty = false; // Only true if the number of samples of any class is less than the number of folds.
public:
StratifiedKFold(int k, const vector<int>& y, int seed = -1);
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold) override;
bool isFaulty() { return faulty; }
};
}
#endif

View File

@@ -0,0 +1,213 @@
#include "ManageResults.h"
#include "CommandParser.h"
#include <filesystem>
#include <tuple>
#include "Colors.h"
#include "CLocale.h"
#include "Paths.h"
#include "ReportConsole.h"
#include "ReportExcel.h"
namespace platform {
ManageResults::ManageResults(int numFiles, const string& model, const string& score, bool complete, bool partial, bool compare) :
numFiles{ numFiles }, complete{ complete }, partial{ partial }, compare{ compare }, results(Results(Paths::results(), model, score, complete, partial))
{
indexList = true;
openExcel = false;
workbook = NULL;
if (numFiles == 0) {
this->numFiles = results.size();
}
}
void ManageResults::doMenu()
{
if (results.empty()) {
cout << Colors::MAGENTA() << "No results found!" << Colors::RESET() << endl;
return;
}
results.sortDate();
list();
menu();
if (openExcel) {
workbook_close(workbook);
}
cout << Colors::RESET() << "Done!" << endl;
}
void ManageResults::list()
{
auto temp = ConfigLocale();
string suffix = numFiles != results.size() ? " of " + to_string(results.size()) : "";
stringstream oss;
oss << "Results on screen: " << numFiles << suffix;
cout << Colors::GREEN() << oss.str() << endl;
cout << string(oss.str().size(), '-') << endl;
if (complete) {
cout << Colors::MAGENTA() << "Only listing complete results" << endl;
}
if (partial) {
cout << Colors::MAGENTA() << "Only listing partial results" << endl;
}
auto i = 0;
int maxModel = results.maxModelSize();
cout << Colors::GREEN() << " # Date " << setw(maxModel) << left << "Model" << " Score Name Score C/P Duration Title" << endl;
cout << "=== ========== " << string(maxModel, '=') << " =========== =========== === ========= =============================================================" << endl;
bool odd = true;
for (auto& result : results) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << result.to_string(maxModel) << endl;
if (i == numFiles) {
break;
}
odd = !odd;
}
}
bool ManageResults::confirmAction(const string& intent, const string& fileName) const
{
string color;
if (intent == "delete") {
color = Colors::RED();
} else {
color = Colors::YELLOW();
}
string line;
bool finished = false;
while (!finished) {
cout << color << "Really want to " << intent << " " << fileName << "? (y/n): ";
getline(cin, line);
finished = line.size() == 1 && (tolower(line[0]) == 'y' || tolower(line[0] == 'n'));
}
if (tolower(line[0]) == 'y') {
return true;
}
cout << "Not done!" << endl;
return false;
}
void ManageResults::report(const int index, const bool excelReport)
{
cout << Colors::YELLOW() << "Reporting " << results.at(index).getFilename() << endl;
auto data = results.at(index).load();
if (excelReport) {
ReportExcel reporter(data, compare, workbook);
reporter.show();
openExcel = true;
workbook = reporter.getWorkbook();
cout << "Adding sheet to " << Paths::excel() + Paths::excelResults() << endl;
} else {
ReportConsole reporter(data, compare);
reporter.show();
}
}
void ManageResults::showIndex(const int index, const int idx)
{
// Show a dataset result inside a report
auto data = results.at(index).load();
cout << Colors::YELLOW() << "Showing " << results.at(index).getFilename() << endl;
ReportConsole reporter(data, compare, idx);
reporter.show();
}
void ManageResults::sortList()
{
cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
string line;
char option;
getline(cin, line);
if (line.size() == 0)
return;
if (line.size() > 1) {
cout << "Invalid option" << endl;
return;
}
option = line[0];
switch (option) {
case 'd':
results.sortDate();
break;
case 's':
results.sortScore();
break;
case 'u':
results.sortDuration();
break;
case 'm':
results.sortModel();
break;
default:
cout << "Invalid option" << endl;
}
}
void ManageResults::menu()
{
char option;
int index, subIndex;
bool finished = false;
string filename;
// tuple<Option, digit, requires value>
vector<tuple<string, char, bool>> mainOptions = {
{"quit", 'q', false},
{"list", 'l', false},
{"delete", 'd', true},
{"hide", 'h', true},
{"sort", 's', false},
{"report", 'r', true},
{"excel", 'e', true}
};
vector<tuple<string, char, bool>> listOptions = {
{"report", 'r', true},
{"list", 'l', false},
{"quit", 'q', false}
};
auto parser = CommandParser();
while (!finished) {
if (indexList) {
tie(option, index) = parser.parse(Colors::GREEN(), mainOptions, 'r', numFiles - 1);
} else {
tie(option, subIndex) = parser.parse(Colors::MAGENTA(), listOptions, 'r', results.at(index).load()["results"].size() - 1);
}
switch (option) {
case 'q':
finished = true;
break;
case 'l':
list();
indexList = true;
break;
case 'd':
filename = results.at(index).getFilename();
if (!confirmAction("delete", filename))
break;
cout << "Deleting " << filename << endl;
results.deleteResult(index);
cout << "File: " + filename + " deleted!" << endl;
list();
break;
case 'h':
filename = results.at(index).getFilename();
if (!confirmAction("hide", filename))
break;
filename = results.at(index).getFilename();
cout << "Hiding " << filename << endl;
results.hideResult(index, Paths::hiddenResults());
cout << "File: " + filename + " hidden! (moved to " << Paths::hiddenResults() << ")" << endl;
list();
break;
case 's':
sortList();
list();
break;
case 'r':
if (indexList) {
report(index, false);
indexList = false;
} else {
showIndex(index, subIndex);
}
break;
case 'e':
report(index, true);
break;
}
}
}
} /* namespace platform */

View File

@@ -0,0 +1,31 @@
#ifndef MANAGE_RESULTS_H
#define MANAGE_RESULTS_H
#include "Results.h"
#include "xlsxwriter.h"
namespace platform {
class ManageResults {
public:
ManageResults(int numFiles, const string& model, const string& score, bool complete, bool partial, bool compare);
~ManageResults() = default;
void doMenu();
private:
void list();
bool confirmAction(const string& intent, const string& fileName) const;
void report(const int index, const bool excelReport);
void showIndex(const int index, const int idx);
void sortList();
void menu();
int numFiles;
bool indexList;
bool openExcel;
bool complete;
bool partial;
bool compare;
Results results;
lxw_workbook* workbook;
};
}
#endif /* MANAGE_RESULTS_H */

View File

@@ -1,12 +1,20 @@
#ifndef PATHS_H
#define PATHS_H
#include <string>
#include "DotEnv.h"
namespace platform {
class Paths {
public:
static std::string datasets() { return "datasets/"; }
static std::string results() { return "results/"; }
static std::string hiddenResults() { return "hidden_results/"; }
static std::string excel() { return "excel/"; }
static std::string cfs() { return "cfs/"; }
static std::string datasets()
{
auto env = platform::DotEnv();
return env.get("source_data");
}
static std::string excelResults() { return "some_results.xlsx"; }
};
}
#endif

View File

@@ -2,8 +2,7 @@
#include <locale>
#include "Datasets.h"
#include "ReportBase.h"
#include "BestResult.h"
#include "DotEnv.h"
namespace platform {
ReportBase::ReportBase(json data_, bool compare) : data(data_), compare(compare), margin(0.1)
@@ -58,7 +57,7 @@ namespace platform {
}
} else {
if (data["score_name"].get<string>() == "accuracy") {
auto dt = Datasets(Paths::datasets(), false);
auto dt = Datasets(false, Paths::datasets());
dt.loadDataset(dataset);
auto numClasses = dt.getNClasses(dataset);
if (numClasses == 2) {
@@ -94,6 +93,8 @@ namespace platform {
ifstream resultData(Paths::results() + "/" + fileName);
if (resultData.is_open()) {
bestResults = json::parse(resultData);
} else {
existBestFile = false;
}
}
try {
@@ -101,7 +102,12 @@ namespace platform {
}
catch (exception) {
value = 1.0;
}
return value;
}
bool ReportBase::getExistBestFile()
{
return existBestFile;
}
}

View File

@@ -3,22 +3,13 @@
#include <string>
#include <iostream>
#include "Paths.h"
#include "Symbols.h"
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
using namespace std;
class Symbols {
public:
inline static const string check_mark{ "\u2714" };
inline static const string exclamation{ "\u2757" };
inline static const string black_star{ "\u2605" };
inline static const string cross{ "\u2717" };
inline static const string upward_arrow{ "\u27B6" };
inline static const string down_arrow{ "\u27B4" };
inline static const string equal_best{ check_mark };
inline static const string better_best{ black_star };
};
class ReportBase {
public:
explicit ReportBase(json data_, bool compare);
@@ -28,6 +19,7 @@ namespace platform {
json data;
string fromVector(const string& key);
string fVector(const string& title, const json& data, const int width, const int precision);
bool getExistBestFile();
virtual void header() = 0;
virtual void body() = 0;
virtual void showSummary() = 0;
@@ -35,10 +27,11 @@ namespace platform {
map<string, int> summary;
double margin;
map<string, string> meaning;
bool compare;
private:
double bestResult(const string& dataset, const string& model);
bool compare;
json bestResults;
bool existBestFile = true;
};
};
#endif

View File

@@ -1,16 +1,11 @@
#include <iostream>
#include <sstream>
#include <locale>
#include "ReportConsole.h"
#include "BestResult.h"
#include "BestScore.h"
#include "CLocale.h"
namespace platform {
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
string ReportConsole::headerLine(const string& text, int utf = 0)
{
int n = MAXL - text.length() - 3;
@@ -20,9 +15,6 @@ namespace platform {
void ReportConsole::header()
{
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
stringstream oss;
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
@@ -36,8 +28,16 @@ namespace platform {
}
void ReportConsole::body()
{
cout << Colors::GREEN() << " # Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "=== ========================= ====== ===== === ========= ========= ========= =============== =================== ====================" << endl;
auto tmp = ConfigLocale();
int maxHyper = 15;
int maxDataset = 7;
for (const auto& r : data["results"]) {
maxHyper = max(maxHyper, (int)r["hyperparameters"].dump().size());
maxDataset = max(maxDataset, (int)r["dataset"].get<string>().size());
}
cout << Colors::GREEN() << " # " << setw(maxDataset) << left << "Dataset" << " Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "=== " << string(maxDataset, '=') << " ====== ===== === ========= ========= ========= =============== =================== " << string(maxHyper, '=') << endl;
json lastResult;
double totalScore = 0.0;
bool odd = true;
@@ -49,8 +49,8 @@ namespace platform {
}
auto color = odd ? Colors::CYAN() : Colors::BLUE();
cout << color;
cout << setw(3) << index++ << " ";
cout << setw(25) << left << r["dataset"].get<string>() << " ";
cout << setw(3) << right << index++ << " ";
cout << setw(maxDataset) << left << r["dataset"].get<string>() << " ";
cout << setw(6) << right << r["samples"].get<int>() << " ";
cout << setw(5) << right << r["features"].get<int>() << " ";
cout << setw(3) << right << r["classes"].get<int>() << " ";
@@ -61,13 +61,9 @@ namespace platform {
const string status = compareResult(r["dataset"].get<string>(), r["score"].get<double>());
cout << status;
cout << setw(12) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
try {
cout << r["hyperparameters"].get<string>();
}
catch (const exception& err) {
cout << r["hyperparameters"];
}
cout << r["hyperparameters"].dump();
cout << endl;
cout << flush;
lastResult = r;
totalScore += r["score"].get<double>();
odd = !odd;
@@ -99,11 +95,15 @@ namespace platform {
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
showSummary();
auto score = data["score_name"].get<string>();
if (score == BestResult::scoreName()) {
auto best = BestScore::getScore(score);
if (best.first != "") {
stringstream oss;
oss << score << " compared to " << BestResult::title() << " .: " << totalScore / BestResult::score();
oss << score << " compared to " << best.first << " .: " << totalScore / best.second;
cout << headerLine(oss.str());
}
if (!getExistBestFile() && compare) {
cout << headerLine("*** Best Results File not found. Couldn't compare any result!");
}
cout << string(MAXL, '*') << endl << Colors::RESET();
}
}

View File

@@ -1,7 +1,6 @@
#ifndef REPORTCONSOLE_H
#define REPORTCONSOLE_H
#include <string>
#include <iostream>
#include "ReportBase.h"
#include "Colors.h"
@@ -18,7 +17,7 @@ namespace platform {
void header() override;
void body() override;
void footer(double totalScore);
void showSummary();
void showSummary() override;
};
};
#endif

View File

@@ -1,57 +1,16 @@
#include <sstream>
#include <locale>
#include "ReportExcel.h"
#include "BestResult.h"
#include "BestScore.h"
namespace platform {
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
ReportExcel::ReportExcel(json data_, bool compare, lxw_workbook* workbook) : ReportBase(data_, compare), row(0), workbook(workbook)
ReportExcel::ReportExcel(json data_, bool compare, lxw_workbook* workbook, lxw_worksheet* worksheet) : ReportBase(data_, compare), ExcelFile(workbook, worksheet)
{
normalSize = 14; //font size for report body
colorTitle = 0xB1A0C7;
colorOdd = 0xDCE6F1;
colorEven = 0xFDE9D9;
createFile();
}
lxw_workbook* ReportExcel::getWorkbook()
{
return workbook;
}
lxw_format* ReportExcel::efectiveStyle(const string& style)
{
lxw_format* efectiveStyle;
if (style == "") {
efectiveStyle = NULL;
} else {
string suffix = row % 2 ? "_odd" : "_even";
efectiveStyle = styles.at(style + suffix);
}
return efectiveStyle;
}
void ReportExcel::writeString(int row, int col, const string& text, const string& style)
{
worksheet_write_string(worksheet, row, col, text.c_str(), efectiveStyle(style));
}
void ReportExcel::writeInt(int row, int col, const int number, const string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ReportExcel::writeDouble(int row, int col, const double number, const string& style)
{
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
}
void ReportExcel::formatColumns()
{
worksheet_freeze_panes(worksheet, 6, 1);
@@ -60,122 +19,8 @@ namespace platform {
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
}
}
void ReportExcel::addColor(lxw_format* style, bool odd)
void ReportExcel::createWorksheet()
{
uint32_t efectiveColor = odd ? colorEven : colorOdd;
format_set_bg_color(style, lxw_color_t(efectiveColor));
}
void ReportExcel::createStyle(const string& name, lxw_format* style, bool odd)
{
addColor(style, odd);
if (name == "textCentered") {
format_set_align(style, LXW_ALIGN_CENTER);
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "text") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "bodyHeader") {
format_set_bold(style);
format_set_font_size(style, normalSize);
format_set_align(style, LXW_ALIGN_CENTER);
format_set_align(style, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(style, LXW_BORDER_THIN);
format_set_bg_color(style, lxw_color_t(colorTitle));
} else if (name == "result") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "0.0000000");
} else if (name == "time") {
format_set_font_size(style, normalSize);
format_set_border(style, LXW_BORDER_THIN);
format_set_num_format(style, "#,##0.000000");
} else if (name == "ints") {
format_set_font_size(style, normalSize);
format_set_num_format(style, "###,##0");
format_set_border(style, LXW_BORDER_THIN);
} else if (name == "floats") {
format_set_border(style, LXW_BORDER_THIN);
format_set_font_size(style, normalSize);
format_set_num_format(style, "#,##0.00");
}
}
void ReportExcel::createFormats()
{
auto styleNames = { "text", "textCentered", "bodyHeader", "result", "time", "ints", "floats" };
lxw_format* style;
for (string name : styleNames) {
lxw_format* style = workbook_add_format(workbook);
style = workbook_add_format(workbook);
createStyle(name, style, true);
styles[name + "_odd"] = style;
style = workbook_add_format(workbook);
createStyle(name, style, false);
styles[name + "_even"] = style;
}
// Header 1st line
lxw_format* headerFirst = workbook_add_format(workbook);
format_set_bold(headerFirst);
format_set_font_size(headerFirst, 18);
format_set_align(headerFirst, LXW_ALIGN_CENTER);
format_set_align(headerFirst, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerFirst, LXW_BORDER_THIN);
format_set_bg_color(headerFirst, lxw_color_t(colorTitle));
// Header rest
lxw_format* headerRest = workbook_add_format(workbook);
format_set_bold(headerRest);
format_set_align(headerRest, LXW_ALIGN_CENTER);
format_set_font_size(headerRest, 16);
format_set_align(headerRest, LXW_ALIGN_VERTICAL_CENTER);
format_set_border(headerRest, LXW_BORDER_THIN);
format_set_bg_color(headerRest, lxw_color_t(colorOdd));
// Header small
lxw_format* headerSmall = workbook_add_format(workbook);
format_set_bold(headerSmall);
format_set_align(headerSmall, LXW_ALIGN_LEFT);
format_set_font_size(headerSmall, 12);
format_set_border(headerSmall, LXW_BORDER_THIN);
format_set_align(headerSmall, LXW_ALIGN_VERTICAL_CENTER);
format_set_bg_color(headerSmall, lxw_color_t(colorOdd));
// Summary style
lxw_format* summaryStyle = workbook_add_format(workbook);
format_set_bold(summaryStyle);
format_set_font_size(summaryStyle, 16);
format_set_border(summaryStyle, LXW_BORDER_THIN);
format_set_align(summaryStyle, LXW_ALIGN_VERTICAL_CENTER);
styles["headerFirst"] = headerFirst;
styles["headerRest"] = headerRest;
styles["headerSmall"] = headerSmall;
styles["summaryStyle"] = summaryStyle;
}
void ReportExcel::setProperties()
{
char line[data["title"].get<string>().size() + 1];
strcpy(line, data["title"].get<string>().c_str());
lxw_doc_properties properties = {
.title = line,
.subject = "Machine learning results",
.author = "Ricardo Montañana Gómez",
.manager = "Dr. J. A. Gámez, Dr. J. M. Puerta",
.company = "UCLM",
.comments = "Created with libxlsxwriter and c++",
};
workbook_set_properties(workbook, &properties);
}
void ReportExcel::createFile()
{
if (workbook == NULL) {
workbook = workbook_new((Paths::excel() + fileName).c_str());
}
const string name = data["model"].get<string>();
string suffix = "";
string efectiveName;
@@ -193,8 +38,17 @@ namespace platform {
throw invalid_argument("Couldn't create sheet " + efectiveName);
}
}
cout << "Adding sheet " << efectiveName << " to " << Paths::excel() + fileName << endl;
setProperties();
}
void ReportExcel::createFile()
{
if (workbook == NULL) {
workbook = workbook_new((Paths::excel() + Paths::excelResults()).c_str());
}
if (worksheet == NULL) {
createWorksheet();
}
setProperties(data["title"].get<string>());
createFormats();
formatColumns();
}
@@ -266,14 +120,7 @@ namespace platform {
writeString(row, col + 9, status, "textCentered");
writeDouble(row, col + 10, r["time"].get<double>(), "time");
writeDouble(row, col + 11, r["time_std"].get<double>(), "time");
try {
hyperparameters = r["hyperparameters"].get<string>();
}
catch (const exception& err) {
stringstream oss;
oss << r["hyperparameters"];
hyperparameters = oss.str();
}
hyperparameters = r["hyperparameters"].dump();
if (hyperparameters.size() > hypSize) {
hypSize = hyperparameters.size();
}
@@ -281,7 +128,6 @@ namespace platform {
lastResult = r;
totalScore += r["score"].get<double>();
row++;
}
// Set the right column width of hyperparameters with the maximum length
worksheet_set_column(worksheet, 12, 12, hypSize + 5, NULL);
@@ -322,9 +168,13 @@ namespace platform {
showSummary();
row += 4 + summary.size();
auto score = data["score_name"].get<string>();
if (score == BestResult::scoreName()) {
worksheet_merge_range(worksheet, row, 1, row, 5, (score + " compared to " + BestResult::title() + " .:").c_str(), efectiveStyle("text"));
writeDouble(row, 6, totalScore / BestResult::score(), "result");
auto best = BestScore::getScore(score);
if (best.first != "") {
worksheet_merge_range(worksheet, row, 1, row, 5, (score + " compared to " + best.first + " .:").c_str(), efectiveStyle("text"));
writeDouble(row, 6, totalScore / best.second, "result");
}
if (!getExistBestFile() && compare) {
worksheet_write_string(worksheet, row + 1, 0, "*** Best Results File not found. Couldn't compare any result!", styles["summaryStyle"]);
}
}
}

View File

@@ -3,40 +3,23 @@
#include<map>
#include "xlsxwriter.h"
#include "ReportBase.h"
#include "ExcelFile.h"
#include "Colors.h"
namespace platform {
using namespace std;
const int MAXLL = 128;
class ReportExcel : public ReportBase {
class ReportExcel : public ReportBase, public ExcelFile {
public:
explicit ReportExcel(json data_, bool compare, lxw_workbook* workbook);
lxw_workbook* getWorkbook();
explicit ReportExcel(json data_, bool compare, lxw_workbook* workbook, lxw_worksheet* worksheet = NULL);
private:
void writeString(int row, int col, const string& text, const string& style = "");
void writeInt(int row, int col, const int number, const string& style = "");
void writeDouble(int row, int col, const double number, const string& style = "");
void formatColumns();
void createFormats();
void setProperties();
void createFile();
void createWorksheet();
void closeFile();
void showSummary();
lxw_workbook* workbook;
lxw_worksheet* worksheet;
map<string, lxw_format*> styles;
int row;
int normalSize; //font size for report body
uint32_t colorTitle;
uint32_t colorOdd;
uint32_t colorEven;
const string fileName = "some_results.xlsx";
void header() override;
void body() override;
void showSummary() override;
void footer(double totalScore, int row);
void createStyle(const string& name, lxw_format* style, bool odd);
void addColor(lxw_format* style, bool odd);
lxw_format* efectiveStyle(const string& name);
};
};
#endif // !REPORTEXCEL_H

58
src/Platform/Result.cc Normal file
View File

@@ -0,0 +1,58 @@
#include "Result.h"
#include "BestScore.h"
#include <filesystem>
#include <fstream>
#include <sstream>
#include "Colors.h"
#include "DotEnv.h"
#include "CLocale.h"
namespace platform {
Result::Result(const string& path, const string& filename)
: path(path)
, filename(filename)
{
auto data = load();
date = data["date"];
score = 0;
for (const auto& result : data["results"]) {
score += result["score"].get<double>();
}
scoreName = data["score_name"];
auto best = BestScore::getScore(scoreName);
if (best.first != "") {
score /= best.second;
}
title = data["title"];
duration = data["duration"];
model = data["model"];
complete = data["results"].size() > 1;
}
json Result::load() const
{
ifstream resultData(path + "/" + filename);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
}
string Result::to_string(int maxModel) const
{
auto tmp = ConfigLocale();
stringstream oss;
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
oss << date << " ";
oss << setw(maxModel) << left << model << " ";
oss << setw(11) << left << scoreName << " ";
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
auto completeString = isComplete() ? "C" : "P";
oss << setw(1) << " " << completeString << " ";
oss << setw(7) << setprecision(2) << fixed << durationShow << " " << durationUnit << " ";
oss << setw(50) << left << title << " ";
return oss.str();
}
}

37
src/Platform/Result.h Normal file
View File

@@ -0,0 +1,37 @@
#ifndef RESULT_H
#define RESULT_H
#include <map>
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
namespace platform {
using namespace std;
using json = nlohmann::json;
class Result {
public:
Result(const string& path, const string& filename);
json load() const;
string to_string(int maxModel) const;
string getFilename() const { return filename; };
string getDate() const { return date; };
double getScore() const { return score; };
string getTitle() const { return title; };
double getDuration() const { return duration; };
string getModel() const { return model; };
string getScoreName() const { return scoreName; };
bool isComplete() const { return complete; };
private:
string path;
string filename;
string date;
double score;
string title;
double duration;
string model;
string scoreName;
bool complete;
};
};
#endif

View File

@@ -1,39 +1,17 @@
#include <filesystem>
#include "platformUtils.h"
#include "Results.h"
#include "ReportConsole.h"
#include "ReportExcel.h"
#include "BestResult.h"
#include "Colors.h"
#include <algorithm>
namespace platform {
Result::Result(const string& path, const string& filename)
: path(path)
, filename(filename)
Results::Results(const string& path, const string& model, const string& score, bool complete, bool partial) :
path(path), model(model), scoreName(score), complete(complete), partial(partial)
{
auto data = load();
date = data["date"];
score = 0;
for (const auto& result : data["results"]) {
score += result["score"].get<double>();
}
scoreName = data["score_name"];
if (scoreName == BestResult::scoreName()) {
score /= BestResult::score();
}
title = data["title"];
duration = data["duration"];
model = data["model"];
complete = data["results"].size() > 1;
}
json Result::load() const
{
ifstream resultData(path + "/" + filename);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
load();
if (!files.empty()) {
maxModel = (*max_element(files.begin(), files.end(), [](const Result& a, const Result& b) { return a.getModel().size() < b.getModel().size(); })).getModel().size();
} else {
maxModel = 0;
}
};
void Results::load()
{
using std::filesystem::directory_iterator;
@@ -49,220 +27,21 @@ namespace platform {
}
}
}
string Result::to_string() const
void Results::hideResult(int index, const string& pathHidden)
{
stringstream oss;
oss << date << " ";
oss << setw(12) << left << model << " ";
oss << setw(11) << left << scoreName << " ";
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
auto completeString = isComplete() ? "C" : "P";
oss << setw(1) << " " << completeString << " ";
oss << setw(9) << setprecision(3) << fixed << duration << " ";
oss << setw(50) << left << title << " ";
return oss.str();
auto filename = files.at(index).getFilename();
rename((path + "/" + filename).c_str(), (pathHidden + "/" + filename).c_str());
files.erase(files.begin() + index);
}
void Results::show() const
void Results::deleteResult(int index)
{
cout << Colors::GREEN() << "Results found: " << files.size() << endl;
cout << "-------------------" << endl;
if (complete) {
cout << Colors::MAGENTA() << "Only listing complete results" << endl;
}
if (partial) {
cout << Colors::MAGENTA() << "Only listing partial results" << endl;
}
auto i = 0;
cout << Colors::GREEN() << " # Date Model Score Name Score C/P Duration Title" << endl;
cout << "=== ========== ============ =========== =========== === ========= =============================================================" << endl;
bool odd = true;
for (const auto& result : files) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << result.to_string() << endl;
if (i == max && max != 0) {
break;
}
odd = !odd;
}
}
int Results::getIndex(const string& intent) const
{
string color;
if (intent == "delete") {
color = Colors::RED();
} else {
color = Colors::YELLOW();
}
cout << color << "Choose result to " << intent << " (cancel=-1): ";
string line;
getline(cin, line);
int index = stoi(line);
if (index >= -1 && index < static_cast<int>(files.size())) {
return index;
}
cout << "Invalid index" << endl;
return -1;
}
void Results::report(const int index, const bool excelReport)
{
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
auto data = files.at(index).load();
if (excelReport) {
ReportExcel reporter(data, compare, workbook);
reporter.show();
openExcel = true;
workbook = reporter.getWorkbook();
} else {
ReportConsole reporter(data, compare);
reporter.show();
}
}
void Results::showIndex(const int index, const int idx) const
{
auto data = files.at(index).load();
if (idx < 0 or idx >= static_cast<int>(data["results"].size())) {
cout << "Invalid index" << endl;
return;
}
cout << Colors::YELLOW() << "Showing " << files.at(index).getFilename() << endl;
ReportConsole reporter(data, compare, idx);
reporter.show();
}
void Results::menu()
{
char option;
int index;
bool finished = false;
string color, context;
string filename, line, options = "qldhsre";
while (!finished) {
if (indexList) {
color = Colors::GREEN();
context = " (quit='q', list='l', delete='d', hide='h', sort='s', report='r', excel='e'): ";
options = "qldhsre";
} else {
color = Colors::MAGENTA();
context = " (quit='q', list='l'): ";
options = "ql";
}
cout << Colors::RESET() << color;
cout << "Choose option " << context;
getline(cin, line);
if (line.size() == 0)
continue;
if (options.find(line[0]) != string::npos) {
if (line.size() > 1) {
cout << "Invalid option" << endl;
continue;
}
option = line[0];
} else {
if (all_of(line.begin(), line.end(), ::isdigit)) {
int idx = stoi(line);
if (indexList) {
// The value is about the files list
index = idx;
if (index >= 0 && index < files.size()) {
report(index, false);
indexList = false;
continue;
}
} else {
// The value is about the result showed on screen
showIndex(index, idx);
continue;
}
}
cout << "Invalid option" << endl;
continue;
}
switch (option) {
case 'q':
finished = true;
break;
case 'l':
show();
indexList = true;
break;
case 'd':
index = getIndex("delete");
if (index == -1)
break;
filename = files[index].getFilename();
cout << "Deleting " << filename << endl;
auto filename = files.at(index).getFilename();
remove((path + "/" + filename).c_str());
files.erase(files.begin() + index);
cout << "File: " + filename + " deleted!" << endl;
show();
indexList = true;
break;
case 'h':
index = getIndex("hide");
if (index == -1)
break;
filename = files[index].getFilename();
cout << "Hiding " << filename << endl;
rename((path + "/" + filename).c_str(), (path + "/." + filename).c_str());
files.erase(files.begin() + index);
show();
menu();
indexList = true;
break;
case 's':
sortList();
indexList = true;
show();
break;
case 'r':
index = getIndex("report");
if (index == -1)
break;
indexList = false;
report(index, false);
break;
case 'e':
index = getIndex("excel");
if (index == -1)
break;
indexList = true;
report(index, true);
break;
default:
cout << "Invalid option" << endl;
}
}
}
void Results::sortList()
int Results::size() const
{
cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
string line;
char option;
getline(cin, line);
if (line.size() == 0)
return;
if (line.size() > 1) {
cout << "Invalid option" << endl;
return;
}
option = line[0];
switch (option) {
case 'd':
sortDate();
break;
case 's':
sortScore();
break;
case 'u':
sortDuration();
break;
case 'm':
sortModel();
break;
default:
cout << "Invalid option" << endl;
}
return files.size();
}
void Results::sortDate()
{
@@ -288,19 +67,8 @@ namespace platform {
return a.getScore() > b.getScore();
});
}
void Results::manage()
bool Results::empty() const
{
if (files.size() == 0) {
cout << "No results found!" << endl;
exit(0);
return files.empty();
}
sortDate();
show();
menu();
if (openExcel) {
workbook_close(workbook);
}
cout << "Done!" << endl;
}
}

View File

@@ -1,69 +1,38 @@
#ifndef RESULTS_H
#define RESULTS_H
#include "xlsxwriter.h"
#include <map>
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
#include "Result.h"
namespace platform {
using namespace std;
using json = nlohmann::json;
class Result {
public:
Result(const string& path, const string& filename);
json load() const;
string to_string() const;
string getFilename() const { return filename; };
string getDate() const { return date; };
double getScore() const { return score; };
string getTitle() const { return title; };
double getDuration() const { return duration; };
string getModel() const { return model; };
string getScoreName() const { return scoreName; };
bool isComplete() const { return complete; };
private:
string path;
string filename;
string date;
double score;
string title;
double duration;
string model;
string scoreName;
bool complete;
};
class Results {
public:
Results(const string& path, const int max, const string& model, const string& score, bool complete, bool partial, bool compare) :
path(path), max(max), model(model), scoreName(score), complete(complete), partial(partial), compare(compare)
{
load();
};
void manage();
private:
string path;
int max;
string model;
string scoreName;
bool complete;
bool partial;
bool indexList = true;
bool openExcel = false;
bool compare;
lxw_workbook* workbook = NULL;
vector<Result> files;
void load(); // Loads the list of results
void show() const;
void report(const int index, const bool excelReport);
void showIndex(const int index, const int idx) const;
int getIndex(const string& intent) const;
void menu();
void sortList();
Results(const string& path, const string& model, const string& score, bool complete, bool partial);
void sortDate();
void sortScore();
void sortModel();
void sortDuration();
int maxModelSize() const { return maxModel; };
void hideResult(int index, const string& pathHidden);
void deleteResult(int index);
int size() const;
bool empty() const;
vector<Result>::iterator begin() { return files.begin(); };
vector<Result>::iterator end() { return files.end(); };
Result& at(int index) { return files.at(index); };
private:
string path;
string model;
string scoreName;
bool complete;
bool partial;
int maxModel;
vector<Result> files;
void load(); // Loads the list of results
};
};

252
src/Platform/Statistics.cc Normal file
View File

@@ -0,0 +1,252 @@
#include <sstream>
#include "Statistics.h"
#include "Colors.h"
#include "Symbols.h"
#include <boost/math/distributions/chi_squared.hpp>
#include <boost/math/distributions/normal.hpp>
#include "CLocale.h"
namespace platform {
Statistics::Statistics(const vector<string>& models, const vector<string>& datasets, const json& data, double significance, bool output) :
models(models), datasets(datasets), data(data), significance(significance), output(output)
{
nModels = models.size();
nDatasets = datasets.size();
auto temp = ConfigLocale();
};
void Statistics::fit()
{
if (nModels < 3 || nDatasets < 3) {
cerr << "nModels: " << nModels << endl;
cerr << "nDatasets: " << nDatasets << endl;
throw runtime_error("Can't make the Friedman test with less than 3 models and/or less than 3 datasets.");
}
ranksModels.clear();
computeRanks();
// Set the control model as the one with the lowest average rank
controlIdx = distance(ranks.begin(), min_element(ranks.begin(), ranks.end(), [](const auto& l, const auto& r) { return l.second < r.second; }));
computeWTL();
maxModelName = (*max_element(models.begin(), models.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const string& a, const string& b) { return a.size() < b.size(); })).size();
fitted = true;
}
map<string, float> assignRanks(vector<pair<string, double>>& ranksOrder)
{
// sort the ranksOrder vector by value
sort(ranksOrder.begin(), ranksOrder.end(), [](const pair<string, double>& a, const pair<string, double>& b) {
return a.second > b.second;
});
//Assign ranks to values and if they are the same they share the same averaged rank
map<string, float> ranks;
for (int i = 0; i < ranksOrder.size(); i++) {
ranks[ranksOrder[i].first] = i + 1.0;
}
int i = 0;
while (i < static_cast<int>(ranksOrder.size())) {
int j = i + 1;
int sumRanks = ranks[ranksOrder[i].first];
while (j < static_cast<int>(ranksOrder.size()) && ranksOrder[i].second == ranksOrder[j].second) {
sumRanks += ranks[ranksOrder[j++].first];
}
if (j > i + 1) {
float averageRank = (float)sumRanks / (j - i);
for (int k = i; k < j; k++) {
ranks[ranksOrder[k].first] = averageRank;
}
}
i = j;
}
return ranks;
}
void Statistics::computeRanks()
{
map<string, float> ranksLine;
for (const auto& dataset : datasets) {
vector<pair<string, double>> ranksOrder;
for (const auto& model : models) {
double value = data[model].at(dataset).at(0).get<double>();
ranksOrder.push_back({ model, value });
}
// Assign the ranks
ranksLine = assignRanks(ranksOrder);
// Store the ranks of the dataset
ranksModels[dataset] = ranksLine;
if (ranks.size() == 0) {
ranks = ranksLine;
} else {
for (const auto& rank : ranksLine) {
ranks[rank.first] += rank.second;
}
}
}
// Average the ranks
for (const auto& rank : ranks) {
ranks[rank.first] /= nDatasets;
}
}
void Statistics::computeWTL()
{
// Compute the WTL matrix
for (int i = 0; i < nModels; ++i) {
wtl[i] = { 0, 0, 0 };
}
json origin = data.begin().value();
for (auto const& item : origin.items()) {
auto controlModel = models.at(controlIdx);
double controlValue = data[controlModel].at(item.key()).at(0).get<double>();
for (int i = 0; i < nModels; ++i) {
if (i == controlIdx) {
continue;
}
double value = data[models[i]].at(item.key()).at(0).get<double>();
if (value < controlValue) {
wtl[i].win++;
} else if (value == controlValue) {
wtl[i].tie++;
} else {
wtl[i].loss++;
}
}
}
}
void Statistics::postHocHolmTest(bool friedmanResult)
{
if (!fitted) {
fit();
}
stringstream oss;
// Reference https://link.springer.com/article/10.1007/s44196-022-00083-8
// Post-hoc Holm test
// Calculate the p-value for the models paired with the control model
map<int, double> stats; // p-value of each model paired with the control model
boost::math::normal dist(0.0, 1.0);
double diff = sqrt(nModels * (nModels + 1) / (6.0 * nDatasets));
for (int i = 0; i < nModels; i++) {
if (i == controlIdx) {
stats[i] = 0.0;
continue;
}
double z = abs(ranks.at(models[controlIdx]) - ranks.at(models[i])) / diff;
double p_value = (long double)2 * (1 - cdf(dist, z));
stats[i] = p_value;
}
// Sort the models by p-value
vector<pair<int, double>> statsOrder;
for (const auto& stat : stats) {
statsOrder.push_back({ stat.first, stat.second });
}
sort(statsOrder.begin(), statsOrder.end(), [](const pair<int, double>& a, const pair<int, double>& b) {
return a.second < b.second;
});
// Holm adjustment
for (int i = 0; i < statsOrder.size(); ++i) {
auto item = statsOrder.at(i);
double before = i == 0 ? 0.0 : statsOrder.at(i - 1).second;
double p_value = min((double)1.0, item.second * (nModels - i));
p_value = max(before, p_value);
statsOrder[i] = { item.first, p_value };
}
holmResult.model = models.at(controlIdx);
auto color = friedmanResult ? Colors::CYAN() : Colors::YELLOW();
oss << color;
oss << " *************************************************************************************************************" << endl;
oss << " Post-hoc Holm test: H0: 'There is no significant differences between the control model and the other models.'" << endl;
oss << " Control model: " << models.at(controlIdx) << endl;
oss << " " << left << setw(maxModelName) << string("Model") << " p-value rank win tie loss Status" << endl;
oss << " " << string(maxModelName, '=') << " ============ ========= === === ==== =============" << endl;
// sort ranks from lowest to highest
vector<pair<string, float>> ranksOrder;
for (const auto& rank : ranks) {
ranksOrder.push_back({ rank.first, rank.second });
}
sort(ranksOrder.begin(), ranksOrder.end(), [](const pair<string, float>& a, const pair<string, float>& b) {
return a.second < b.second;
});
// Show the control model info.
oss << " " << Colors::BLUE() << left << setw(maxModelName) << ranksOrder.at(0).first << " ";
oss << setw(12) << " " << setprecision(7) << fixed << " " << ranksOrder.at(0).second << endl;
for (const auto& item : ranksOrder) {
auto idx = distance(models.begin(), find(models.begin(), models.end(), item.first));
double pvalue = 0.0;
for (const auto& stat : statsOrder) {
if (stat.first == idx) {
pvalue = stat.second;
}
}
holmResult.holmLines.push_back({ item.first, pvalue, item.second, wtl.at(idx), pvalue < significance });
if (item.first == models.at(controlIdx)) {
continue;
}
auto colorStatus = pvalue > significance ? Colors::GREEN() : Colors::MAGENTA();
auto status = pvalue > significance ? Symbols::check_mark : Symbols::cross;
auto textStatus = pvalue > significance ? " accepted H0" : " rejected H0";
oss << " " << colorStatus << left << setw(maxModelName) << item.first << " ";
oss << setprecision(6) << scientific << pvalue << setprecision(7) << fixed << " " << item.second;
oss << " " << right << setw(3) << wtl.at(idx).win << " " << setw(3) << wtl.at(idx).tie << " " << setw(4) << wtl.at(idx).loss;
oss << " " << status << textStatus << endl;
}
oss << color << " *************************************************************************************************************" << endl;
oss << Colors::RESET();
if (output) {
cout << oss.str();
}
}
bool Statistics::friedmanTest()
{
if (!fitted) {
fit();
}
stringstream oss;
// Friedman test
// Calculate the Friedman statistic
oss << Colors::BLUE() << endl;
oss << "***************************************************************************************************************" << endl;
oss << Colors::GREEN() << "Friedman test: H0: 'There is no significant differences between all the classifiers.'" << Colors::BLUE() << endl;
double degreesOfFreedom = nModels - 1.0;
double sumSquared = 0;
for (const auto& rank : ranks) {
sumSquared += pow(rank.second, 2);
}
// Compute the Friedman statistic as in https://link.springer.com/article/10.1007/s44196-022-00083-8
double friedmanQ = 12.0 * nDatasets / (nModels * (nModels + 1)) * (sumSquared - (nModels * pow(nModels + 1, 2)) / 4);
// Calculate the critical value
boost::math::chi_squared chiSquared(degreesOfFreedom);
long double p_value = (long double)1.0 - cdf(chiSquared, friedmanQ);
double criticalValue = quantile(chiSquared, 1 - significance);
oss << "Friedman statistic: " << friedmanQ << endl;
oss << "Critical χ2 Value for df=" << fixed << (int)degreesOfFreedom
<< " and alpha=" << setprecision(2) << fixed << significance << ": " << setprecision(7) << scientific << criticalValue << std::endl;
oss << "p-value: " << scientific << p_value << " is " << (p_value < significance ? "less" : "greater") << " than " << setprecision(2) << fixed << significance << endl;
bool result;
if (p_value < significance) {
oss << Colors::GREEN() << "The null hypothesis H0 is rejected." << endl;
result = true;
} else {
oss << Colors::YELLOW() << "The null hypothesis H0 is accepted. Computed p-values will not be significant." << endl;
result = false;
}
oss << Colors::BLUE() << "***************************************************************************************************************" << Colors::RESET() << endl;
if (output) {
cout << oss.str();
}
friedmanResult = { friedmanQ, criticalValue, p_value, result };
return result;
}
FriedmanResult& Statistics::getFriedmanResult()
{
return friedmanResult;
}
HolmResult& Statistics::getHolmResult()
{
return holmResult;
}
map<string, map<string, float>>& Statistics::getRanks()
{
return ranksModels;
}
} // namespace platform

64
src/Platform/Statistics.h Normal file
View File

@@ -0,0 +1,64 @@
#ifndef STATISTICS_H
#define STATISTICS_H
#include <iostream>
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
using namespace std;
using json = nlohmann::json;
namespace platform {
struct WTL {
int win;
int tie;
int loss;
};
struct FriedmanResult {
double statistic;
double criticalValue;
long double pvalue;
bool reject;
};
struct HolmLine {
string model;
long double pvalue;
double rank;
WTL wtl;
bool reject;
};
struct HolmResult {
string model;
vector<HolmLine> holmLines;
};
class Statistics {
public:
Statistics(const vector<string>& models, const vector<string>& datasets, const json& data, double significance = 0.05, bool output = true);
bool friedmanTest();
void postHocHolmTest(bool friedmanResult);
FriedmanResult& getFriedmanResult();
HolmResult& getHolmResult();
map<string, map<string, float>>& getRanks();
private:
void fit();
void computeRanks();
void computeWTL();
const vector<string>& models;
const vector<string>& datasets;
const json& data;
double significance;
bool output;
bool fitted = false;
int nModels = 0;
int nDatasets = 0;
int controlIdx = 0;
map<int, WTL> wtl;
map<string, float> ranks;
int maxModelName = 0;
int maxDatasetName = 0;
FriedmanResult friedmanResult;
HolmResult holmResult;
map<string, map<string, float>> ranksModels;
};
}
#endif // !STATISTICS_H

18
src/Platform/Symbols.h Normal file
View File

@@ -0,0 +1,18 @@
#ifndef SYMBOLS_H
#define SYMBOLS_H
#include <string>
using namespace std;
namespace platform {
class Symbols {
public:
inline static const string check_mark{ "\u2714" };
inline static const string exclamation{ "\u2757" };
inline static const string black_star{ "\u2605" };
inline static const string cross{ "\u2717" };
inline static const string upward_arrow{ "\u27B6" };
inline static const string down_arrow{ "\u27B4" };
inline static const string equal_best{ check_mark };
inline static const string better_best{ black_star };
};
}
#endif // !SYMBOLS_H

30
src/Platform/Utils.h Normal file
View File

@@ -0,0 +1,30 @@
#ifndef UTILS_H
#define UTILS_H
#include <sstream>
#include <string>
#include <vector>
namespace platform {
//static vector<string> split(const string& text, char delimiter);
static std::vector<std::string> split(const std::string& text, char delimiter)
{
std::vector<std::string> result;
std::stringstream ss(text);
std::string token;
while (std::getline(ss, token, delimiter)) {
result.push_back(token);
}
return result;
}
static std::string trim(const std::string& str)
{
std::string result = str;
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
return !std::isspace(ch);
}));
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
return !std::isspace(ch);
}).base(), result.end());
return result;
}
}
#endif

87
src/Platform/b_best.cc Normal file
View File

@@ -0,0 +1,87 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include "Paths.h"
#include "BestResults.h"
#include "Colors.h"
using namespace std;
argparse::ArgumentParser manageArguments(int argc, char** argv)
{
argparse::ArgumentParser program("best");
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
program.add_argument("--report").help("report of best score results file").default_value(false).implicit_value(true);
program.add_argument("--friedman").help("Friedman test").default_value(false).implicit_value(true);
program.add_argument("--excel").help("Output to excel").default_value(false).implicit_value(true);
program.add_argument("--level").help("significance level").default_value(0.05).scan<'g', double>().action([](const string& value) {
try {
auto k = stod(value);
if (k < 0.01 || k > 0.15) {
throw runtime_error("Significance level hast to be a number in [0.01, 0.15]");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an decimal number");
}});
return program;
}
int main(int argc, char** argv)
{
auto program = manageArguments(argc, argv);
string model, score;
bool build, report, friedman, excel;
double level;
try {
program.parse_args(argc, argv);
model = program.get<string>("model");
score = program.get<string>("score");
build = program.get<bool>("build");
report = program.get<bool>("report");
friedman = program.get<bool>("friedman");
excel = program.get<bool>("excel");
level = program.get<double>("level");
if (model == "" || score == "") {
throw runtime_error("Model and score name must be supplied");
}
if (friedman && model != "any") {
cerr << "Friedman test can only be used with all models" << endl;
cerr << program;
exit(1);
}
if (!report && !build) {
cerr << "Either build, report or both, have to be selected to do anything!" << endl;
cerr << program;
exit(1);
}
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
// Generate report
auto results = platform::BestResults(platform::Paths::results(), score, model, friedman, level);
if (build) {
if (model == "any") {
results.buildAll();
} else {
string fileName = results.build();
cout << Colors::GREEN() << fileName << " created!" << Colors::RESET() << endl;
}
}
if (report) {
if (model == "any") {
results.reportAll(excel);
} else {
results.reportSingle(excel);
}
}
return 0;
}

View File

@@ -27,7 +27,7 @@ void outputBalance(const string& balance)
int main(int argc, char** argv)
{
auto data = platform::Datasets(platform::Paths().datasets(), false);
auto data = platform::Datasets(false, platform::Paths::datasets());
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);

View File

@@ -1,7 +1,6 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "platformUtils.h"
#include "Experiment.h"
#include "Datasets.h"
#include "DotEnv.h"
@@ -13,15 +12,12 @@
using namespace std;
using json = nlohmann::json;
argparse::ArgumentParser manageArguments(int argc, char** argv)
argparse::ArgumentParser manageArguments()
{
auto env = platform::DotEnv();
argparse::ArgumentParser program("main");
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparamters passed to the model in Experiment");
program.add_argument("-p", "--path")
.help("folder where the data files are located, default")
.default_value(string{ platform::Paths::datasets() });
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) {
@@ -34,6 +30,7 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
);
program.add_argument("--title").default_value("").help("Experiment title");
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const string& value) {
@@ -52,46 +49,41 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
}});
auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
return program;
}
int main(int argc, char** argv)
{
string file_name, model_name, title;
json hyperparameters_json;
bool discretize_dataset, stratified, saveResults, quiet;
vector<int> seeds;
vector<string> filesToTest;
int n_folds;
auto program = manageArguments();
try {
program.parse_args(argc, argv);
auto file_name = program.get<string>("dataset");
auto path = program.get<string>("path");
auto model_name = program.get<string>("model");
auto discretize_dataset = program.get<bool>("discretize");
auto stratified = program.get<bool>("stratified");
auto n_folds = program.get<int>("folds");
auto seeds = program.get<vector<int>>("seeds");
auto complete_file_name = path + file_name + ".arff";
auto title = program.get<string>("title");
file_name = program.get<string>("dataset");
model_name = program.get<string>("model");
discretize_dataset = program.get<bool>("discretize");
stratified = program.get<bool>("stratified");
quiet = program.get<bool>("quiet");
n_folds = program.get<int>("folds");
seeds = program.get<vector<int>>("seeds");
auto hyperparameters = program.get<string>("hyperparameters");
auto saveResults = program.get<bool>("save");
hyperparameters_json = json::parse(hyperparameters);
title = program.get<string>("title");
if (title == "" && file_name == "") {
throw runtime_error("title is mandatory if dataset is not provided");
}
saveResults = program.get<bool>("save");
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
return program;
}
int main(int argc, char** argv)
{
auto program = manageArguments(argc, argv);
auto file_name = program.get<string>("dataset");
auto path = program.get<string>("path");
auto model_name = program.get<string>("model");
auto discretize_dataset = program.get<bool>("discretize");
auto stratified = program.get<bool>("stratified");
auto n_folds = program.get<int>("folds");
auto seeds = program.get<vector<int>>("seeds");
auto hyperparameters = program.get<string>("hyperparameters");
vector<string> filesToTest;
auto datasets = platform::Datasets(path, true, platform::ARFF);
auto title = program.get<string>("title");
auto saveResults = program.get<bool>("save");
auto datasets = platform::Datasets(discretize_dataset, platform::Paths::datasets());
if (file_name != "") {
if (!datasets.isDataset(file_name)) {
cerr << "Dataset " << file_name << " not found" << endl;
@@ -113,17 +105,18 @@ int main(int argc, char** argv)
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
experiment.setHyperparameters(json::parse(hyperparameters));
experiment.setHyperparameters(hyperparameters_json);
for (auto seed : seeds) {
experiment.addRandomSeed(seed);
}
platform::Timer timer;
timer.start();
experiment.go(filesToTest, path);
experiment.go(filesToTest, quiet);
experiment.setDuration(timer.getDuration());
if (saveResults) {
experiment.save(platform::Paths::results());
}
if (!quiet)
experiment.report();
cout << "Done!" << endl;
return 0;

View File

@@ -1,8 +1,6 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include "platformUtils.h"
#include "Paths.h"
#include "Results.h"
#include "ManageResults.h"
using namespace std;
@@ -38,15 +36,15 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
int main(int argc, char** argv)
{
auto program = manageArguments(argc, argv);
auto number = program.get<int>("number");
auto model = program.get<string>("model");
auto score = program.get<string>("score");
int number = program.get<int>("number");
string model = program.get<string>("model");
string score = program.get<string>("score");
auto complete = program.get<bool>("complete");
auto partial = program.get<bool>("partial");
auto compare = program.get<bool>("compare");
if (complete)
partial = false;
auto results = platform::Results(platform::Paths::results(), number, model, score, complete, partial, compare);
results.manage();
auto manager = platform::ManageResults(number, model, score, complete, partial, compare);
manager.doMenu();
return 0;
}

View File

@@ -1,21 +0,0 @@
#ifndef PLATFORM_UTILS_H
#define PLATFORM_UTILS_H
#include <torch/torch.h>
#include <string>
#include <vector>
#include <map>
#include <tuple>
#include "ArffFiles.h"
#include "CPPFImdlp.h"
using namespace std;
const string PATH = "../../data/";
bool file_exists(const std::string& name);
vector<string> split(const string& text, char delimiter);
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features);
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
pair<torch::Tensor, map<string, vector<int>>> discretizeTorch(torch::Tensor& X, torch::Tensor& y, vector<string>& features, const string& className);
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name);
tuple<torch::Tensor, torch::Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset);
map<string, vector<int>> get_states(vector<string>& features, string className, map<string, int>& maxes);
#endif //PLATFORM_UTILS_H

View File

@@ -1,88 +0,0 @@
#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/generators/catch_generators.hpp>
#include <vector>
#include <map>
#include <string>
#include "KDB.h"
#include "TAN.h"
#include "SPODE.h"
#include "AODE.h"
#include "platformUtils.h"
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
{
map <pair<string, string>, float> scores = {
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
{{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333}
};
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
auto [Xd, y, features, className, states] = loadFile(file_name);
SECTION("Test TAN classifier (" + file_name + ")")
{
auto clf = bayesnet::TAN();
clf.fit(Xd, y, features, className, states);
auto score = clf.score(Xd, y);
//scores[{file_name, "TAN"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(1e-6));
}
SECTION("Test KDB classifier (" + file_name + ")")
{
auto clf = bayesnet::KDB(2);
clf.fit(Xd, y, features, className, states);
auto score = clf.score(Xd, y);
//scores[{file_name, "KDB"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "KDB"
}]).epsilon(1e-6));
}
SECTION("Test SPODE classifier (" + file_name + ")")
{
auto clf = bayesnet::SPODE(1);
clf.fit(Xd, y, features, className, states);
auto score = clf.score(Xd, y);
// scores[{file_name, "SPODE"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(1e-6));
}
SECTION("Test AODE classifier (" + file_name + ")")
{
auto clf = bayesnet::AODE();
clf.fit(Xd, y, features, className, states);
auto score = clf.score(Xd, y);
// scores[{file_name, "AODE"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(1e-6));
}
// for (auto scores : scores) {
// cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
// }
}
TEST_CASE("Models features")
{
auto graph = vector<string>({ "digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
"class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
"class -> sepallength", "class -> sepalwidth", "class -> petallength", "class -> petalwidth", "petallength [shape=circle] \n",
"petallength -> sepallength", "petalwidth [shape=circle] \n", "sepallength [shape=circle] \n",
"sepallength -> sepalwidth", "sepalwidth [shape=circle] \n", "sepalwidth -> petalwidth", "}\n"
}
);
auto clf = bayesnet::TAN();
auto [Xd, y, features, className, states] = loadFile("iris");
clf.fit(Xd, y, features, className, states);
REQUIRE(clf.getNumberOfNodes() == 5);
REQUIRE(clf.getNumberOfEdges() == 7);
REQUIRE(clf.show() == vector<string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
REQUIRE(clf.graph("Test") == graph);
}
TEST_CASE("Get num features & num edges")
{
auto [Xd, y, features, className, states] = loadFile("iris");
auto clf = bayesnet::KDB(2);
clf.fit(Xd, y, features, className, states);
REQUIRE(clf.getNumberOfNodes() == 5);
REQUIRE(clf.getNumberOfEdges() == 8);
}

View File

@@ -1,33 +0,0 @@
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/generators/catch_generators.hpp>
#include <string>
#include "KDB.h"
#include "platformUtils.h"
TEST_CASE("Test Bayesian Network")
{
auto [Xd, y, features, className, states] = loadFile("iris");
SECTION("Test get features")
{
auto net = bayesnet::Network();
net.addNode("A");
net.addNode("B");
REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
net.addNode("C");
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
}
SECTION("Test get edges")
{
auto net = bayesnet::Network();
net.addNode("A");
net.addNode("B");
net.addNode("C");
net.addEdge("A", "B");
net.addEdge("B", "C");
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });
net.addEdge("A", "C");
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "A", "C" }, { "B", "C" } });
}
}

View File

@@ -1,12 +1,18 @@
if(ENABLE_TESTING)
set(TEST_MAIN "unit_tests")
set(TEST_BAYESNET "unit_tests_bayesnet")
set(TEST_PLATFORM "unit_tests_platform")
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
set(TEST_SOURCES BayesModels.cc BayesNetwork.cc ${BayesNet_SOURCE_DIR}/src/Platform/platformUtils.cc ${BayesNet_SOURCES})
add_executable(${TEST_MAIN} ${TEST_SOURCES})
target_link_libraries(${TEST_MAIN} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
add_test(NAME ${TEST_MAIN} COMMAND ${TEST_MAIN})
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
set(TEST_SOURCES_BAYESNET TestBayesModels.cc TestBayesNetwork.cc TestBayesMetrics.cc TestUtils.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCES})
set(TEST_SOURCES_PLATFORM TestFolding.cc TestUtils.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc)
add_executable(${TEST_BAYESNET} ${TEST_SOURCES_BAYESNET})
add_executable(${TEST_PLATFORM} ${TEST_SOURCES_PLATFORM})
target_link_libraries(${TEST_BAYESNET} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
target_link_libraries(${TEST_PLATFORM} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
add_test(NAME ${TEST_BAYESNET} COMMAND ${TEST_BAYESNET})
add_test(NAME ${TEST_PLATFORM} COMMAND ${TEST_PLATFORM})
endif(ENABLE_TESTING)

63
tests/TestBayesMetrics.cc Normal file
View File

@@ -0,0 +1,63 @@
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/generators/catch_generators.hpp>
#include "BayesMetrics.h"
#include "TestUtils.h"
using namespace std;
TEST_CASE("Metrics Test", "[BayesNet]")
{
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
map<string, pair<int, vector<int>>> resultsKBest = {
{"glass", {7, { 0, 1, 7, 6, 3, 5, 2 }}},
{"iris", {3, { 0, 3, 2 }} },
{"ecoli", {6, { 2, 4, 1, 0, 6, 5 }}},
{"diabetes", {2, { 7, 1 }}}
};
map<string, double> resultsMI = {
{"glass", 0.12805398},
{"iris", 0.3158139948},
{"ecoli", 0.0089431099},
{"diabetes", 0.0345470614}
};
map<pair<string, int>, vector<pair<int, int>>> resultsMST = {
{ {"glass", 0}, { {0, 6}, {0, 5}, {0, 3}, {5, 1}, {5, 8}, {5, 4}, {6, 2}, {6, 7} } },
{ {"glass", 1}, { {1, 5}, {5, 0}, {5, 8}, {5, 4}, {0, 6}, {0, 3}, {6, 2}, {6, 7} } },
{ {"iris", 0}, { {0, 1}, {0, 2}, {1, 3} } },
{ {"iris", 1}, { {1, 0}, {1, 3}, {0, 2} } },
{ {"ecoli", 0}, { {0, 1}, {0, 2}, {1, 5}, {1, 3}, {5, 6}, {5, 4} } },
{ {"ecoli", 1}, { {1, 0}, {1, 5}, {1, 3}, {5, 6}, {5, 4}, {0, 2} } },
{ {"diabetes", 0}, { {0, 7}, {0, 2}, {0, 6}, {2, 3}, {3, 4}, {3, 5}, {4, 1} } },
{ {"diabetes", 1}, { {1, 4}, {4, 3}, {3, 2}, {3, 5}, {2, 0}, {0, 7}, {0, 6} } }
};
auto raw = RawDatasets(file_name, true);
bayesnet::Metrics metrics(raw.dataset, raw.featurest, raw.classNamet, raw.classNumStates);
SECTION("Test Constructor")
{
REQUIRE(metrics.getScoresKBest().size() == 0);
}
SECTION("Test SelectKBestWeighted")
{
vector<int> kBest = metrics.SelectKBestWeighted(raw.weights, true, resultsKBest.at(file_name).first);
REQUIRE(kBest.size() == resultsKBest.at(file_name).first);
REQUIRE(kBest == resultsKBest.at(file_name).second);
}
SECTION("Test Mutual Information")
{
auto result = metrics.mutualInformation(raw.dataset.index({ 1, "..." }), raw.dataset.index({ 2, "..." }), raw.weights);
REQUIRE(result == Catch::Approx(resultsMI.at(file_name)).epsilon(raw.epsilon));
}
SECTION("Test Maximum Spanning Tree")
{
auto weights_matrix = metrics.conditionalEdge(raw.weights);
for (int i = 0; i < 2; ++i) {
auto result = metrics.maximumSpanningTree(raw.featurest, weights_matrix, i);
REQUIRE(result == resultsMST.at({ file_name, i }));
}
}
}

141
tests/TestBayesModels.cc Normal file
View File

@@ -0,0 +1,141 @@
#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/generators/catch_generators.hpp>
#include <vector>
#include <map>
#include <string>
#include "KDB.h"
#include "TAN.h"
#include "SPODE.h"
#include "AODE.h"
#include "BoostAODE.h"
#include "TANLd.h"
#include "KDBLd.h"
#include "SPODELd.h"
#include "AODELd.h"
#include "TestUtils.h"
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
{
map <pair<string, string>, float> scores = {
// Diabetes
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
{{"diabetes", "AODELd"}, 0.8138f}, {{"diabetes", "KDBLd"}, 0.80208f}, {{"diabetes", "SPODELd"}, 0.78646f}, {{"diabetes", "TANLd"}, 0.8099f}, {{"diabetes", "BoostAODE"}, 0.83984f},
// Ecoli
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
{{"ecoli", "AODELd"}, 0.8869f}, {{"ecoli", "KDBLd"}, 0.875f}, {{"ecoli", "SPODELd"}, 0.84226f}, {{"ecoli", "TANLd"}, 0.86905f}, {{"ecoli", "BoostAODE"}, 0.89583f},
// Glass
{{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
{{"glass", "AODELd"}, 0.79439f}, {{"glass", "KDBLd"}, 0.85047f}, {{"glass", "SPODELd"}, 0.79439f}, {{"glass", "TANLd"}, 0.86449f}, {{"glass", "BoostAODE"}, 0.84579f},
// Iris
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333},
{{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f}
};
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
auto raw = RawDatasets(file_name, false);
SECTION("Test TAN classifier (" + file_name + ")")
{
auto clf = bayesnet::TAN();
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
auto score = clf.score(raw.Xv, raw.yv);
//scores[{file_name, "TAN"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(raw.epsilon));
}
SECTION("Test TANLd classifier (" + file_name + ")")
{
auto clf = bayesnet::TANLd();
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
auto score = clf.score(raw.Xt, raw.yt);
//scores[{file_name, "TANLd"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "TANLd"}]).epsilon(raw.epsilon));
}
SECTION("Test KDB classifier (" + file_name + ")")
{
auto clf = bayesnet::KDB(2);
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
auto score = clf.score(raw.Xv, raw.yv);
//scores[{file_name, "KDB"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "KDB"
}]).epsilon(raw.epsilon));
}
SECTION("Test KDBLd classifier (" + file_name + ")")
{
auto clf = bayesnet::KDBLd(2);
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
auto score = clf.score(raw.Xt, raw.yt);
//scores[{file_name, "KDBLd"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "KDBLd"
}]).epsilon(raw.epsilon));
}
SECTION("Test SPODE classifier (" + file_name + ")")
{
auto clf = bayesnet::SPODE(1);
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
auto score = clf.score(raw.Xv, raw.yv);
// scores[{file_name, "SPODE"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(raw.epsilon));
}
SECTION("Test SPODELd classifier (" + file_name + ")")
{
auto clf = bayesnet::SPODELd(1);
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
auto score = clf.score(raw.Xt, raw.yt);
// scores[{file_name, "SPODELd"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODELd"}]).epsilon(raw.epsilon));
}
SECTION("Test AODE classifier (" + file_name + ")")
{
auto clf = bayesnet::AODE();
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
auto score = clf.score(raw.Xv, raw.yv);
// scores[{file_name, "AODE"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(raw.epsilon));
}
SECTION("Test AODELd classifier (" + file_name + ")")
{
auto clf = bayesnet::AODELd();
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
auto score = clf.score(raw.Xt, raw.yt);
// scores[{file_name, "AODELd"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "AODELd"}]).epsilon(raw.epsilon));
}
SECTION("Test BoostAODE classifier (" + file_name + ")")
{
auto clf = bayesnet::BoostAODE();
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
auto score = clf.score(raw.Xv, raw.yv);
// scores[{file_name, "BoostAODE"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "BoostAODE"}]).epsilon(raw.epsilon));
}
// for (auto scores : scores) {
// cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
// }
}
TEST_CASE("Models features", "[BayesNet]")
{
auto graph = vector<string>({ "digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
"class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
"class -> sepallength", "class -> sepalwidth", "class -> petallength", "class -> petalwidth", "petallength [shape=circle] \n",
"petallength -> sepallength", "petalwidth [shape=circle] \n", "sepallength [shape=circle] \n",
"sepallength -> sepalwidth", "sepalwidth [shape=circle] \n", "sepalwidth -> petalwidth", "}\n"
}
);
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::TAN();
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
REQUIRE(clf.getNumberOfNodes() == 6);
REQUIRE(clf.getNumberOfEdges() == 7);
REQUIRE(clf.show() == vector<string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
REQUIRE(clf.graph("Test") == graph);
}
TEST_CASE("Get num features & num edges", "[BayesNet]")
{
auto raw = RawDatasets("iris", true);
auto clf = bayesnet::KDB(2);
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
REQUIRE(clf.getNumberOfNodes() == 6);
REQUIRE(clf.getNumberOfEdges() == 8);
}

263
tests/TestBayesNetwork.cc Normal file
View File

@@ -0,0 +1,263 @@
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/generators/catch_generators.hpp>
#include <string>
#include "TestUtils.h"
#include "Network.h"
void buildModel(bayesnet::Network& net, const vector<string>& features, const string& className)
{
vector<pair<int, int>> network = { {0, 1}, {0, 2}, {1, 3} };
for (const auto& feature : features) {
net.addNode(feature);
}
net.addNode(className);
for (const auto& edge : network) {
net.addEdge(features.at(edge.first), features.at(edge.second));
}
for (const auto& feature : features) {
net.addEdge(className, feature);
}
}
TEST_CASE("Test Bayesian Network", "[BayesNet]")
{
auto raw = RawDatasets("iris", true);
auto net = bayesnet::Network();
SECTION("Test get features")
{
net.addNode("A");
net.addNode("B");
REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
net.addNode("C");
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
}
SECTION("Test get edges")
{
net.addNode("A");
net.addNode("B");
net.addNode("C");
net.addEdge("A", "B");
net.addEdge("B", "C");
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });
REQUIRE(net.getNumEdges() == 2);
net.addEdge("A", "C");
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "A", "C" }, { "B", "C" } });
REQUIRE(net.getNumEdges() == 3);
}
SECTION("Test getNodes")
{
net.addNode("A");
net.addNode("B");
auto& nodes = net.getNodes();
REQUIRE(nodes.count("A") == 1);
REQUIRE(nodes.count("B") == 1);
}
SECTION("Test fit Network")
{
auto net2 = bayesnet::Network();
auto net3 = bayesnet::Network();
net3.initialize();
net2.initialize();
net.initialize();
buildModel(net, raw.featuresv, raw.classNamev);
buildModel(net2, raw.featurest, raw.classNamet);
buildModel(net3, raw.featurest, raw.classNamet);
vector<pair<string, string>> edges = {
{"class", "sepallength"}, {"class", "sepalwidth"}, {"class", "petallength"},
{"class", "petalwidth" }, {"sepallength", "sepalwidth"}, {"sepallength", "petallength"},
{"sepalwidth", "petalwidth"}
};
REQUIRE(net.getEdges() == edges);
REQUIRE(net2.getEdges() == edges);
REQUIRE(net3.getEdges() == edges);
vector<string> features = { "sepallength", "sepalwidth", "petallength", "petalwidth", "class" };
REQUIRE(net.getFeatures() == features);
REQUIRE(net2.getFeatures() == features);
REQUIRE(net3.getFeatures() == features);
auto& nodes = net.getNodes();
auto& nodes2 = net2.getNodes();
auto& nodes3 = net3.getNodes();
// Check Nodes parents & children
for (const auto& feature : features) {
// Parents
vector<string> parents, parents2, parents3, children, children2, children3;
auto nodeParents = nodes[feature]->getParents();
auto nodeParents2 = nodes2[feature]->getParents();
auto nodeParents3 = nodes3[feature]->getParents();
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
transform(nodeParents2.begin(), nodeParents2.end(), back_inserter(parents2), [](const auto& p) { return p->getName(); });
transform(nodeParents3.begin(), nodeParents3.end(), back_inserter(parents3), [](const auto& p) { return p->getName(); });
REQUIRE(parents == parents2);
REQUIRE(parents == parents3);
// Children
auto nodeChildren = nodes[feature]->getChildren();
auto nodeChildren2 = nodes2[feature]->getChildren();
auto nodeChildren3 = nodes2[feature]->getChildren();
transform(nodeChildren.begin(), nodeChildren.end(), back_inserter(children), [](const auto& p) { return p->getName(); });
transform(nodeChildren2.begin(), nodeChildren2.end(), back_inserter(children2), [](const auto& p) { return p->getName(); });
transform(nodeChildren3.begin(), nodeChildren3.end(), back_inserter(children3), [](const auto& p) { return p->getName(); });
REQUIRE(children == children2);
REQUIRE(children == children3);
}
// Fit networks
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
net2.fit(raw.dataset, raw.weights, raw.featurest, raw.classNamet, raw.statest);
net3.fit(raw.Xt, raw.yt, raw.weights, raw.featurest, raw.classNamet, raw.statest);
REQUIRE(net.getStates() == net2.getStates());
REQUIRE(net.getStates() == net3.getStates());
// Check Conditional Probabilities tables
for (int i = 0; i < features.size(); ++i) {
auto feature = features.at(i);
for (const auto& feature : features) {
auto cpt = nodes[feature]->getCPT();
auto cpt2 = nodes2[feature]->getCPT();
auto cpt3 = nodes3[feature]->getCPT();
REQUIRE(cpt.equal(cpt2));
REQUIRE(cpt.equal(cpt3));
}
}
}
SECTION("Test show")
{
auto net = bayesnet::Network();
net.addNode("A");
net.addNode("B");
net.addNode("C");
net.addEdge("A", "B");
net.addEdge("A", "C");
auto str = net.show();
REQUIRE(str.size() == 3);
REQUIRE(str[0] == "A -> B, C, ");
REQUIRE(str[1] == "B -> ");
REQUIRE(str[2] == "C -> ");
}
SECTION("Test topological_sort")
{
auto net = bayesnet::Network();
net.addNode("A");
net.addNode("B");
net.addNode("C");
net.addEdge("A", "B");
net.addEdge("A", "C");
auto sorted = net.topological_sort();
REQUIRE(sorted.size() == 3);
REQUIRE(sorted[0] == "A");
bool result = sorted[1] == "B" && sorted[2] == "C";
REQUIRE(result);
}
SECTION("Test graph")
{
auto net = bayesnet::Network();
net.addNode("A");
net.addNode("B");
net.addNode("C");
net.addEdge("A", "B");
net.addEdge("A", "C");
auto str = net.graph("Test Graph");
REQUIRE(str.size() == 7);
REQUIRE(str[0] == "digraph BayesNet {\nlabel=<BayesNet Test Graph>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n");
REQUIRE(str[1] == "A [shape=circle] \n");
REQUIRE(str[2] == "A -> B");
REQUIRE(str[3] == "A -> C");
REQUIRE(str[4] == "B [shape=circle] \n");
REQUIRE(str[5] == "C [shape=circle] \n");
REQUIRE(str[6] == "}\n");
}
// SECTION("Test predict")
// {
// auto net = bayesnet::Network();
// net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
// vector<vector<int>> test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
// vector<int> y_test = { 0, 1, 1, 0, 2 };
// auto y_pred = net.predict(test);
// REQUIRE(y_pred == y_test);
// }
// SECTION("Test predict_proba")
// {
// auto net = bayesnet::Network();
// net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
// vector<vector<int>> test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
// auto y_test = { 0, 1, 1, 0, 2 };
// auto y_pred = net.predict(test);
// REQUIRE(y_pred == y_test);
// }
}
// SECTION("Test score")
// {
// auto net = bayesnet::Network();
// net.fit(Xd, y, weights, features, className, states);
// auto test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
// auto score = net.score(X, y);
// REQUIRE(score == Catch::Approx();
// }
//
//
// SECTION("Test graph")
// {
// auto net = bayesnet::Network();
// net.addNode("A");
// net.addNode("B");
// net.addNode("C");
// net.addEdge("A", "B");
// net.addEdge("A", "C");
// auto str = net.graph("Test Graph");
// REQUIRE(str.size() == 6);
// REQUIRE(str[0] == "digraph \"Test Graph\" {");
// REQUIRE(str[1] == " A -> B;");
// REQUIRE(str[2] == " A -> C;");
// REQUIRE(str[3] == " B [shape=ellipse];");
// REQUIRE(str[4] == " C [shape=ellipse];");
// REQUIRE(str[5] == "}");
// }
// SECTION("Test initialize")
// {
// auto net = bayesnet::Network();
// net.addNode("A");
// net.addNode("B");
// net.addNode("C");
// net.addEdge("A", "B");
// net.addEdge("A", "C");
// net.initialize();
// REQUIRE(net.getNodes().size() == 0);
// REQUIRE(net.getEdges().size() == 0);
// REQUIRE(net.getFeatures().size() == 0);
// REQUIRE(net.getClassNumStates() == 0);
// REQUIRE(net.getClassName().empty());
// REQUIRE(net.getStates() == 0);
// REQUIRE(net.getSamples().numel() == 0);
// }
// SECTION("Test dump_cpt")
// {
// auto net = bayesnet::Network();
// net.addNode("A");
// net.addNode("B");
// net.addNode("C");
// net.addEdge("A", "B");
// net.addEdge("A", "C");
// net.setClassName("C");
// net.setStates({ {"A", {0, 1}}, {"B", {0, 1}}, {"C", {0, 1, 2}} });
// net.fit({ {0, 0}, {0, 1}, {1, 0}, {1, 1} }, { 0, 1, 1, 2 }, {}, { "A", "B" }, "C", { {"A", {0, 1}}, {"B", {0, 1}}, {"C", {0, 1, 2}} });
// net.dump_cpt();
// // TODO: Check that the file was created and contains the expected data
// }
// SECTION("Test version")
// {
// auto net = bayesnet::Network();
// REQUIRE(net.version() == "0.2.0");
// }
// }
// }

95
tests/TestFolding.cc Normal file
View File

@@ -0,0 +1,95 @@
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/generators/catch_generators.hpp>
#include "TestUtils.h"
#include "Folding.h"
TEST_CASE("KFold Test", "[Platform][KFold]")
{
// Initialize a KFold object with k=5 and a seed of 19.
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
auto raw = RawDatasets(file_name, true);
int nFolds = 5;
platform::KFold kfold(nFolds, raw.nSamples, 19);
int number = raw.nSamples * (kfold.getNumberOfFolds() - 1) / kfold.getNumberOfFolds();
SECTION("Number of Folds")
{
REQUIRE(kfold.getNumberOfFolds() == nFolds);
}
SECTION("Fold Test")
{
// Test each fold's size and contents.
for (int i = 0; i < nFolds; ++i) {
auto [train_indices, test_indices] = kfold.getFold(i);
bool result = train_indices.size() == number || train_indices.size() == number + 1;
REQUIRE(result);
REQUIRE(train_indices.size() + test_indices.size() == raw.nSamples);
}
}
}
map<int, int> counts(vector<int> y, vector<int> indices)
{
map<int, int> result;
for (auto i = 0; i < indices.size(); ++i) {
result[y[indices[i]]]++;
}
return result;
}
TEST_CASE("StratifiedKFold Test", "[Platform][StratifiedKFold]")
{
// Initialize a StratifiedKFold object with k=3, using the y vector, and a seed of 17.
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
int nFolds = GENERATE(3, 5, 10);
auto raw = RawDatasets(file_name, true);
platform::StratifiedKFold stratified_kfoldt(nFolds, raw.yt, 17);
platform::StratifiedKFold stratified_kfoldv(nFolds, raw.yv, 17);
int number = raw.nSamples * (stratified_kfoldt.getNumberOfFolds() - 1) / stratified_kfoldt.getNumberOfFolds();
SECTION("Stratified Number of Folds")
{
REQUIRE(stratified_kfoldt.getNumberOfFolds() == nFolds);
}
SECTION("Stratified Fold Test")
{
// Test each fold's size and contents.
auto counts = map<int, vector<int>>();
// Initialize the counts per Fold
for (int i = 0; i < nFolds; ++i) {
counts[i] = vector<int>(raw.classNumStates, 0);
}
// Check fold and compute counts of each fold
for (int fold = 0; fold < nFolds; ++fold) {
auto [train_indicest, test_indicest] = stratified_kfoldt.getFold(fold);
auto [train_indicesv, test_indicesv] = stratified_kfoldv.getFold(fold);
REQUIRE(train_indicest == train_indicesv);
REQUIRE(test_indicest == test_indicesv);
// In the worst case scenario, the number of samples in the training set is number + raw.classNumStates
// because in that fold can come one remainder sample from each class.
REQUIRE(train_indicest.size() <= number + raw.classNumStates);
// If the number of samples in any class is less than the number of folds, then the fold is faulty.
// and the number of samples in the training set + test set will be less than nSamples
if (!stratified_kfoldt.isFaulty()) {
REQUIRE(train_indicest.size() + test_indicest.size() == raw.nSamples);
} else {
REQUIRE(train_indicest.size() + test_indicest.size() <= raw.nSamples);
}
auto train_t = torch::tensor(train_indicest);
auto ytrain = raw.yt.index({ train_t });
// Check that the class labels have been equally assign to each fold
for (const auto& idx : train_indicest) {
counts[fold][raw.yt[idx].item<int>()]++;
}
}
// Test the fold counting of every class
for (int fold = 0; fold < nFolds; ++fold) {
for (int j = 1; j < nFolds - 1; ++j) {
for (int k = 0; k < raw.classNumStates; ++k) {
REQUIRE(abs(counts.at(fold).at(k) - counts.at(j).at(k)) <= 1);
}
}
}
}
}

View File

@@ -1,18 +1,14 @@
#include "platformUtils.h"
#include "Paths.h"
#include "TestUtils.h"
using namespace std;
using namespace torch;
vector<string> split(const string& text, char delimiter)
{
vector<string> result;
stringstream ss(text);
string token;
while (getline(ss, token, delimiter)) {
result.push_back(token);
class Paths {
public:
static string datasets()
{
return "../../data/";
}
return result;
}
};
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{
@@ -50,10 +46,10 @@ bool file_exists(const string& name)
}
}
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset)
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& name, bool class_last, bool discretize_dataset)
{
auto handler = ArffFiles();
handler.load(path + static_cast<string>(name) + ".arff", class_last);
handler.load(Paths::datasets() + static_cast<string>(name) + ".arff", class_last);
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
@@ -66,19 +62,19 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
auto states = map<string, vector<int>>();
if (discretize_dataset) {
auto Xr = discretizeDataset(X, y);
Xd = torch::zeros({ static_cast<int>(Xr[0].size()), static_cast<int>(Xr.size()) }, torch::kInt32);
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
Xd.index_put_({ "...", i }, torch::tensor(Xr[i], torch::kInt32));
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
}
states[className] = vector<int>(*max_element(y.begin(), y.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
} else {
Xd = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, torch::kFloat32);
Xd = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kFloat32);
for (int i = 0; i < features.size(); ++i) {
Xd.index_put_({ "...", i }, torch::tensor(X[i]));
Xd.index_put_({ i, "..." }, torch::tensor(X[i]));
}
}
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
@@ -87,7 +83,7 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
{
auto handler = ArffFiles();
handler.load(platform::Paths::datasets() + static_cast<string>(name) + ".arff");
handler.load(Paths::datasets() + static_cast<string>(name) + ".arff");
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();

44
tests/TestUtils.h Normal file
View File

@@ -0,0 +1,44 @@
#ifndef TEST_UTILS_H
#define TEST_UTILS_H
#include <torch/torch.h>
#include <string>
#include <vector>
#include <map>
#include <tuple>
#include "ArffFiles.h"
#include "CPPFImdlp.h"
using namespace std;
bool file_exists(const std::string& name);
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features);
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name);
tuple<torch::Tensor, torch::Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& name, bool class_last, bool discretize_dataset);
class RawDatasets {
public:
RawDatasets(const string& file_name, bool discretize)
{
// Xt can be either discretized or not
tie(Xt, yt, featurest, classNamet, statest) = loadDataset(file_name, true, discretize);
// Xv is always discretized
tie(Xv, yv, featuresv, classNamev, statesv) = loadFile(file_name);
auto yresized = torch::transpose(yt.view({ yt.size(0), 1 }), 0, 1);
dataset = torch::cat({ Xt, yresized }, 0);
nSamples = dataset.size(1);
weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
weightsv = vector<double>(nSamples, 1.0 / nSamples);
classNumStates = discretize ? statest.at(classNamet).size() : 0;
}
torch::Tensor Xt, yt, dataset, weights;
vector<vector<int>> Xv;
vector<double> weightsv;
vector<int> yv;
vector<string> featurest, featuresv;
map<string, vector<int>> statest, statesv;
string classNamet, classNamev;
int nSamples, classNumStates;
double epsilon = 1e-5;
};
#endif //TEST_UTILS_H