Compare commits

...

136 Commits

Author SHA1 Message Date
464fe029ea Add dump_cpt classifier test 2024-04-11 18:16:06 +02:00
09a1369122 Add copyright header to source files 2024-04-11 18:02:49 +02:00
503ad687dc Add some more tests to 97% coverage 2024-04-11 17:29:46 +02:00
8eeaa1beee Update changelog with the latest changes 2024-04-11 00:35:55 +02:00
a2de1c9522 Implement block update algorithm fix in BoostAODE 2024-04-11 00:02:43 +02:00
cf9b5716ac block_update and install in local folder 2024-04-10 00:55:36 +02:00
1326891d6a Fix previous tests of BoostAODE
Due to the change of default values for hyperparameters in BoostAODE
2024-04-09 00:13:45 +02:00
da2a969686 Create hyperparameter block_update 2024-04-08 23:36:05 +02:00
f9553a38d7 Fix BoostAODE.md doc 2024-04-08 22:45:32 +02:00
8b6121eaf2 Update readme and boostAODE docs 2024-04-08 22:41:23 +02:00
fbbed8ad68 Make some boostAODE tests 2024-04-08 22:30:55 +02:00
a1178554ff Add Ensemble tests 2024-04-08 19:09:51 +02:00
d12a779bd9 Merge pull request 'bisection proposal' (#24) from bisection into main
Reviewed-on: #24
2024-04-08 14:29:25 +00:00
a8fc29e2b2 Create coverage badge 2024-04-08 11:24:25 +02:00
50543e7929 Add tests for Classifier class 2024-04-08 01:25:14 +02:00
9014649a0d Refactor hyperparameters classifier management 2024-04-08 00:55:30 +02:00
0d6a081d01 Add tests to reach 90% coverage 2024-04-08 00:13:59 +02:00
46cb8d30eb Add codacy code quality badge 2024-04-07 12:35:21 +02:00
cb26ef2562 Add some tests and code quality badge 2024-04-07 02:08:37 +02:00
df45fddd45 Update folding library and test result due to change in random engine 2024-04-05 19:17:53 +02:00
a1f9086780 Fix CFS mistake 2024-04-02 22:53:00 +02:00
e55365c41c Update test Models 2024-04-02 17:56:23 +02:00
de23303801 Refactor tests and add FeatureSelection tests 2024-04-02 17:38:48 +02:00
56b5158ff3 Update BoostAODE class structure 2024-04-02 09:52:40 +02:00
a5a29eb66f Update compiler configuration for Mac 2024-04-02 09:48:03 +02:00
d5eba5710a Update pseudocode 2024-04-01 18:37:51 +02:00
8c61840d81 Update tests 2024-04-01 11:51:29 +02:00
bc0b938cfc Remove dataset clone in BoostAODE 2024-03-21 19:35:08 +01:00
58d5a35a35 Update log output size type 2024-03-21 19:24:51 +01:00
45c048f635 Add initial models to log 2024-03-21 11:23:41 +01:00
6e854dfda3 Fix metrics error in BoostAODE Convergence
Update algorithm
2024-03-20 23:33:02 +01:00
5826702fc7 Remove weights backup 2024-03-20 12:01:57 +01:00
42e2be3263 Implement algorithm and add logging 2024-03-20 11:30:02 +01:00
827b0dd893 Add optimization flags to release 2024-03-19 17:24:21 +01:00
882d905a28 First approach to bisection 2024-03-19 14:13:40 +01:00
422129802a Remove predict_single max_models 2024-03-19 11:35:43 +01:00
eb97a5a14b Remove repeatSparent hyperparameter 2024-03-19 09:42:03 +01:00
eb72f13bf0 Make predict_voting default value false in AODE 2024-03-12 00:27:50 +01:00
5db168d87b Make predict_voting default value false in BoostAODE 2024-03-12 00:26:28 +01:00
8f3bb47cfd Fix Initialize worse_model_count if model accuracy is better in BoostAODE 2024-03-11 22:33:50 +01:00
1986d05c34 Initialize worse_model_count if model accuracy is better in BoostAODE 2024-03-11 21:30:01 +01:00
7c98ba9bea Update License & Readme 2024-03-11 10:57:27 +01:00
538af0253b Fix test & sample issue 2024-03-09 12:45:03 +01:00
0b65e34772 Fix config.h location problem 2024-03-09 12:27:05 +01:00
635ef22520 Refactor library structure 2024-03-08 22:20:54 +01:00
1231f4522a Merge pull request 'Create installation process' (#23) from install_lib into main
Reviewed-on: #23
2024-03-08 11:51:59 +00:00
cc34f79b91 Update changelog and readme 2024-03-08 09:02:22 +01:00
6899033806 Change include of library headers 2024-03-08 01:13:30 +01:00
8e2d05e663 Refactor sample to be out of main CMakeLists 2024-03-08 01:09:39 +01:00
eba2095718 Create installation process 2024-03-08 00:37:36 +01:00
199ffc95d2 Update dates on changelog 2024-03-06 23:42:14 +01:00
cbe15e317d Fix FCBF in select_features 2024-03-06 18:24:27 +01:00
debd890519 Update version number in tests 2024-03-06 17:22:45 +01:00
46e929ff4d Merge pull request 'predict_single' (#22) from predict_single into main
Reviewed-on: #22

close #19
2024-03-06 16:16:15 +00:00
d858e26e4b Update version number and Changelog 2024-03-06 17:04:16 +01:00
0ee3eaed53 Update select features models significance 2024-03-05 12:10:58 +01:00
093c197f0a Replace constant strings in BoostAODE 2024-03-05 11:05:11 +01:00
78d7ea7c4d Add predict_single proposal detailed info 2024-03-03 22:56:01 +01:00
d6af1ffe8e Update gcovr config and fix some warnings 2024-02-28 11:51:37 +01:00
20669dd161 Translate BoostAODE.md to English 2024-02-27 20:29:01 +01:00
272dbad4f3 Update README and docs 2024-02-27 17:16:26 +01:00
8bccc3e4bc Update boostaode algorithm explain 2024-02-27 14:24:58 +01:00
903b143338 Refactor library structure and add sample 2024-02-27 13:06:13 +01:00
f10d0daf2e Update test 2024-02-27 10:16:20 +01:00
d39a17089e Begin implementing predict_single hyperparameter in BoostAODE 2024-02-26 20:29:08 +01:00
2e325cd114 Merge pull request 'change boostaode ascending hyperparameter to order {asc,desc,rand}' (#21) from baode_random into main
Reviewed-on: #21

This PR closes #18
2024-02-26 16:28:48 +00:00
fc3d63b7db change boostaode ascending hyperparameter to order {asc,desc,rand} 2024-02-26 17:07:57 +01:00
43dc79a345 Update version number in ChangeLog 2024-02-25 18:07:50 +01:00
b8589bcd0a Merge pull request 'Add the probabilities aggregation method to compute prediction with ensembles' (#16) from baode_proba into main
Reviewed-on: #16

As only the voting method was implemented, this approach computes the classifiers prediction using a weighted average of the probabilities computed by each model.
Added the predict_proba methods to BaseClassifier - Classifier and Ensemble classes.
Add a hyperparameter to decide the type of computation for ensembles voting - probability aggregation
2024-02-25 11:26:26 +00:00
3007e22a7d Add info to CHANGELOG
Update submodules
2024-02-24 21:33:28 +01:00
02e456befb Complete predict & predict_proba in ensemble 2024-02-24 18:36:09 +01:00
8477698d8d Complete predict & predict_proba with voting & probabilities 2024-02-23 23:11:14 +01:00
52abd2d670 Implement the proba branch and begin with the voting one 2024-02-23 20:36:11 +01:00
3116eaa763 Begin testing ensemble predict_proba 2024-02-22 18:44:40 +01:00
443e5cc882 Implement classifier.predict_proba & test 2024-02-22 11:45:40 +01:00
e1c4221c11 Add predict_voting and predict_prob to ensemble 2024-02-20 10:58:21 +01:00
a63a35df3f Fix epsilont early stopping in BoostAODE 2024-02-20 10:11:22 +01:00
c7555dac3f Add comments to BoostAODE algorithm 2024-02-19 22:58:15 +01:00
f3b8150e2c Add notes to Classifier & Changelog 2024-02-12 10:58:20 +01:00
03f8b8653b Add getNotes test 2024-02-09 12:06:19 +01:00
2163e95c4a add getNotes method 2024-02-09 10:57:19 +01:00
b33da34655 Add notes to Classifier & use them in BoostAODE 2024-02-08 18:01:09 +01:00
e17aee7bdb Remove argparse module 2024-01-09 18:02:17 +01:00
37c31ee4c2 Update libraries 2024-01-08 17:45:11 +01:00
80afdc06f7 Remove unneeded argparse module 2024-01-08 00:55:16 +01:00
Ricardo Montañana Gómez
666782217e Merge pull request #1 from rmontanana/library
Remove other projects' sources
2024-01-07 20:01:37 +01:00
55af0714cd Remove other projects' sources 2024-01-07 19:58:22 +01:00
6ef5ca541a Add app version to command line utils 2024-01-06 22:38:34 +01:00
4364317411 Merge pull request 'Refactor mpi grid search process using the producer consumer pattern' (#15) from producer_consumer into main
Reviewed-on: #15
2024-01-04 15:24:48 +00:00
65a96851ef Check min number of nested folds 2024-01-04 11:01:59 +01:00
722da7f781 Keep only mpi b_grid compute 2024-01-04 01:21:56 +01:00
b1833a5feb Add reset color to final progress bar 2024-01-03 22:45:16 +01:00
41a0bd4ddd fix dataset name mistakes 2024-01-03 17:15:57 +01:00
9ab4fc7d76 Fix some mistakes in methods 2024-01-03 11:53:46 +01:00
beadb7465f Complete first approach 2023-12-31 12:02:13 +01:00
652e5f623f Add todo comments 2023-12-28 23:32:24 +01:00
b7fef9a99d Remove kk file 2023-12-28 23:24:59 +01:00
343269d48c Fix syntax errors 2023-12-28 23:21:50 +01:00
21c4c6df51 Fix first mistakes in structure 2023-12-25 19:33:52 +01:00
702f086706 Update miniconda instructions 2023-12-23 19:54:00 +01:00
981bc8f98b Fix install message in readme 2023-12-23 01:00:55 +01:00
e0b7b2d316 Set structure & protocol of producer-consumer 2023-12-22 12:47:13 +01:00
9b9e91e856 Merge pull request 'mpi_grid' (#14) from mpi_grid into main
Reviewed-on: #14
2023-12-18 09:05:55 +00:00
18e8e84284 Add openmpi instructions for Oracle Linux 2023-12-17 12:19:50 +01:00
7de11b0e6d Fix format of duration 2023-12-17 01:45:04 +01:00
9b8db37a4b Fix duration of task not set 2023-12-16 19:31:45 +01:00
49b26bd04b fix duration output 2023-12-16 12:53:25 +01:00
b5b5b48864 Update grid progress bar output 2023-12-15 18:09:17 +01:00
19586a3a5a Fix pesky error allocating memory in workers 2023-12-15 01:54:13 +01:00
ffe6d37436 Add messages to control trace 2023-12-14 21:06:43 +01:00
b73f4be146 First try with complete algorithm 2023-12-14 15:55:08 +01:00
dbf2f35502 First compiling version 2023-12-12 18:57:57 +01:00
db9e80a70e Create build tasks 2023-12-12 12:15:22 +01:00
40ae4ad7f9 Include mpi in CMakeLists 2023-12-11 09:06:05 +01:00
234342f2de Add mpi parameter to b_grid 2023-12-10 22:33:17 +01:00
aa0936abd1 Add --exclude parameter to b_grid to exclude datasets 2023-12-08 12:09:08 +01:00
f0d6f0cc38 Fix sample building 2023-12-04 19:12:44 +01:00
cc316bb8d3 Add colors to results of gridsearch 2023-12-04 17:34:00 +01:00
0723564e66 Fix some output in gridsearch 2023-12-03 17:55:44 +01:00
2e95e8999d Complete nested gridsearch 2023-12-03 12:37:25 +01:00
fb9b395748 Begin output nested grid 2023-12-02 13:19:12 +01:00
03e4437fea refactor gridsearch to have only one go method 2023-12-02 10:59:05 +01:00
33cd32c639 Add header to grid output and report 2023-12-01 10:30:53 +01:00
c460ef46ed Refactor gridsearch method 2023-11-30 11:01:37 +01:00
dee9c674da Refactor grid input hyperparameter file 2023-11-29 18:24:34 +01:00
e3f6dc1e0b Fix tolerance hyperp error & gridsearch 2023-11-29 12:33:50 +01:00
460d20a402 Add reports to gridsearch 2023-11-29 00:26:48 +01:00
8dbbb65a2f Add only parameter to gridsearch 2023-11-28 10:08:40 +01:00
d06bf187b2 Implement Random Forest nodes/leaves/depth 2023-11-28 00:35:38 +01:00
4addaefb47 Implement sklearn version in PyWrap 2023-11-27 22:34:34 +01:00
82964190f6 Add nodes/leaves/depth to STree & ODTE 2023-11-27 10:57:57 +01:00
4fefe9a1d2 Add grid input info to grid output 2023-11-26 16:07:32 +01:00
7c12dd25e5 Fix upper case typo 2023-11-26 10:55:32 +01:00
c713c0b1df Add continue from parameter to gridsearch 2023-11-26 10:36:09 +01:00
64069a6cb7 Adapt b_main to the new hyperparam file format 2023-11-25 16:52:25 +01:00
ba2a3f9523 Merge pull request 'gridsearch' (#13) from gridsearch into main
Reviewed-on: #13
2023-11-25 11:16:13 +00:00
238 changed files with 32368 additions and 12093 deletions

View File

@@ -5,11 +5,12 @@ Checks: '-*,
cppcoreguidelines-*,
modernize-*,
performance-*,
-modernize-use-nodiscard,
-cppcoreguidelines-pro-type-vararg,
-modernize-use-trailing-return-type,
-bugprone-exception-escape'
HeaderFilterRegex: 'src/*'
HeaderFilterRegex: 'bayesnet/*'
AnalyzeTemporaryDtors: false
WarningsAsErrors: ''
FormatStyle: file

View File

@@ -1,31 +0,0 @@
compilation_database_dir: build
output_directory: puml
diagrams:
BayesNet:
type: class
glob:
- src/BayesNet/*.cc
- src/Platform/*.cc
using_namespace: bayesnet
include:
namespaces:
- bayesnet
- platform
plantuml:
after:
- "note left of {{ alias(\"MyProjectMain\") }}: Main class of myproject library."
sequence:
type: sequence
glob:
- src/Platform/main.cc
combine_free_functions_into_file_participants: true
using_namespace:
- std
- bayesnet
- platform
include:
paths:
- src/BayesNet
- src/Platform
start_from:
- function: main(int,const char **)

2
.gitignore vendored
View File

@@ -38,3 +38,5 @@ cmake-build*/**
.idea
puml/**
.vscode/settings.json
sample/build

17
.gitmodules vendored
View File

@@ -1,15 +1,20 @@
[submodule "lib/mdlp"]
path = lib/mdlp
url = https://github.com/rmontanana/mdlp
main = main
update = merge
[submodule "lib/catch2"]
path = lib/catch2
main = v2.x
update = merge
url = https://github.com/catchorg/Catch2.git
[submodule "lib/argparse"]
path = lib/argparse
url = https://github.com/p-ranav/argparse
[submodule "lib/json"]
path = lib/json
url = https://github.com/nlohmann/json.git
[submodule "lib/libxlsxwriter"]
path = lib/libxlsxwriter
url = https://github.com/jmcnamara/libxlsxwriter.git
master = master
update = merge
[submodule "lib/folding"]
path = lib/folding
url = https://github.com/rmontanana/folding
main = main
update = merge

View File

@@ -3,15 +3,47 @@
{
"name": "Mac",
"includePath": [
"${workspaceFolder}/**"
"/Users/rmontanana/Code/BayesNet/**"
],
"defines": [],
"macFrameworkPath": [
"/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
"/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/include"
],
"cStandard": "c17",
"cppStandard": "c++17",
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
"compileCommands": "",
"intelliSenseMode": "macos-clang-arm64",
"mergeConfigurations": false,
"browse": {
"path": [
"/Users/rmontanana/Code/BayesNet/**",
"${workspaceFolder}"
],
"limitSymbolsToIncludedHeaders": true
},
"configurationProvider": "ms-vscode.cmake-tools"
},
{
"name": "Linux",
"includePath": [
"/home/rmontanana/Code/BayesNet/**",
"/home/rmontanana/Code/libtorch/include/torch/csrc/api/include/",
"/home/rmontanana/Code/BayesNet/lib/"
],
"defines": [],
"cStandard": "c17",
"cppStandard": "c++17",
"intelliSenseMode": "linux-gcc-x64",
"mergeConfigurations": false,
"compilerPath": "/usr/bin/g++",
"browse": {
"path": [
"/home/rmontanana/Code/BayesNet/**",
"${workspaceFolder}"
],
"limitSymbolsToIncludedHeaders": true
},
"configurationProvider": "ms-vscode.cmake-tools"
}
],
"version": 4

110
.vscode/launch.json vendored
View File

@@ -5,110 +5,44 @@
"type": "lldb",
"request": "launch",
"name": "sample",
"program": "${workspaceFolder}/build_debug/sample/BayesNetSample",
"program": "${workspaceFolder}/build_release/sample/bayesnet_sample",
"args": [
"-d",
"iris",
"-m",
"TANLd",
"-s",
"271",
"-p",
"/home/rmontanana/Code/discretizbench/datasets/",
],
//"cwd": "${workspaceFolder}/build/sample/",
},
{
"type": "lldb",
"request": "launch",
"name": "experimentPy",
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
"args": [
"-m",
"STree",
"--stratified",
"-d",
"iris",
//"--discretize"
// "--hyperparameters",
// "{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "/home/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "experimentBayes",
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
"args": [
"-m",
"TAN",
"--stratified",
"--discretize",
"-d",
"iris",
"--hyperparameters",
"{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "/home/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "best",
"program": "${workspaceFolder}/build_debug/src/Platform/b_best",
"args": [
"-m",
"BoostAODE",
"-s",
"accuracy",
"--build",
],
"cwd": "/home/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "manage",
"program": "${workspaceFolder}/build_debug/src/Platform/b_manage",
"args": [
"-n",
"20"
],
"cwd": "/home/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "list",
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
"args": [],
//"cwd": "/Users/rmontanana/Code/discretizbench",
"cwd": "/home/rmontanana/Code/covbench",
"${workspaceFolder}/tests/data/glass.arff"
]
},
{
"type": "lldb",
"request": "launch",
"name": "test",
"program": "${workspaceFolder}/build_debug/tests/unit_tests",
"program": "${workspaceFolder}/build_debug/tests/TestBayesNet",
"args": [
"-c=\"Metrics Test\"",
// "-s",
"Block Update"
],
"cwd": "${workspaceFolder}/build/tests",
"cwd": "${workspaceFolder}/build_debug/tests"
},
{
"name": "Build & debug active file",
"name": "(gdb) Launch",
"type": "cppdbg",
"request": "launch",
"program": "${workspaceFolder}/build_debug/bayesnet",
"program": "enter program name, for example ${workspaceFolder}/a.out",
"args": [],
"stopAtEntry": false,
"cwd": "${workspaceFolder}",
"cwd": "${fileDirname}",
"environment": [],
"externalConsole": false,
"MIMode": "lldb",
"preLaunchTask": "CMake: build"
"MIMode": "gdb",
"setupCommands": [
{
"description": "Enable pretty-printing for gdb",
"text": "-enable-pretty-printing",
"ignoreFailures": true
},
{
"description": "Set Disassembly Flavor to Intel",
"text": "-gdb-set disassembly-flavor intel",
"ignoreFailures": true
}
]
}
]
}

72
CHANGELOG.md Normal file
View File

@@ -0,0 +1,72 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [unreleased]
### Added
- Install command and instructions in README.md
- Prefix to install command to install the package in the any location.
- The 'block_update' hyperparameter to the BoostAODE class, to control the way weights/significances are updated. Default value is false.
- Html report of coverage in the coverage folder. It is created with *make viewcoverage*
- Badges of coverage and code quality (codacy) in README.md. Coverage badge is updated with *make viewcoverage*
- Tests to reach 97% of coverage.
- Copyright header to source files.
### Changed
- Sample app now is a separate target in the Makefile and shows how to use the library with a sample dataset
- The worse model count in BoostAODE is reset to 0 every time a new model produces better accuracy, so the tolerance of the model is meant to be the number of **consecutive** models that produce worse accuracy.
- Default hyperparameter values in BoostAODE: bisection is true, maxTolerance is 3, convergence is true
## [1.0.4] 2024-03-06
### Added
- Change *ascending* hyperparameter to *order* with these possible values *{"asc", "desc", "rand"}*, Default is *"desc"*.
- Add the *predict_single* hyperparameter to control if only the last model created is used to predict in boost training or the whole ensemble (all the models built so far). Default is true.
- sample app to show how to use the library (make sample)
### Changed
- Change the library structure adding folders for each group of classes (classifiers, ensembles, etc).
- The significances of the models generated under the feature selection algorithm are now computed after all the models have been generated and an &alpha;<sub>t</sub> value is computed and assigned to each model.
## [1.0.3] 2024-02-25
### Added
- Voting / probability aggregation in Ensemble classes
- predict_proba method in Classifier
- predict_proba method in BoostAODE
- predict_voting parameter in BoostAODE constructor to use voting or probability to predict (default is voting)
- hyperparameter predict_voting to AODE, AODELd and BoostAODE (Ensemble child classes)
- tests to check predict & predict_proba coherence
## [1.0.2] - 2024-02-20
### Fixed
- Fix bug in BoostAODE: do not include the model if epsilon sub t is greater than 0.5
- Fix bug in BoostAODE: compare accuracy with previous accuracy instead of the first of the ensemble if convergence true
## [1.0.1] - 2024-02-12
### Added
- Notes in Classifier class
- BoostAODE: Add note with used features in initialization with feature selection
- BoostAODE: Add note with the number of models
- BoostAODE: Add note with the number of features used to create models if not all features are used
- Test version number in TestBayesModels
- Add tests with feature_select and notes on BoostAODE
### Fixed
- Network predict test
- Network predict_proba test
- Network score test

View File

@@ -1,7 +1,7 @@
cmake_minimum_required(VERSION 3.20)
project(BayesNet
VERSION 0.2.0
VERSION 1.0.4.1
DESCRIPTION "Bayesian Network and basic classifiers Library."
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
LANGUAGES CXX
@@ -25,37 +25,31 @@ set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -O0 -g")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
# Options
# -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" OFF)
# Boost Library
set(Boost_USE_STATIC_LIBS OFF)
set(Boost_USE_MULTITHREADED ON)
set(Boost_USE_STATIC_RUNTIME OFF)
find_package(Boost 1.66.0 REQUIRED COMPONENTS python3 numpy3)
if(Boost_FOUND)
message("Boost_INCLUDE_DIRS=${Boost_INCLUDE_DIRS}")
include_directories(${Boost_INCLUDE_DIRS})
endif()
# Python
find_package(Python3 3.11...3.11.9 COMPONENTS Interpreter Development REQUIRED)
message("Python3_LIBRARIES=${Python3_LIBRARIES}")
option(INSTALL_GTEST "Enable installation of googletest." OFF)
# CMakes modules
# --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
include(AddGitSubmodule)
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
MESSAGE("Debug mode")
set(ENABLE_TESTING ON)
set(CODE_COVERAGE ON)
endif (CMAKE_BUILD_TYPE STREQUAL "Debug")
if (CODE_COVERAGE)
enable_testing()
include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
@@ -67,33 +61,28 @@ endif (ENABLE_CLANG_TIDY)
# ---------------------------------------------
# include(FetchContent)
add_git_submodule("lib/mdlp")
add_git_submodule("lib/argparse")
add_git_submodule("lib/json")
find_library(XLSXWRITER_LIB NAMES libxlsxwriter.dylib libxlsxwriter.so PATHS ${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/lib)
message("XLSXWRITER_LIB=${XLSXWRITER_LIB}")
# Subdirectories
# --------------
add_subdirectory(config)
add_subdirectory(lib/Files)
add_subdirectory(src/BayesNet)
add_subdirectory(src/Platform)
add_subdirectory(src/PyClassifiers)
add_subdirectory(sample)
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform/*.cc ${BayesNet_SOURCE_DIR}/src/Platform/*.cpp)
add_subdirectory(bayesnet)
# Testing
# -------
if (ENABLE_TESTING)
MESSAGE("Testing enabled")
add_git_submodule("lib/catch2")
include(CTest)
add_subdirectory(tests)
endif (ENABLE_TESTING)
# Installation
# ------------
install(TARGETS BayesNet
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
CONFIGURATIONS Release)
install(DIRECTORY bayesnet/ DESTINATION include/bayesnet FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h")
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DESTINATION include/bayesnet CONFIGURATIONS Release)

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) <year> <copyright holders>
Copyright (c) 2023 Ricardo Montañana Gómez
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

View File

@@ -1,11 +1,11 @@
SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: coverage setup help build test clean debug release
.PHONY: viewcoverage coverage setup help install uninstall buildr buildd test clean debug release sample updatebadge
f_release = build_release
f_debug = build_debug
app_targets = b_best b_list b_main b_manage b_grid
test_targets = unit_tests_bayesnet unit_tests_platform
app_targets = BayesNet
test_targets = TestBayesNet
n_procs = -j 16
define ClearTests
@@ -29,20 +29,9 @@ setup: ## Install dependencies for tests and coverage
fi
@if [ "$(shell uname)" = "Linux" ]; then \
pip install gcovr; \
sudo dnf install lcov;\
fi
dest ?= ${HOME}/bin
install: ## Copy binary files to bin folder
@echo "Destination folder: $(dest)"
make buildr
@echo "*******************************************"
@echo ">>> Copying files to $(dest)"
@echo "*******************************************"
@for item in $(app_targets); do \
echo ">>> Copying $$item" ; \
cp $(f_release)/src/Platform/$$item $(dest) ; \
done
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
@echo ">>> Creating dependency graph diagram of the project...";
$(MAKE) debug
@@ -59,8 +48,16 @@ clean: ## Clean the tests info
$(call ClearTests)
@echo ">>> Done";
clang-uml: ## Create uml class and sequence diagrams
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
uninstall: ## Uninstall library
@echo ">>> Uninstalling BayesNet...";
xargs rm < $(f_release)/install_manifest.txt
@echo ">>> Done";
prefix = "/usr/local"
install: ## Install library
@echo ">>> Installing BayesNet...";
@cmake --install $(f_release) --prefix $(prefix)
@echo ">>> Done";
debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet...";
@@ -76,42 +73,55 @@ release: ## Build a Release version of the project
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
@echo ">>> Done";
fname = "tests/data/iris.arff"
sample: ## Build sample
@echo ">>> Building Sample...";
@if [ -d ./sample/build ]; then rm -rf ./sample/build; fi
@cd sample && cmake -B build -S . && cmake --build build -t bayesnet_sample
sample/build/bayesnet_sample $(fname)
@echo ">>> Done";
opt = ""
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet & Platform tests...";
@$(MAKE) clean
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
@for t in $(test_targets); do \
echo ">>> Running $$t...";\
if [ -f $(f_debug)/tests/$$t ]; then \
cd $(f_debug)/tests ; \
./$$t $(opt) ; \
cd ../.. ; \
fi ; \
done
@echo ">>> Done";
opt = ""
testp: ## Run platform tests (opt="-s") to verbose output the tests, (opt="-c='Stratified Fold Test'") to run only that section
@echo ">>> Running Platform tests...";
@$(MAKE) clean
@cmake --build $(f_debug) --target unit_tests_platform $(n_procs)
@if [ -f $(f_debug)/tests/unit_tests_platform ]; then cd $(f_debug)/tests ; ./unit_tests_platform $(opt) ; fi ;
@echo ">>> Done";
opt = ""
testb: ## Run BayesNet tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet tests...";
@$(MAKE) clean
@cmake --build $(f_debug) --target unit_tests_bayesnet $(n_procs)
@if [ -f $(f_debug)/tests/unit_tests_bayesnet ]; then cd $(f_debug)/tests ; ./unit_tests_bayesnet $(opt) ; fi ;
@echo ">>> Done";
coverage: ## Run tests and generate coverage report (build/index.html)
@echo ">>> Building tests with coverage...";
@echo ">>> Building tests with coverage..."
@$(MAKE) test
@cd $(f_debug) ; \
gcovr --config ../gcovr.cfg tests ;
@gcovr $(f_debug)/tests
@echo ">>> Done";
viewcoverage: ## Run tests, generate coverage report and upload it to codecov (build/index.html)
@echo ">>> Building tests with coverage..."
@$(MAKE) coverage
@echo ">>> Building report..."
@cd $(f_debug)/tests; \
lcov --directory . --capture --output-file coverage.info >/dev/null 2>&1; \
lcov --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
lcov --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
lcov --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
lcov --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
lcov --remove coverage.info 'bayesnet/utils/loguru.*' --output-file coverage.info >/dev/null 2>&1; \
genhtml coverage.info --output-directory coverage >/dev/null 2>&1;
@$(MAKE) updatebadge
@xdg-open $(f_debug)/tests/coverage/index.html || open $(f_debug)/tests/coverage/index.html 2>/dev/null
@echo ">>> Done";
updatebadge: ## Update the coverage badge in README.md
@echo ">>> Updating coverage badge..."
@env python update_coverage.py $(f_debug)/tests
@echo ">>> Done";
help: ## Show help message
@IFS=$$'\n' ; \

View File

@@ -1,65 +1,50 @@
# BayesNet
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
![C++](https://img.shields.io/badge/c++-%2300599C.svg?style=flat&logo=c%2B%2B&logoColor=white)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](<https://opensource.org/licenses/MIT>)
![Gitea Release](https://img.shields.io/gitea/v/release/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/cf3e0ac71d764650b1bf4d8d00d303b1)](https://app.codacy.com/gh/Doctorado-ML/BayesNet/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade)
![Gitea Last Commit](https://img.shields.io/gitea/last-commit/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000&logo=gitea)
![Static Badge](https://img.shields.io/badge/Coverage-97,2%25-green)
Bayesian Network Classifier with libtorch from scratch
Bayesian Network Classifiers using libtorch from scratch
## 0. Setup
## Dependencies
Before compiling BayesNet.
### boost library
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
The best option is install the packages that the Linux distribution have in its repository. If this is the case:
The only external dependency is [libtorch](https://pytorch.org/cppdocs/installing.html) which can be installed with the following commands:
```bash
sudo dnf install boost-devel
wget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zip
unzip libtorch-shared-with-deps-latest.zips
```
If this is not possible and the compressed packaged is installed, the following environment variable has to be set pointing to the folder where it was unzipped to:
```bash
export BOOST_ROOT=/path/to/library/
```
In some cases, it is needed to build the library, to do so:
```bash
cd /path/to/library
mkdir own
./bootstrap.sh --prefix=/path/to/library/own
./b2 install
export BOOST_ROOT=/path/to/library/own/
```
Don't forget to add the export BOOST_ROOT statement to .bashrc or wherever it is meant to be.
### libxlswriter
```bash
cd lib/libxlsxwriter
make
make install DESTDIR=/home/rmontanana/Code PREFIX=
```
Environment variable has to be set:
```bash
export LD_LIBRARY_PATH=/usr/local/lib
```
## Setup
### Release
```bash
make release
make buildr
sudo make install
```
### Debug & Tests
```bash
make debug
make test
make coverage
```
## 1. Introduction
### Sample app
After building and installing the release version, you can run the sample app with the following commands:
```bash
make sample
make sample fname=tests/data/glass.arff
```
## Models
### [BoostAODE](docs/BoostAODE.md)

View File

@@ -1,8 +1,13 @@
#ifndef BASE_H
#define BASE_H
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#pragma once
#include <vector>
#include <torch/torch.h>
#include <nlohmann/json.hpp>
#include <vector>
namespace bayesnet {
enum status_t { NORMAL, WARNING, ERROR };
class BaseClassifier {
@@ -16,17 +21,21 @@ namespace bayesnet {
virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0;
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
torch::Tensor virtual predict_proba(torch::Tensor& X) = 0;
std::vector<std::vector<double>> virtual predict_proba(std::vector<std::vector<int >>& X) = 0;
status_t virtual getStatus() const = 0;
float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
int virtual getNumberOfNodes()const = 0;
int virtual getNumberOfEdges()const = 0;
int virtual getNumberOfStates() const = 0;
int virtual getClassNumStates() const = 0;
std::vector<std::string> virtual show() const = 0;
std::vector<std::string> virtual graph(const std::string& title = "") const = 0;
virtual std::string getVersion() = 0;
std::vector<std::string> virtual topological_order() = 0;
void virtual dump_cpt()const = 0;
std::vector<std::string> virtual getNotes() const = 0;
std::string virtual dump_cpt()const = 0;
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
protected:
@@ -34,4 +43,3 @@ namespace bayesnet {
std::vector<std::string> validHyperparameters;
};
}
#endif

13
bayesnet/CMakeLists.txt Normal file
View File

@@ -0,0 +1,13 @@
include_directories(
${BayesNet_SOURCE_DIR}/lib/mdlp
${BayesNet_SOURCE_DIR}/lib/Files
${BayesNet_SOURCE_DIR}/lib/folding
${BayesNet_SOURCE_DIR}/lib/json/include
${BayesNet_SOURCE_DIR}
${CMAKE_BINARY_DIR}/configured_files/include
)
file(GLOB_RECURSE Sources "*.cc")
add_library(BayesNet ${Sources})
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,15 +1,23 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <sstream>
#include "bayesnet/utils/bayesnetUtils.h"
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
this->features = features;
this->className = className;
this->states = states;
m = dataset.size(1);
n = dataset.size(0) - 1;
n = features.size();
checkFitParameters();
auto n_classes = states.at(className).size();
metrics = Metrics(dataset, features, className, n_classes);
@@ -26,10 +34,11 @@ namespace bayesnet {
dataset = torch::cat({ dataset, yresized }, 0);
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
std::cout << "X dimensions: " << dataset.sizes() << "\n";
std::cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
std::stringstream oss;
oss << "* Error in X and y dimensions *\n";
oss << "X dimensions: " << dataset.sizes() << "\n";
oss << "y dimensions: " << ytmp.sizes();
throw std::runtime_error(oss.str());
}
}
void Classifier::trainModel(const torch::Tensor& weights)
@@ -72,11 +81,11 @@ namespace bayesnet {
if (torch::is_floating_point(dataset)) {
throw std::invalid_argument("dataset (X, y) must be of type Integer");
}
if (n != features.size()) {
throw std::invalid_argument("Classifier: X " + std::to_string(n) + " and features " + std::to_string(features.size()) + " must have the same number of features");
if (dataset.size(0) - 1 != features.size()) {
throw std::invalid_argument("Classifier: X " + std::to_string(dataset.size(0) - 1) + " and features " + std::to_string(features.size()) + " must have the same number of features");
}
if (states.find(className) == states.end()) {
throw std::invalid_argument("className not found in states");
throw std::invalid_argument("class name not found in states");
}
for (auto feature : features) {
if (states.find(feature) == states.end()) {
@@ -87,14 +96,14 @@ namespace bayesnet {
torch::Tensor Classifier::predict(torch::Tensor& X)
{
if (!fitted) {
throw std::logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.predict(X);
}
std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw std::logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto m_ = X[0].size();
auto n_ = X.size();
@@ -105,18 +114,37 @@ namespace bayesnet {
auto yp = model.predict(Xd);
return yp;
}
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
torch::Tensor Classifier::predict_proba(torch::Tensor& X)
{
if (!fitted) {
throw std::logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.predict_proba(X);
}
std::vector<std::vector<double>> Classifier::predict_proba(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto m_ = X[0].size();
auto n_ = X.size();
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
// Convert to nxm vector
for (auto i = 0; i < n_; i++) {
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict_proba(Xd);
return yp;
}
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
{
torch::Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
{
if (!fitted) {
throw std::logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.score(X, y);
}
@@ -145,16 +173,22 @@ namespace bayesnet {
{
return fitted ? model.getStates() : 0;
}
int Classifier::getClassNumStates() const
{
return fitted ? model.getClassNumStates() : 0;
}
std::vector<std::string> Classifier::topological_order()
{
return model.topological_sort();
}
void Classifier::dump_cpt() const
std::string Classifier::dump_cpt() const
{
model.dump_cpt();
return model.dump_cpt();
}
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
{
//For classifiers that don't have hyperparameters
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
}
}
}

View File

@@ -1,28 +1,18 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef CLASSIFIER_H
#define CLASSIFIER_H
#include <torch/torch.h>
#include "BaseClassifier.h"
#include "Network.h"
#include "BayesMetrics.h"
#include "bayesnet/utils/BayesMetrics.h"
#include "bayesnet/network/Network.h"
#include "bayesnet/BaseClassifier.h"
namespace bayesnet {
class Classifier : public BaseClassifier {
private:
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
protected:
bool fitted;
int m, n; // m: number of samples, n: number of features
Network model;
Metrics metrics;
std::vector<std::string> features;
std::string className;
std::map<std::string, std::vector<int>> states;
torch::Tensor dataset; // (n+1)xm tensor
status_t status = NORMAL;
void checkFitParameters();
virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel(const torch::Tensor& weights) override;
void buildDataset(torch::Tensor& y);
public:
Classifier(Network model);
virtual ~Classifier() = default;
@@ -34,16 +24,37 @@ namespace bayesnet {
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
int getClassNumStates() const override;
torch::Tensor predict(torch::Tensor& X) override;
status_t getStatus() const override { return status; }
std::string getVersion() override { return "0.2.0"; };
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
status_t getStatus() const override { return status; }
std::string getVersion() override { return { project_version.begin(), project_version.end() }; };
float score(torch::Tensor& X, torch::Tensor& y) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
std::vector<std::string> show() const override;
std::vector<std::string> topological_order() override;
void dump_cpt() const override;
std::vector<std::string> getNotes() const override { return notes; }
std::string dump_cpt() const override;
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
protected:
bool fitted;
unsigned int m, n; // m: number of samples, n: number of features
Network model;
Metrics metrics;
std::vector<std::string> features;
std::string className;
std::map<std::string, std::vector<int>> states;
torch::Tensor dataset; // (n+1)xm tensor
status_t status = NORMAL;
std::vector<std::string> notes; // Used to store messages occurred during the fit process
void checkFitParameters();
virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel(const torch::Tensor& weights) override;
void buildDataset(torch::Tensor& y);
private:
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
};
}
#endif

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "KDB.h"
namespace bayesnet {
@@ -6,14 +12,18 @@ namespace bayesnet {
validHyperparameters = { "k", "theta" };
}
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
void KDB::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("k")) {
k = hyperparameters["k"];
hyperparameters.erase("k");
}
if (hyperparameters.contains("theta")) {
theta = hyperparameters["theta"];
hyperparameters.erase("theta");
}
Classifier::setHyperparameters(hyperparameters);
}
void KDB::buildModel(const torch::Tensor& weights)
{

View File

@@ -1,8 +1,14 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef KDB_H
#define KDB_H
#include <torch/torch.h>
#include "bayesnet/utils/bayesnetUtils.h"
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
class KDB : public Classifier {
private:
@@ -14,7 +20,7 @@ namespace bayesnet {
public:
explicit KDB(int k, float theta = 0.03);
virtual ~KDB() = default;
void setHyperparameters(const nlohmann::json& hyperparameters) override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
std::vector<std::string> graph(const std::string& name = "KDB") const override;
};
}

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "KDBLd.h"
namespace bayesnet {

View File

@@ -1,7 +1,13 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef KDBLD_H
#define KDBLD_H
#include "KDB.h"
#include "Proposal.h"
#include "KDB.h"
namespace bayesnet {
class KDBLd : public KDB, public Proposal {

View File

@@ -1,5 +1,11 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <ArffFiles.h>
#include "Proposal.h"
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}

View File

@@ -1,10 +1,16 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef PROPOSAL_H
#define PROPOSAL_H
#include <string>
#include <map>
#include <torch/torch.h>
#include "Network.h"
#include "CPPFImdlp.h"
#include <CPPFImdlp.h>
#include "bayesnet/network/Network.h"
#include "Classifier.h"
namespace bayesnet {

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "SPODE.h"
namespace bayesnet {

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef SPODE_H
#define SPODE_H
#include "Classifier.h"

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "SPODELd.h"
namespace bayesnet {
@@ -5,25 +11,23 @@ namespace bayesnet {
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
return commonFit(features_, className_, states_);
}
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
if (!torch::is_floating_point(dataset)) {
throw std::runtime_error("Dataset must be a floating point tensor");
}
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
y = dataset.index({ -1, "..." }).clone();
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
return commonFit(features_, className_, states_);
}
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
features = features_;
className = className_;
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
@@ -34,7 +38,6 @@ namespace bayesnet {
states = localDiscretizationProposal(states, model);
return *this;
}
torch::Tensor SPODELd::predict(torch::Tensor& X)
{
auto Xt = prepareX(X);

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef SPODELD_H
#define SPODELD_H
#include "SPODE.h"
@@ -10,6 +16,7 @@ namespace bayesnet {
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states);
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
torch::Tensor predict(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "TAN.h"
namespace bayesnet {

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef TAN_H
#define TAN_H
#include "Classifier.h"

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "TANLd.h"
namespace bayesnet {

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef TANLD_H
#define TANLD_H
#include "TAN.h"

View File

@@ -0,0 +1,38 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "AODE.h"
namespace bayesnet {
AODE::AODE(bool predict_voting) : Ensemble(predict_voting)
{
validHyperparameters = { "predict_voting" };
}
void AODE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
Classifier::setHyperparameters(hyperparameters);
}
void AODE::buildModel(const torch::Tensor& weights)
{
models.clear();
significanceModels.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i));
}
n_models = models.size();
significanceModels = std::vector<double>(n_models, 1.0);
}
std::vector<std::string> AODE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}
}

22
bayesnet/ensembles/AODE.h Normal file
View File

@@ -0,0 +1,22 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef AODE_H
#define AODE_H
#include "bayesnet/classifiers/SPODE.h"
#include "Ensemble.h"
namespace bayesnet {
class AODE : public Ensemble {
public:
AODE(bool predict_voting = false);
virtual ~AODE() {};
void setHyperparameters(const nlohmann::json& hyperparameters) override;
std::vector<std::string> graph(const std::string& title = "AODE") const override;
protected:
void buildModel(const torch::Tensor& weights) override;
};
}
#endif

View File

@@ -1,7 +1,15 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "AODELd.h"
namespace bayesnet {
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
{
}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);

View File

@@ -1,20 +1,25 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef AODELD_H
#define AODELD_H
#include "bayesnet/classifiers/Proposal.h"
#include "bayesnet/classifiers/SPODELd.h"
#include "Ensemble.h"
#include "Proposal.h"
#include "SPODELd.h"
namespace bayesnet {
class AODELd : public Ensemble, public Proposal {
public:
AODELd(bool predict_voting = true);
virtual ~AODELd() = default;
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
protected:
void trainModel(const torch::Tensor& weights) override;
void buildModel(const torch::Tensor& weights) override;
public:
AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
virtual ~AODELd() = default;
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
static inline std::string version() { return "0.0.1"; };
};
}
#endif // !AODELD_H

View File

@@ -0,0 +1,403 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <set>
#include <functional>
#include <limits.h>
#include <tuple>
#include <folding.hpp>
#include "bayesnet/feature_selection/CFS.h"
#include "bayesnet/feature_selection/FCBF.h"
#include "bayesnet/feature_selection/IWSS.h"
#include "BoostAODE.h"
#include "bayesnet/utils/loguru.cpp"
namespace bayesnet {
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
{
validHyperparameters = {
"maxModels", "bisection", "order", "convergence", "threshold",
"select_features", "maxTolerance", "predict_voting", "block_update"
};
}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
models.clear();
significanceModels.clear();
n_models = 0;
// Prepare the validation dataset
auto y_ = dataset.index({ -1, "..." });
if (convergence) {
// Prepare train & validation sets from train data
auto fold = folding::StratifiedKFold(5, y_, 271);
auto [train, test] = fold.getFold(0);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
// Get train and validation sets
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
y_train = dataset.index({ -1, train_t });
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
y_test = dataset.index({ -1, test_t });
dataset = X_train;
m = X_train.size(1);
auto n_classes = states.at(className).size();
// Build dataset with train data
buildDataset(y_train);
metrics = Metrics(dataset, features, className, n_classes);
} else {
// Use all data to train
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
y_train = y_;
}
}
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("order")) {
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
order_algorithm = hyperparameters["order"];
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
}
hyperparameters.erase("order");
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
hyperparameters.erase("convergence");
}
if (hyperparameters.contains("bisection")) {
bisection = hyperparameters["bisection"];
hyperparameters.erase("bisection");
}
if (hyperparameters.contains("threshold")) {
threshold = hyperparameters["threshold"];
hyperparameters.erase("threshold");
}
if (hyperparameters.contains("maxTolerance")) {
maxTolerance = hyperparameters["maxTolerance"];
if (maxTolerance < 1 || maxTolerance > 4)
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
hyperparameters.erase("maxTolerance");
}
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
if (hyperparameters.contains("select_features")) {
auto selectedAlgorithm = hyperparameters["select_features"];
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
selectFeatures = true;
select_features_algorithm = selectedAlgorithm;
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
}
hyperparameters.erase("select_features");
}
if (hyperparameters.contains("block_update")) {
block_update = hyperparameters["block_update"];
hyperparameters.erase("block_update");
}
Classifier::setHyperparameters(hyperparameters);
}
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
{
bool terminate = false;
double alpha_t = 0;
auto mask_wrong = ypred != ytrain;
auto mask_right = ypred == ytrain;
auto masked_weights = weights * mask_wrong.to(weights.dtype());
double epsilon_t = masked_weights.sum().item<double>();
if (epsilon_t > 0.5) {
// Inverse the weights policy (plot ln(wt))
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
terminate = true;
} else {
double wt = (1 - epsilon_t) / epsilon_t;
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
// Step 3.2: Update weights for next classifier
// Step 3.2.1: Update weights of wrong samples
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
// Step 3.2.2: Update weights of right samples
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
// Step 3.3: Normalise the weights
double totalWeights = torch::sum(weights).item<double>();
weights = weights / totalWeights;
}
return { weights, alpha_t, terminate };
}
std::tuple<torch::Tensor&, double, bool> BoostAODE::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
{
/* Update Block algorithm
k = # of models in block
n_models = # of models in ensemble to make predictions
n_models_bak = # models saved
models = vector of models to make predictions
models_bak = models not used to make predictions
significances_bak = backup of significances vector
Case list
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
B) k = 1, n_models = n + 1 => n_models = n + k
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
D) k > 1, n_models = k => n = 0, n_models = n + k
E) k > 1, n_models = k + n => n_models = n + k
A, D) n=0, k > 0, n_models == k
1. n_models_bak <- n_models
2. significances_bak <- significances
3. significances = vector(k, 1)
4. Dont move any classifiers out of models
5. n_models <- k
6. Make prediction, compute alpha, update weights
7. Dont restore any classifiers to models
8. significances <- significances_bak
9. Update last k significances
10. n_models <- n_models_bak
B, C, E) n > 0, k > 0, n_models == n + k
1. n_models_bak <- n_models
2. significances_bak <- significances
3. significances = vector(k, 1)
4. Move first n classifiers to models_bak
5. n_models <- k
6. Make prediction, compute alpha, update weights
7. Insert classifiers in models_bak to be the first n models
8. significances <- significances_bak
9. Update last k significances
10. n_models <- n_models_bak
*/
//
// Make predict with only the last k models
//
std::unique_ptr<Classifier> model;
std::vector<std::unique_ptr<Classifier>> models_bak;
// 1. n_models_bak <- n_models 2. significances_bak <- significances
auto significance_bak = significanceModels;
auto n_models_bak = n_models;
// 3. significances = vector(k, 1)
significanceModels = std::vector<double>(k, 1.0);
// 4. Move first n classifiers to models_bak
// backup the first n_models - k models (if n_models == k, don't backup any)
VLOG_SCOPE_F(1, "upd_weights_block n_models=%d k=%d", n_models, k);
for (int i = 0; i < n_models - k; ++i) {
model = std::move(models[0]);
models.erase(models.begin());
models_bak.push_back(std::move(model));
}
assert(models.size() == k);
// 5. n_models <- k
n_models = k;
// 6. Make prediction, compute alpha, update weights
auto ypred = predict(X_train);
//
// Update weights
//
double alpha_t;
bool terminate;
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
//
// Restore the models if needed
//
// 7. Insert classifiers in models_bak to be the first n models
// if n_models_bak == k, don't restore any, because none of them were moved
if (k != n_models_bak) {
// Insert in the same order as they were extracted
int bak_size = models_bak.size();
for (int i = 0; i < bak_size; ++i) {
model = std::move(models_bak[bak_size - 1 - i]);
models_bak.erase(models_bak.end() - 1);
models.insert(models.begin(), std::move(model));
}
}
// 8. significances <- significances_bak
significanceModels = significance_bak;
//
// Update the significance of the last k models
//
// 9. Update last k significances
for (int i = 0; i < k; ++i) {
significanceModels[n_models_bak - k + i] = alpha_t;
}
// 10. n_models <- n_models_bak
n_models = n_models_bak;
return { weights, alpha_t, terminate };
}
std::vector<int> BoostAODE::initializeModels()
{
std::vector<int> featuresUsed;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
int maxFeatures = 0;
if (select_features_algorithm == SelectFeatures.CFS) {
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
} else if (select_features_algorithm == SelectFeatures.IWSS) {
if (threshold < 0 || threshold >0.5) {
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
}
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
} else if (select_features_algorithm == SelectFeatures.FCBF) {
if (threshold < 1e-7 || threshold > 1) {
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
}
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
}
featureSelector->fit();
auto cfsFeatures = featureSelector->getFeatures();
auto scores = featureSelector->getScores();
for (int i = 0; i < cfsFeatures.size(); ++i) {
LOG_F(INFO, "Feature: %d Score: %f", cfsFeatures[i], scores[i]);
}
for (const int& feature : cfsFeatures) {
featuresUsed.push_back(feature);
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
models.push_back(std::move(model));
significanceModels.push_back(1.0); // They will be updated later in trainModel
n_models++;
}
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
delete featureSelector;
return featuresUsed;
}
void BoostAODE::trainModel(const torch::Tensor& weights)
{
//
// Logging setup
//
loguru::set_thread_name("BoostAODE");
loguru::g_stderr_verbosity = loguru::Verbosity_OFF;;
loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
// Algorithm based on the adaboost algorithm for classification
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
fitted = true;
double alpha_t = 0;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
bool finished = false;
std::vector<int> featuresUsed;
if (selectFeatures) {
featuresUsed = initializeModels();
auto ypred = predict(X_train);
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
// Update significance of the models
for (int i = 0; i < n_models; ++i) {
significanceModels[i] = alpha_t;
}
if (finished) {
return;
}
LOG_F(INFO, "Initial models: %d", n_models);
LOG_F(INFO, "Significances: ");
for (int i = 0; i < n_models; ++i) {
LOG_F(INFO, "i=%d significance=%f", i, significanceModels[i]);
}
}
int numItemsPack = 0; // The counter of the models inserted in the current pack
// Variables to control the accuracy finish condition
double priorAccuracy = 0.0;
double improvement = 1.0;
double convergence_threshold = 1e-4;
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
// Step 0: Set the finish condition
// epsilon sub t > 0.5 => inverse the weights policy
// validation error is not decreasing
// run out of features
bool ascending = order_algorithm == Orders.ASC;
std::mt19937 g{ 173 };
while (!finished) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
VLOG_SCOPE_F(1, "featureSelection.size: %zu featuresUsed.size: %zu", featureSelection.size(), featuresUsed.size());
if (order_algorithm == Orders.RAND) {
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
}
// Remove used features
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
end(featureSelection)
);
int k = pow(2, tolerance);
int counter = 0; // The model counter of the current pack
VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
while (counter++ < k && featureSelection.size() > 0) {
auto feature = featureSelection[0];
featureSelection.erase(featureSelection.begin());
std::unique_ptr<Classifier> model;
model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
alpha_t = 0.0;
if (!block_update) {
auto ypred = model->predict(X_train);
// Step 3.1: Compute the classifier amout of say
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
if (finished) {
VLOG_SCOPE_F(2, "** epsilon_t > 0.5 **");
break;
}
}
// Step 3.4: Store classifier and its accuracy to weigh its future vote
numItemsPack++;
featuresUsed.push_back(feature);
models.push_back(std::move(model));
significanceModels.push_back(alpha_t);
n_models++;
VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
}
if (block_update) {
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
}
if (convergence && !finished) {
auto y_val_predict = predict(X_test);
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
if (priorAccuracy == 0) {
priorAccuracy = accuracy;
VLOG_SCOPE_F(3, "First accuracy: %f", priorAccuracy);
} else {
improvement = accuracy - priorAccuracy;
}
if (improvement < convergence_threshold) {
VLOG_SCOPE_F(3, "(improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
tolerance++;
} else {
VLOG_SCOPE_F(3, "*(improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
tolerance = 0; // Reset the counter if the model performs better
numItemsPack = 0;
}
// Keep the best accuracy until now as the prior accuracy
priorAccuracy = std::max(accuracy, priorAccuracy);
// priorAccuracy = accuracy;
}
VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
}
if (tolerance > maxTolerance) {
if (numItemsPack < n_models) {
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
for (int i = 0; i < numItemsPack; ++i) {
significanceModels.pop_back();
models.pop_back();
n_models--;
}
} else {
VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
notes.push_back("Convergence threshold reached & 0 models eliminated");
}
}
if (featuresUsed.size() != features.size()) {
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
status = WARNING;
}
notes.push_back("Number of models: " + std::to_string(n_models));
}
std::vector<std::string> BoostAODE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}
}

View File

@@ -0,0 +1,49 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef BOOSTAODE_H
#define BOOSTAODE_H
#include <map>
#include "bayesnet/classifiers/SPODE.h"
#include "bayesnet/feature_selection/FeatureSelect.h"
#include "Ensemble.h"
namespace bayesnet {
struct {
std::string CFS = "CFS";
std::string FCBF = "FCBF";
std::string IWSS = "IWSS";
}SelectFeatures;
struct {
std::string ASC = "asc";
std::string DESC = "desc";
std::string RAND = "rand";
}Orders;
class BoostAODE : public Ensemble {
public:
BoostAODE(bool predict_voting = false);
virtual ~BoostAODE() = default;
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights) override;
private:
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
std::vector<int> initializeModels();
torch::Tensor X_train, y_train, X_test, y_test;
// Hyperparameters
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
int maxTolerance = 3;
std::string order_algorithm; // order to process the KBest features asc, desc, rand
bool convergence = true; //if true, stop when the model does not improve
bool selectFeatures = false; // if true, use feature selection
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
FeatureSelect* featureSelector = nullptr;
double threshold = -1;
bool block_update = false;
};
}
#endif

View File

@@ -0,0 +1,222 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "Ensemble.h"
namespace bayesnet {
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
{
};
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
void Ensemble::trainModel(const torch::Tensor& weights)
{
n_models = models.size();
for (auto i = 0; i < n_models; ++i) {
// fit with std::vectors
models[i]->fit(dataset, features, className, states);
}
}
std::vector<int> Ensemble::compute_arg_max(std::vector<std::vector<double>>& X)
{
std::vector<int> y_pred;
for (auto i = 0; i < X.size(); ++i) {
auto max = std::max_element(X[i].begin(), X[i].end());
y_pred.push_back(std::distance(X[i].begin(), max));
}
return y_pred;
}
torch::Tensor Ensemble::compute_arg_max(torch::Tensor& X)
{
auto y_pred = torch::argmax(X, 1);
return y_pred;
}
torch::Tensor Ensemble::voting(torch::Tensor& votes)
{
// Convert m x n_models tensor to a m x n_class_states with voting probabilities
auto y_pred_ = votes.accessor<int, 2>();
std::vector<int> y_pred_final;
int numClasses = states.at(className).size();
// votes is m x n_models with the prediction of every model for each sample
auto result = torch::zeros({ votes.size(0), numClasses }, torch::kFloat32);
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
for (int i = 0; i < votes.size(0); ++i) {
// n_votes store in each index (value of class) the significance added by each model
// i.e. n_votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
std::vector<double> n_votes(numClasses, 0.0);
for (int j = 0; j < n_models; ++j) {
n_votes[y_pred_[i][j]] += significanceModels.at(j);
}
result[i] = torch::tensor(n_votes);
}
// To only do one division and gain precision
result /= sum;
return result;
}
std::vector<std::vector<double>> Ensemble::predict_proba(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw std::logic_error(ENSEMBLE_NOT_FITTED);
}
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
}
torch::Tensor Ensemble::predict_proba(torch::Tensor& X)
{
if (!fitted) {
throw std::logic_error(ENSEMBLE_NOT_FITTED);
}
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
}
std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
{
auto res = predict_proba(X);
return compute_arg_max(res);
}
torch::Tensor Ensemble::predict(torch::Tensor& X)
{
auto res = predict_proba(X);
return compute_arg_max(res);
}
torch::Tensor Ensemble::predict_average_proba(torch::Tensor& X)
{
auto n_states = models[0]->getClassNumStates();
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
auto threads{ std::vector<std::thread>() };
std::mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(std::thread([&, i]() {
auto ypredict = models[i]->predict_proba(X);
std::lock_guard<std::mutex> lock(mtx);
y_pred += ypredict * significanceModels[i];
}));
}
for (auto& thread : threads) {
thread.join();
}
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
y_pred /= sum;
return y_pred;
}
std::vector<std::vector<double>> Ensemble::predict_average_proba(std::vector<std::vector<int>>& X)
{
auto n_states = models[0]->getClassNumStates();
std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
auto threads{ std::vector<std::thread>() };
std::mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(std::thread([&, i]() {
auto ypredict = models[i]->predict_proba(X);
assert(ypredict.size() == y_pred.size());
assert(ypredict[0].size() == y_pred[0].size());
std::lock_guard<std::mutex> lock(mtx);
// Multiply each prediction by the significance of the model and then add it to the final prediction
for (auto j = 0; j < ypredict.size(); ++j) {
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
}
}));
}
for (auto& thread : threads) {
thread.join();
}
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
//Divide each element of the prediction by the sum of the significances
for (auto j = 0; j < y_pred.size(); ++j) {
std::transform(y_pred[j].begin(), y_pred[j].end(), y_pred[j].begin(), [sum](double x) { return x / sum; });
}
return y_pred;
}
std::vector<std::vector<double>> Ensemble::predict_average_voting(std::vector<std::vector<int>>& X)
{
torch::Tensor Xt = bayesnet::vectorToTensor(X, false);
auto y_pred = predict_average_voting(Xt);
std::vector<std::vector<double>> result = tensorToVectorDouble(y_pred);
return result;
}
torch::Tensor Ensemble::predict_average_voting(torch::Tensor& X)
{
// Build a m x n_models tensor with the predictions of each model
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
auto threads{ std::vector<std::thread>() };
std::mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(std::thread([&, i]() {
auto ypredict = models[i]->predict(X);
std::lock_guard<std::mutex> lock(mtx);
y_pred.index_put_({ "...", i }, ypredict);
}));
}
for (auto& thread : threads) {
thread.join();
}
return voting(y_pred);
}
float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
{
auto y_pred = predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(0); ++i) {
if (y_pred[i].item<int>() == y[i].item<int>()) {
correct++;
}
}
return (double)correct / y_pred.size(0);
}
float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
{
auto y_pred = predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == y[i]) {
correct++;
}
}
return (double)correct / y_pred.size();
}
std::vector<std::string> Ensemble::show() const
{
auto result = std::vector<std::string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->show();
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
std::vector<std::string> Ensemble::graph(const std::string& title) const
{
auto result = std::vector<std::string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->graph(title + "_" + std::to_string(i));
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
int Ensemble::getNumberOfNodes() const
{
int nodes = 0;
for (auto i = 0; i < n_models; ++i) {
nodes += models[i]->getNumberOfNodes();
}
return nodes;
}
int Ensemble::getNumberOfEdges() const
{
int edges = 0;
for (auto i = 0; i < n_models; ++i) {
edges += models[i]->getNumberOfEdges();
}
return edges;
}
int Ensemble::getNumberOfStates() const
{
int nstates = 0;
for (auto i = 0; i < n_models; ++i) {
nstates += models[i]->getNumberOfStates();
}
return nstates;
}
}

View File

@@ -0,0 +1,53 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef ENSEMBLE_H
#define ENSEMBLE_H
#include <torch/torch.h>
#include "bayesnet/utils/BayesMetrics.h"
#include "bayesnet/utils/bayesnetUtils.h"
#include "bayesnet/classifiers/Classifier.h"
namespace bayesnet {
class Ensemble : public Classifier {
public:
Ensemble(bool predict_voting = true);
virtual ~Ensemble() = default;
torch::Tensor predict(torch::Tensor& X) override;
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
float score(torch::Tensor& X, torch::Tensor& y) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
std::vector<std::string> show() const override;
std::vector<std::string> graph(const std::string& title) const override;
std::vector<std::string> topological_order() override
{
return std::vector<std::string>();
}
std::string dump_cpt() const override
{
return "";
}
protected:
torch::Tensor predict_average_voting(torch::Tensor& X);
std::vector<std::vector<double>> predict_average_voting(std::vector<std::vector<int>>& X);
torch::Tensor predict_average_proba(torch::Tensor& X);
std::vector<std::vector<double>> predict_average_proba(std::vector<std::vector<int>>& X);
torch::Tensor compute_arg_max(torch::Tensor& X);
std::vector<int> compute_arg_max(std::vector<std::vector<double>>& X);
torch::Tensor voting(torch::Tensor& votes);
unsigned n_models;
std::vector<std::unique_ptr<Classifier>> models;
std::vector<double> significanceModels;
void trainModel(const torch::Tensor& weights) override;
bool predict_voting;
};
}
#endif

View File

@@ -1,6 +1,12 @@
#include "CFS.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <limits>
#include "bayesnetUtils.h"
#include "bayesnet/utils/bayesnetUtils.h"
#include "CFS.h"
namespace bayesnet {
void CFS::fit()
{
@@ -11,7 +17,7 @@ namespace bayesnet {
auto feature = featureOrder[0];
selectedFeatures.push_back(feature);
selectedScores.push_back(suLabels[feature]);
selectedFeatures.erase(selectedFeatures.begin());
featureOrder.erase(featureOrder.begin());
while (continueCondition) {
double merit = std::numeric_limits<double>::lowest();
int bestFeature = -1;

View File

@@ -1,8 +1,14 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef CFS_H
#define CFS_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
#include "bayesnet/feature_selection/FeatureSelect.h"
namespace bayesnet {
class CFS : public FeatureSelect {
public:

View File

@@ -1,4 +1,10 @@
#include "bayesnetUtils.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "bayesnet/utils/bayesnetUtils.h"
#include "FCBF.h"
namespace bayesnet {

View File

@@ -1,8 +1,14 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef FCBF_H
#define FCBF_H
#include <torch/torch.h>
#include <vector>
#include "FeatureSelect.h"
#include "bayesnet/feature_selection/FeatureSelect.h"
namespace bayesnet {
class FCBF : public FeatureSelect {
public:

View File

@@ -1,6 +1,12 @@
#include "FeatureSelect.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <limits>
#include "bayesnetUtils.h"
#include "bayesnet/utils/bayesnetUtils.h"
#include "FeatureSelect.h"
namespace bayesnet {
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
@@ -50,7 +56,6 @@ namespace bayesnet {
}
double FeatureSelect::computeMeritCFS()
{
double result;
double rcf = 0;
for (auto feature : selectedFeatures) {
rcf += suLabels[feature];

View File

@@ -1,8 +1,14 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef FEATURE_SELECT_H
#define FEATURE_SELECT_H
#include <torch/torch.h>
#include <vector>
#include "BayesMetrics.h"
#include "bayesnet/utils/BayesMetrics.h"
namespace bayesnet {
class FeatureSelect : public Metrics {
public:

View File

@@ -1,6 +1,12 @@
#include "IWSS.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <limits>
#include "bayesnetUtils.h"
#include "bayesnet/utils/bayesnetUtils.h"
#include "IWSS.h"
namespace bayesnet {
IWSS::IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
@@ -28,7 +34,7 @@ namespace bayesnet {
selectedFeatures.push_back(feature);
// Compute merit with selectedFeatures
auto meritNew = computeMeritCFS();
double delta = merit != 0.0 ? abs(merit - meritNew) / merit : 0.0;
double delta = merit != 0.0 ? std::abs(merit - meritNew) / merit : 0.0;
if (meritNew > merit || delta < threshold) {
if (meritNew > merit) {
merit = meritNew;

View File

@@ -1,7 +1,13 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef IWSS_H
#define IWSS_H
#include <torch/torch.h>
#include <vector>
#include <torch/torch.h>
#include "FeatureSelect.h"
namespace bayesnet {
class IWSS : public FeatureSelect {

View File

@@ -1,27 +1,41 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <thread>
#include <mutex>
#include <sstream>
#include "Network.h"
#include "bayesnetUtils.h"
#include "bayesnet/utils/bayesnetUtils.h"
namespace bayesnet {
Network::Network() : features(std::vector<std::string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
Network::Network(float maxT) : features(std::vector<std::string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
getmaxThreads()), fitted(other.fitted)
Network::Network() : fitted{ false }, maxThreads{ 0.95 }, classNumStates{ 0 }, laplaceSmoothing{ 0 }
{
}
Network::Network(float maxT) : fitted{ false }, maxThreads{ maxT }, classNumStates{ 0 }, laplaceSmoothing{ 0 }
{
}
Network::Network(const Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
maxThreads(other.getMaxThreads()), fitted(other.fitted), samples(other.samples)
{
if (samples.defined())
samples = samples.clone();
for (const auto& node : other.nodes) {
nodes[node.first] = std::make_unique<Node>(*node.second);
}
}
void Network::initialize()
{
features = std::vector<std::string>();
features.clear();
className = "";
classNumStates = 0;
fitted = false;
nodes.clear();
samples = torch::Tensor();
}
float Network::getmaxThreads()
float Network::getMaxThreads() const
{
return maxThreads;
}
@@ -71,7 +85,7 @@ namespace bayesnet {
for (Node* child : nodes[nodeId]->getChildren()) {
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
return true;
else if (recStack.find(child->getName()) != recStack.end())
if (recStack.find(child->getName()) != recStack.end())
return true;
}
}
@@ -114,11 +128,14 @@ namespace bayesnet {
if (n_features != featureNames.size()) {
throw std::invalid_argument("X and features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(featureNames.size()) + ")");
}
if (features.size() == 0) {
throw std::invalid_argument("The network has not been initialized. You must call addNode() before calling fit()");
}
if (n_features != features.size() - 1) {
throw std::invalid_argument("X and local features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(features.size() - 1) + ")");
}
if (find(features.begin(), features.end(), className) == features.end()) {
throw std::invalid_argument("className not found in Network::features");
throw std::invalid_argument("Class Name not found in Network::features");
}
for (auto& feature : featureNames) {
if (find(features.begin(), features.end(), feature) == features.end()) {
@@ -238,6 +255,7 @@ namespace bayesnet {
return predictions;
}
// Return mxn std::vector of probabilities
// tsamples is nxm std::vector of samples
std::vector<std::vector<double>> Network::predict_proba(const std::vector<std::vector<int>>& tsamples)
{
if (!fitted) {
@@ -403,11 +421,13 @@ namespace bayesnet {
}
return result;
}
void Network::dump_cpt() const
std::string Network::dump_cpt() const
{
std::stringstream oss;
for (auto& node : nodes) {
std::cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << std::endl;
std::cout << node.second->getCPT() << std::endl;
}
oss << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << std::endl;
oss << node.second->getCPT() << std::endl;
}
return oss.str();
}
}

View File

@@ -1,35 +1,25 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef NETWORK_H
#define NETWORK_H
#include "Node.h"
#include <map>
#include <vector>
#include "bayesnet/config.h"
#include "Node.h"
namespace bayesnet {
class Network {
private:
std::map<std::string, std::unique_ptr<Node>> nodes;
bool fitted;
float maxThreads = 0.95;
int classNumStates;
std::vector<std::string> features; // Including classname
std::string className;
double laplaceSmoothing;
torch::Tensor samples; // nxm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
std::vector<double> predict_sample(const std::vector<int>&);
std::vector<double> predict_sample(const torch::Tensor&);
std::vector<double> exactInference(std::map<std::string, int>&);
double computeFactor(std::map<std::string, int>&);
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void setStates(const std::map<std::string, std::vector<int>>&);
public:
Network();
explicit Network(float);
explicit Network(Network&);
explicit Network(const Network&);
~Network() = default;
torch::Tensor& getSamples();
float getmaxThreads();
float getMaxThreads() const;
void addNode(const std::string&);
void addEdge(const std::string&, const std::string&);
std::map<std::string, std::unique_ptr<Node>>& getNodes();
@@ -55,8 +45,25 @@ namespace bayesnet {
std::vector<std::string> show() const;
std::vector<std::string> graph(const std::string& title) const; // Returns a std::vector of std::strings representing the graph in graphviz format
void initialize();
void dump_cpt() const;
inline std::string version() { return "0.2.0"; }
std::string dump_cpt() const;
inline std::string version() { return { project_version.begin(), project_version.end() }; }
private:
std::map<std::string, std::unique_ptr<Node>> nodes;
bool fitted;
float maxThreads = 0.95;
int classNumStates;
std::vector<std::string> features; // Including classname
std::string className;
double laplaceSmoothing;
torch::Tensor samples; // n+1xm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
std::vector<double> predict_sample(const std::vector<int>&);
std::vector<double> predict_sample(const torch::Tensor&);
std::vector<double> exactInference(std::map<std::string, int>&);
double computeFactor(std::map<std::string, int>&);
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void setStates(const std::map<std::string, std::vector<int>>&);
};
}
#endif

View File

@@ -1,3 +1,9 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "Node.h"
namespace bayesnet {

View File

@@ -1,9 +1,15 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef NODE_H
#define NODE_H
#include <torch/torch.h>
#include <unordered_set>
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class Node {
private:

View File

@@ -1,5 +1,11 @@
#include "BayesMetrics.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "Mst.h"
#include "BayesMetrics.h"
namespace bayesnet {
//samples is n+1xm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
@@ -9,12 +15,12 @@ namespace bayesnet {
, classNumStates(classNumStates)
{
}
//samples is nxm std::vector used to fit the model
//samples is n+1xm std::vector used to fit the model
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
: features(features)
, className(className)
, classNumStates(classNumStates)
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
, samples(torch::zeros({ static_cast<int>(vsamples.size() + 1), static_cast<int>(vsamples[0].size()) }, torch::kInt32))
{
for (int i = 0; i < vsamples.size(); ++i) {
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
@@ -24,7 +30,7 @@ namespace bayesnet {
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
{
// Return the K Best features
auto n = samples.size(0) - 1;
auto n = features.size();
if (k == 0) {
k = n;
}

View File

@@ -1,15 +1,26 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef BAYESNET_METRICS_H
#define BAYESNET_METRICS_H
#include <torch/torch.h>
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class Metrics {
private:
int classNumStates = 0;
std::vector<double> scoresKBest;
std::vector<int> featuresKBest; // sorted indices of the features
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
public:
Metrics() = default;
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
std::vector<double> getScoresKBest() const;
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
torch::Tensor conditionalEdge(const torch::Tensor& weights);
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
protected:
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
std::string className;
@@ -34,16 +45,11 @@ namespace bayesnet {
v.erase(v.begin());
return temp;
}
public:
Metrics() = default;
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
std::vector<double> getScoresKBest() const;
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
torch::Tensor conditionalEdge(const torch::Tensor& weights);
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
private:
int classNumStates = 0;
std::vector<double> scoresKBest;
std::vector<int> featuresKBest; // sorted indices of the features
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
};
}
#endif

View File

@@ -1,6 +1,13 @@
#include "Mst.h"
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <sstream>
#include <vector>
#include <list>
#include "Mst.h"
/*
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
@@ -45,15 +52,6 @@ namespace bayesnet {
}
}
}
void Graph::display_mst()
{
std::cout << "Edge :" << " Weight" << std::endl;
for (int i = 0; i < T.size(); i++) {
std::cout << T[i].second.first << " - " << T[i].second.second << " : "
<< T[i].first;
std::cout << std::endl;
}
}
void insertElement(std::list<int>& variables, int variable)
{

View File

@@ -1,33 +1,38 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef MST_H
#define MST_H
#include <torch/torch.h>
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class MST {
private:
torch::Tensor weights;
std::vector<std::string> features;
int root = 0;
public:
MST() = default;
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
std::vector<std::pair<int, int>> maximumSpanningTree();
private:
torch::Tensor weights;
std::vector<std::string> features;
int root = 0;
};
class Graph {
private:
int V; // number of nodes in graph
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
std::vector<int> parent;
public:
explicit Graph(int V);
void addEdge(int u, int v, float wt);
int find_set(int i);
void union_set(int u, int v);
void kruskal_algorithm();
void display_mst();
std::vector <std::pair<float, std::pair<int, int>>> get_mst() { return T; }
private:
int V; // number of nodes in graph
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
std::vector<int> parent;
};
}
#endif

View File

@@ -0,0 +1,44 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "bayesnetUtils.h"
namespace bayesnet {
// Return the indices in descending order
std::vector<int> argsort(std::vector<double>& nums)
{
int n = nums.size();
std::vector<int> indices(n);
iota(indices.begin(), indices.end(), 0);
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
return indices;
}
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor)
{
// convert mxn tensor to mxn std::vector
std::vector<std::vector<double>> result;
// Iterate over cols
for (int i = 0; i < dtensor.size(0); ++i) {
auto col_tensor = dtensor.index({ i, "..." });
auto col = std::vector<double>(col_tensor.data_ptr<float>(), col_tensor.data_ptr<float>() + dtensor.size(1));
result.push_back(col);
}
return result;
}
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose)
{
// convert nxm std::vector to mxn tensor if transpose
long int m = transpose ? vector[0].size() : vector.size();
long int n = transpose ? vector.size() : vector[0].size();
auto tensor = torch::zeros({ m, n }, torch::kInt32);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
tensor[i][j] = transpose ? vector[j][i] : vector[i][j];
}
}
return tensor;
}
}

View File

@@ -0,0 +1,16 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef BAYESNET_UTILS_H
#define BAYESNET_UTILS_H
#include <vector>
#include <torch/torch.h>
namespace bayesnet {
std::vector<int> argsort(std::vector<double>& nums);
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor);
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose = true);
}
#endif //BAYESNET_UTILS_H

2037
bayesnet/utils/loguru.cpp Normal file

File diff suppressed because it is too large Load Diff

1482
bayesnet/utils/loguru.hpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,4 @@
configure_file(
"config.h.in"
"${CMAKE_BINARY_DIR}/configured_files/include/config.h" ESCAPE_QUOTES
"${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h" ESCAPE_QUOTES
)

View File

@@ -11,3 +11,4 @@ static constexpr std::string_view project_name = " @PROJECT_NAME@ ";
static constexpr std::string_view project_version = "@PROJECT_VERSION@";
static constexpr std::string_view project_description = "@PROJECT_DESCRIPTION@";
static constexpr std::string_view git_sha = "@GIT_SHA@";
static constexpr std::string_view data_path = "@BayesNet_SOURCE_DIR@/tests/data/";

View File

@@ -1,25 +0,0 @@
Type Si
Type Fe
Type RI
Type Na
Type Ba
Type Ca
Type Al
Type K
Type Mg
Fe RI
Fe Ba
Fe Ca
RI Na
RI Ba
RI Ca
RI Al
RI K
RI Mg
Ba Ca
Ba Al
Ca Al
Ca K
Ca Mg
Al K
K Mg

View File

@@ -1,645 +0,0 @@
class att215
class att25
class att131
class att95
class att122
class att17
class att28
class att5
class att121
class att214
class att197
class att116
class att182
class att60
class att168
class att178
class att206
class att89
class att77
class att209
class att73
class att126
class att16
class att74
class att27
class att61
class att20
class att101
class att85
class att76
class att137
class att211
class att143
class att14
class att40
class att210
class att155
class att170
class att160
class att23
class att162
class att203
class att164
class att107
class att62
class att42
class att71
class att128
class att138
class att83
class att171
class att92
class att163
class att49
class att161
class att158
class att176
class att11
class att145
class att4
class att172
class att196
class att58
class att68
class att169
class att80
class att32
class att175
class att87
class att88
class att159
class att18
class att52
class att98
class att136
class att150
class att156
class att110
class att100
class att63
class att148
class att90
class att167
class att35
class att205
class att51
class att21
class att142
class att46
class att134
class att39
class att102
class att208
class att130
class att149
class att96
class att75
class att118
class att78
class att213
class att112
class att38
class att174
class att189
class att70
class att179
class att59
class att79
class att15
class att47
class att124
class att34
class att54
class att191
class att86
class att56
class att151
class att66
class att173
class att44
class att198
class att139
class att216
class att129
class att152
class att69
class att81
class att50
class att153
class att41
class att204
class att188
class att26
class att13
class att117
class att114
class att10
class att64
class att200
class att9
class att3
class att119
class att45
class att104
class att140
class att30
class att183
class att146
class att141
class att202
class att194
class att24
class att147
class att8
class att212
class att123
class att166
class att187
class att127
class att190
class att105
class att106
class att184
class att82
class att2
class att135
class att154
class att111
class att115
class att99
class att22
class att84
class att207
class att94
class att177
class att103
class att93
class att201
class att43
class att36
class att12
class att125
class att165
class att180
class att195
class att157
class att48
class att6
class att113
class att193
class att91
class att72
class att31
class att132
class att33
class att57
class att144
class att192
class att185
class att37
class att53
class att120
class att186
class att199
class att65
class att108
class att133
class att29
class att19
class att7
class att97
class att67
class att55
class att1
class att109
class att181
att215 att25
att215 att131
att215 att95
att25 att131
att25 att121
att25 att73
att25 att61
att25 att85
att25 att169
att25 att13
att131 att95
att131 att122
att131 att17
att131 att28
att131 att121
att131 att214
att131 att116
att131 att126
att131 att143
att95 att122
att95 att17
att95 att28
att95 att5
att95 att214
att95 att116
att95 att60
att95 att143
att95 att155
att95 att71
att122 att182
att122 att170
att17 att5
att17 att197
att17 att89
att17 att77
att17 att161
att28 att206
att28 att16
att28 att76
att28 att172
att28 att124
att28 att64
att5 att197
att5 att89
att5 att209
att121 att73
att214 att178
att214 att58
att214 att142
att197 att209
att197 att101
att116 att182
att116 att60
att116 att168
att116 att178
att116 att206
att116 att126
att116 att16
att116 att27
att116 att20
att116 att211
att116 att164
att116 att128
att182 att27
att182 att14
att60 att168
att60 att156
att168 att156
att168 att96
att178 att20
att178 att58
att178 att142
att178 att130
att206 att74
att206 att170
att206 att158
att89 att77
att89 att137
att89 att149
att89 att173
att77 att137
att77 att161
att209 att101
att209 att41
att73 att61
att73 att157
att126 att162
att126 att138
att126 att150
att16 att74
att16 att76
att16 att40
att16 att4
att74 att14
att74 att62
att27 att171
att61 att85
att61 att169
att20 att211
att20 att210
att20 att164
att20 att176
att101 att41
att85 att13
att76 att40
att76 att160
att137 att149
att211 att210
att211 att162
att211 att171
att211 att163
att211 att175
att211 att79
att143 att155
att143 att23
att143 att71
att143 att83
att143 att11
att14 att98
att40 att160
att40 att4
att40 att196
att40 att52
att210 att42
att210 att114
att155 att23
att155 att203
att155 att107
att155 att11
att170 att158
att160 att52
att23 att203
att162 att138
att162 att18
att162 att150
att162 att90
att162 att174
att203 att107
att203 att49
att203 att59
att203 att191
att203 att119
att164 att62
att164 att42
att164 att128
att164 att92
att164 att163
att164 att176
att164 att145
att164 att68
att164 att80
att164 att98
att164 att110
att164 att205
att164 att21
att164 att213
att164 att112
att164 att38
att164 att56
att164 att44
att107 att59
att107 att47
att107 att191
att71 att83
att71 att167
att71 att35
att128 att92
att138 att18
att83 att167
att171 att87
att171 att159
att171 att63
att171 att51
att171 att39
att171 att75
att163 att49
att163 att175
att163 att87
att163 att79
att163 att151
att163 att139
att163 att187
att163 att91
att161 att173
att176 att145
att176 att172
att176 att68
att176 att80
att176 att32
att176 att110
att176 att205
att176 att21
att176 att134
att176 att56
att4 att196
att4 att88
att4 att136
att4 att100
att4 att148
att4 att208
att172 att112
att172 att184
att196 att88
att196 att136
att196 att100
att196 att208
att58 att46
att68 att32
att32 att200
att87 att159
att87 att63
att87 att75
att87 att15
att87 att99
att159 att195
att18 att90
att18 att102
att18 att78
att18 att198
att52 att124
att98 att86
att150 att174
att150 att66
att156 att96
att156 att216
att156 att204
att156 att24
att156 att84
att100 att148
att63 att51
att63 att3
att63 att183
att90 att102
att90 att78
att167 att35
att167 att179
att35 att179
att51 att39
att51 att3
att21 att134
att21 att213
att21 att38
att21 att189
att21 att129
att21 att81
att21 att117
att21 att9
att142 att46
att142 att130
att142 att118
att142 att10
att142 att202
att142 att190
att142 att106
att46 att70
att46 att34
att46 att166
att134 att2
att102 att54
att130 att118
att130 att10
att130 att202
att149 att125
att96 att216
att96 att24
att75 att15
att75 att99
att118 att70
att78 att198
att213 att189
att38 att50
att38 att26
att174 att54
att174 att66
att174 att30
att189 att86
att189 att129
att189 att69
att189 att81
att189 att153
att189 att117
att189 att9
att189 att45
att189 att105
att70 att34
att59 att47
att79 att151
att79 att139
att79 att187
att79 att127
att79 att103
att79 att43
att79 att91
att79 att19
att124 att64
att54 att114
att54 att30
att191 att119
att86 att194
att56 att44
att56 att152
att56 att50
att56 att188
att56 att26
att56 att104
att56 att140
att56 att146
att56 att194
att56 att8
att56 att2
att56 att133
att56 att1
att173 att125
att173 att113
att44 att152
att44 att188
att44 att200
att44 att212
att44 att1
att139 att103
att139 att43
att139 att31
att139 att199
att139 att7
att216 att204
att216 att36
att216 att12
att216 att180
att216 att108
att129 att69
att152 att140
att69 att153
att81 att45
att153 att141
att41 att53
att204 att12
att13 att157
att114 att6
att114 att186
att10 att190
att64 att184
att200 att104
att9 att146
att9 att141
att9 att177
att9 att37
att9 att133
att9 att109
att9 att181
att3 att183
att3 att147
att3 att123
att3 att135
att3 att111
att45 att105
att45 att177
att45 att93
att45 att201
att45 att193
att45 att37
att45 att97
att140 att8
att30 att6
att183 att147
att183 att123
att202 att166
att202 att106
att202 att82
att24 att84
att24 att36
att147 att135
att8 att212
att166 att82
att187 att127
att187 att115
att127 att115
att105 att93
att106 att154
att82 att154
att82 att22
att135 att111
att135 att207
att154 att22
att154 att94
att111 att207
att22 att94
att84 att48
att177 att165
att103 att195
att103 att109
att93 att201
att93 att165
att93 att193
att93 att33
att201 att33
att201 att57
att36 att180
att36 att72
att36 att132
att36 att144
att125 att113
att125 att185
att125 att65
att125 att29
att180 att48
att180 att72
att180 att192
att180 att108
att6 att186
att113 att185
att113 att53
att193 att97
att91 att31
att91 att19
att72 att132
att72 att192
att31 att199
att31 att67
att132 att144
att132 att120
att33 att57
att144 att120
att185 att65
att199 att7
att199 att67
att199 att55
att65 att29
att67 att55
att109 att181

View File

@@ -1,859 +0,0 @@
class att215
class att25
class att131
class att95
class att122
class att17
class att28
class att5
class att121
class att214
class att197
class att116
class att182
class att60
class att168
class att178
class att206
class att89
class att77
class att209
class att73
class att126
class att16
class att74
class att27
class att61
class att20
class att101
class att85
class att76
class att137
class att211
class att143
class att14
class att40
class att210
class att155
class att170
class att160
class att23
class att162
class att203
class att164
class att107
class att62
class att42
class att71
class att128
class att138
class att83
class att171
class att92
class att163
class att49
class att161
class att158
class att176
class att11
class att145
class att4
class att172
class att196
class att58
class att68
class att169
class att80
class att32
class att175
class att87
class att88
class att159
class att18
class att52
class att98
class att136
class att150
class att156
class att110
class att100
class att63
class att148
class att90
class att167
class att35
class att205
class att51
class att21
class att142
class att46
class att134
class att39
class att102
class att208
class att130
class att149
class att96
class att75
class att118
class att78
class att213
class att112
class att38
class att174
class att189
class att70
class att179
class att59
class att79
class att15
class att47
class att124
class att34
class att54
class att191
class att86
class att56
class att151
class att66
class att173
class att44
class att198
class att139
class att216
class att129
class att152
class att69
class att81
class att50
class att153
class att41
class att204
class att188
class att26
class att13
class att117
class att114
class att10
class att64
class att200
class att9
class att3
class att119
class att45
class att104
class att140
class att30
class att183
class att146
class att141
class att202
class att194
class att24
class att147
class att8
class att212
class att123
class att166
class att187
class att127
class att190
class att105
class att106
class att184
class att82
class att2
class att135
class att154
class att111
class att115
class att99
class att22
class att84
class att207
class att94
class att177
class att103
class att93
class att201
class att43
class att36
class att12
class att125
class att165
class att180
class att195
class att157
class att48
class att6
class att113
class att193
class att91
class att72
class att31
class att132
class att33
class att57
class att144
class att192
class att185
class att37
class att53
class att120
class att186
class att199
class att65
class att108
class att133
class att29
class att19
class att7
class att97
class att67
class att55
class att1
class att109
class att181
att215 att25
att215 att131
att215 att95
att215 att17
att215 att214
att215 att143
att25 att131
att25 att95
att25 att122
att25 att121
att25 att73
att25 att61
att25 att85
att25 att169
att25 att13
att25 att157
att131 att95
att131 att122
att131 att17
att131 att28
att131 att5
att131 att121
att131 att214
att131 att116
att131 att182
att131 att60
att131 att126
att131 att16
att131 att27
att131 att20
att131 att143
att131 att155
att95 att122
att95 att17
att95 att28
att95 att5
att95 att121
att95 att214
att95 att197
att95 att116
att95 att60
att95 att168
att95 att178
att95 att143
att95 att155
att95 att23
att95 att71
att95 att167
att122 att28
att122 att182
att122 att170
att17 att5
att17 att197
att17 att89
att17 att77
att17 att209
att17 att137
att17 att161
att17 att41
att28 att206
att28 att16
att28 att76
att28 att40
att28 att210
att28 att160
att28 att172
att28 att124
att28 att64
att5 att197
att5 att89
att5 att77
att5 att209
att5 att101
att121 att73
att121 att61
att214 att116
att214 att178
att214 att206
att214 att58
att214 att142
att214 att46
att197 att89
att197 att209
att197 att101
att116 att182
att116 att60
att116 att168
att116 att178
att116 att206
att116 att73
att116 att126
att116 att16
att116 att74
att116 att27
att116 att20
att116 att211
att116 att164
att116 att128
att116 att92
att116 att176
att116 att68
att182 att27
att182 att14
att60 att168
att60 att156
att60 att96
att168 att126
att168 att156
att168 att96
att168 att216
att178 att20
att178 att211
att178 att58
att178 att142
att178 att130
att178 att166
att206 att74
att206 att170
att206 att158
att89 att77
att89 att137
att89 att149
att89 att173
att77 att137
att77 att161
att77 att149
att209 att101
att209 att41
att73 att61
att73 att85
att73 att13
att73 att157
att126 att162
att126 att138
att126 att18
att126 att150
att16 att74
att16 att76
att16 att40
att16 att4
att16 att196
att16 att136
att74 att14
att74 att62
att27 att171
att27 att63
att61 att85
att61 att169
att20 att76
att20 att211
att20 att210
att20 att170
att20 att164
att20 att128
att20 att176
att20 att80
att101 att41
att85 att169
att85 att13
att76 att14
att76 att40
att76 att160
att76 att4
att76 att52
att137 att161
att137 att149
att137 att173
att137 att125
att211 att210
att211 att162
att211 att164
att211 att62
att211 att42
att211 att171
att211 att163
att211 att175
att211 att79
att211 att151
att211 att43
att143 att155
att143 att23
att143 att203
att143 att71
att143 att83
att143 att11
att14 att98
att40 att160
att40 att4
att40 att196
att40 att88
att40 att52
att210 att162
att210 att42
att210 att114
att155 att23
att155 att203
att155 att107
att155 att11
att170 att158
att160 att52
att160 att124
att23 att203
att23 att107
att23 att71
att23 att11
att162 att138
att162 att18
att162 att150
att162 att90
att162 att102
att162 att174
att162 att66
att203 att107
att203 att49
att203 att59
att203 att47
att203 att191
att203 att119
att164 att62
att164 att42
att164 att128
att164 att171
att164 att92
att164 att163
att164 att158
att164 att176
att164 att145
att164 att172
att164 att58
att164 att68
att164 att80
att164 att32
att164 att98
att164 att156
att164 att110
att164 att205
att164 att21
att164 att134
att164 att213
att164 att112
att164 att38
att164 att189
att164 att56
att164 att44
att164 att152
att164 att8
att107 att83
att107 att49
att107 att59
att107 att47
att107 att191
att42 att138
att42 att54
att42 att114
att71 att83
att71 att167
att71 att35
att71 att179
att128 att92
att128 att112
att138 att18
att138 att150
att83 att167
att83 att35
att171 att87
att171 att159
att171 att63
att171 att51
att171 att39
att171 att75
att92 att163
att92 att145
att92 att56
att163 att49
att163 att175
att163 att87
att163 att79
att163 att151
att163 att139
att163 att187
att163 att127
att163 att103
att163 att91
att49 att37
att161 att173
att161 att113
att176 att145
att176 att172
att176 att68
att176 att80
att176 att32
att176 att175
att176 att98
att176 att110
att176 att205
att176 att21
att176 att134
att176 att213
att176 att56
att4 att196
att4 att88
att4 att136
att4 att100
att4 att148
att4 att208
att172 att112
att172 att184
att196 att88
att196 att136
att196 att100
att196 att148
att196 att208
att58 att142
att58 att46
att58 att34
att68 att32
att80 att38
att32 att110
att32 att21
att32 att44
att32 att200
att175 att87
att175 att159
att175 att79
att175 att187
att175 att115
att87 att159
att87 att63
att87 att51
att87 att75
att87 att15
att87 att99
att159 att75
att159 att15
att159 att195
att18 att90
att18 att102
att18 att78
att18 att198
att52 att124
att52 att64
att98 att86
att136 att100
att136 att208
att150 att90
att150 att174
att150 att66
att156 att205
att156 att96
att156 att216
att156 att204
att156 att24
att156 att84
att156 att36
att156 att12
att156 att108
att100 att148
att63 att51
att63 att39
att63 att3
att63 att183
att63 att147
att90 att102
att90 att78
att167 att35
att167 att179
att35 att179
att51 att39
att51 att3
att51 att183
att21 att134
att21 att213
att21 att38
att21 att189
att21 att129
att21 att81
att21 att153
att21 att117
att21 att9
att142 att46
att142 att130
att142 att118
att142 att70
att142 att10
att142 att202
att142 att190
att142 att106
att46 att130
att46 att118
att46 att70
att46 att34
att46 att166
att46 att82
att134 att2
att39 att3
att102 att78
att102 att174
att102 att54
att102 att198
att130 att118
att130 att10
att130 att202
att130 att190
att130 att106
att149 att125
att96 att216
att96 att204
att96 att24
att75 att15
att75 att99
att118 att70
att118 att10
att118 att202
att78 att198
att213 att189
att213 att129
att213 att69
att213 att81
att38 att50
att38 att26
att174 att54
att174 att66
att174 att30
att189 att86
att189 att129
att189 att69
att189 att81
att189 att153
att189 att117
att189 att9
att189 att45
att189 att141
att189 att105
att70 att34
att70 att154
att179 att59
att59 att47
att59 att191
att59 att119
att79 att86
att79 att151
att79 att139
att79 att187
att79 att127
att79 att103
att79 att43
att79 att193
att79 att91
att79 att19
att124 att64
att54 att114
att54 att30
att54 att6
att191 att119
att86 att194
att56 att44
att56 att152
att56 att50
att56 att188
att56 att26
att56 att200
att56 att104
att56 att140
att56 att146
att56 att194
att56 att8
att56 att2
att56 att133
att56 att1
att151 att139
att66 att30
att173 att125
att173 att113
att173 att185
att44 att152
att44 att50
att44 att188
att44 att200
att44 att104
att44 att140
att44 att194
att44 att212
att44 att1
att139 att26
att139 att99
att139 att103
att139 att43
att139 att91
att139 att31
att139 att199
att139 att7
att216 att204
att216 att24
att216 att84
att216 att36
att216 att12
att216 att180
att216 att108
att129 att69
att152 att188
att152 att140
att69 att153
att69 att9
att69 att177
att81 att45
att81 att105
att153 att117
att153 att141
att41 att53
att204 att12
att204 att180
att188 att146
att188 att212
att13 att157
att114 att6
att114 att186
att10 att190
att64 att184
att200 att104
att9 att45
att9 att146
att9 att141
att9 att177
att9 att37
att9 att133
att9 att109
att9 att181
att3 att183
att3 att147
att3 att123
att3 att135
att3 att111
att45 att105
att45 att177
att45 att93
att45 att201
att45 att165
att45 att193
att45 att33
att45 att37
att45 att133
att45 att97
att140 att8
att30 att6
att30 att186
att183 att147
att183 att123
att183 att135
att146 att2
att202 att166
att202 att106
att202 att82
att24 att84
att24 att36
att24 att132
att147 att123
att147 att135
att147 att111
att147 att207
att8 att212
att166 att82
att166 att22
att166 att94
att187 att127
att187 att115
att127 att115
att105 att184
att105 att93
att105 att201
att106 att154
att82 att154
att82 att22
att135 att111
att135 att207
att154 att22
att154 att94
att111 att207
att99 att195
att22 att94
att84 att48
att177 att93
att177 att165
att177 att181
att103 att195
att103 att97
att103 att109
att93 att201
att93 att165
att93 att193
att93 att33
att93 att57
att201 att33
att201 att57
att43 att31
att36 att180
att36 att48
att36 att72
att36 att132
att36 att144
att125 att113
att125 att185
att125 att65
att125 att29
att180 att48
att180 att72
att180 att192
att180 att108
att48 att72
att6 att186
att113 att185
att113 att53
att113 att65
att193 att97
att91 att31
att91 att199
att91 att19
att72 att132
att72 att144
att72 att192
att72 att120
att31 att199
att31 att7
att31 att67
att31 att55
att31 att1
att132 att144
att132 att120
att33 att57
att144 att192
att144 att120
att185 att53
att185 att65
att185 att29
att199 att19
att199 att7
att199 att67
att199 att55
att199 att109
att65 att29
att7 att67
att67 att55
att109 att181

File diff suppressed because it is too large Load Diff

View File

@@ -1,859 +0,0 @@
class att215
class att25
class att131
class att95
class att122
class att17
class att28
class att5
class att121
class att214
class att197
class att116
class att182
class att60
class att168
class att178
class att206
class att89
class att77
class att209
class att73
class att126
class att16
class att74
class att27
class att61
class att20
class att101
class att85
class att76
class att137
class att211
class att143
class att14
class att40
class att210
class att155
class att170
class att160
class att23
class att162
class att203
class att164
class att107
class att62
class att42
class att71
class att128
class att138
class att83
class att171
class att92
class att163
class att49
class att161
class att158
class att176
class att11
class att145
class att4
class att172
class att196
class att58
class att68
class att169
class att80
class att32
class att175
class att87
class att88
class att159
class att18
class att52
class att98
class att136
class att150
class att156
class att110
class att100
class att63
class att148
class att90
class att167
class att35
class att205
class att51
class att21
class att142
class att46
class att134
class att39
class att102
class att208
class att130
class att149
class att96
class att75
class att118
class att78
class att213
class att112
class att38
class att174
class att189
class att70
class att179
class att59
class att79
class att15
class att47
class att124
class att34
class att54
class att191
class att86
class att56
class att151
class att66
class att173
class att44
class att198
class att139
class att216
class att129
class att152
class att69
class att81
class att50
class att153
class att41
class att204
class att188
class att26
class att13
class att117
class att114
class att10
class att64
class att200
class att9
class att3
class att119
class att45
class att104
class att140
class att30
class att183
class att146
class att141
class att202
class att194
class att24
class att147
class att8
class att212
class att123
class att166
class att187
class att127
class att190
class att105
class att106
class att184
class att82
class att2
class att135
class att154
class att111
class att115
class att99
class att22
class att84
class att207
class att94
class att177
class att103
class att93
class att201
class att43
class att36
class att12
class att125
class att165
class att180
class att195
class att157
class att48
class att6
class att113
class att193
class att91
class att72
class att31
class att132
class att33
class att57
class att144
class att192
class att185
class att37
class att53
class att120
class att186
class att199
class att65
class att108
class att133
class att29
class att19
class att7
class att97
class att67
class att55
class att1
class att109
class att181
att215 att25
att215 att131
att215 att95
att215 att17
att215 att214
att215 att143
att25 att131
att25 att95
att25 att122
att25 att121
att25 att73
att25 att61
att25 att85
att25 att169
att25 att13
att25 att157
att131 att95
att131 att122
att131 att17
att131 att28
att131 att5
att131 att121
att131 att214
att131 att116
att131 att182
att131 att60
att131 att126
att131 att16
att131 att27
att131 att20
att131 att143
att131 att155
att95 att122
att95 att17
att95 att28
att95 att5
att95 att121
att95 att214
att95 att197
att95 att116
att95 att60
att95 att168
att95 att178
att95 att143
att95 att155
att95 att23
att95 att71
att95 att167
att122 att28
att122 att182
att122 att170
att17 att5
att17 att197
att17 att89
att17 att77
att17 att209
att17 att137
att17 att161
att17 att41
att28 att206
att28 att16
att28 att76
att28 att40
att28 att210
att28 att160
att28 att172
att28 att124
att28 att64
att5 att197
att5 att89
att5 att77
att5 att209
att5 att101
att121 att73
att121 att61
att214 att116
att214 att178
att214 att206
att214 att58
att214 att142
att214 att46
att197 att89
att197 att209
att197 att101
att116 att182
att116 att60
att116 att168
att116 att178
att116 att206
att116 att73
att116 att126
att116 att16
att116 att74
att116 att27
att116 att20
att116 att211
att116 att164
att116 att128
att116 att92
att116 att176
att116 att68
att182 att27
att182 att14
att60 att168
att60 att156
att60 att96
att168 att126
att168 att156
att168 att96
att168 att216
att178 att20
att178 att211
att178 att58
att178 att142
att178 att130
att178 att166
att206 att74
att206 att170
att206 att158
att89 att77
att89 att137
att89 att149
att89 att173
att77 att137
att77 att161
att77 att149
att209 att101
att209 att41
att73 att61
att73 att85
att73 att13
att73 att157
att126 att162
att126 att138
att126 att18
att126 att150
att16 att74
att16 att76
att16 att40
att16 att4
att16 att196
att16 att136
att74 att14
att74 att62
att27 att171
att27 att63
att61 att85
att61 att169
att20 att76
att20 att211
att20 att210
att20 att170
att20 att164
att20 att128
att20 att176
att20 att80
att101 att41
att85 att169
att85 att13
att76 att14
att76 att40
att76 att160
att76 att4
att76 att52
att137 att161
att137 att149
att137 att173
att137 att125
att211 att210
att211 att162
att211 att164
att211 att62
att211 att42
att211 att171
att211 att163
att211 att175
att211 att79
att211 att151
att211 att43
att143 att155
att143 att23
att143 att203
att143 att71
att143 att83
att143 att11
att14 att98
att40 att160
att40 att4
att40 att196
att40 att88
att40 att52
att210 att162
att210 att42
att210 att114
att155 att23
att155 att203
att155 att107
att155 att11
att170 att158
att160 att52
att160 att124
att23 att203
att23 att107
att23 att71
att23 att11
att162 att138
att162 att18
att162 att150
att162 att90
att162 att102
att162 att174
att162 att66
att203 att107
att203 att49
att203 att59
att203 att47
att203 att191
att203 att119
att164 att62
att164 att42
att164 att128
att164 att171
att164 att92
att164 att163
att164 att158
att164 att176
att164 att145
att164 att172
att164 att58
att164 att68
att164 att80
att164 att32
att164 att98
att164 att156
att164 att110
att164 att205
att164 att21
att164 att134
att164 att213
att164 att112
att164 att38
att164 att189
att164 att56
att164 att44
att164 att152
att164 att8
att107 att83
att107 att49
att107 att59
att107 att47
att107 att191
att42 att138
att42 att54
att42 att114
att71 att83
att71 att167
att71 att35
att71 att179
att128 att92
att128 att112
att138 att18
att138 att150
att83 att167
att83 att35
att171 att87
att171 att159
att171 att63
att171 att51
att171 att39
att171 att75
att92 att163
att92 att145
att92 att56
att163 att49
att163 att175
att163 att87
att163 att79
att163 att151
att163 att139
att163 att187
att163 att127
att163 att103
att163 att91
att49 att37
att161 att173
att161 att113
att176 att145
att176 att172
att176 att68
att176 att80
att176 att32
att176 att175
att176 att98
att176 att110
att176 att205
att176 att21
att176 att134
att176 att213
att176 att56
att4 att196
att4 att88
att4 att136
att4 att100
att4 att148
att4 att208
att172 att112
att172 att184
att196 att88
att196 att136
att196 att100
att196 att148
att196 att208
att58 att142
att58 att46
att58 att34
att68 att32
att80 att38
att32 att110
att32 att21
att32 att44
att32 att200
att175 att87
att175 att159
att175 att79
att175 att187
att175 att115
att87 att159
att87 att63
att87 att51
att87 att75
att87 att15
att87 att99
att159 att75
att159 att15
att159 att195
att18 att90
att18 att102
att18 att78
att18 att198
att52 att124
att52 att64
att98 att86
att136 att100
att136 att208
att150 att90
att150 att174
att150 att66
att156 att205
att156 att96
att156 att216
att156 att204
att156 att24
att156 att84
att156 att36
att156 att12
att156 att108
att100 att148
att63 att51
att63 att39
att63 att3
att63 att183
att63 att147
att90 att102
att90 att78
att167 att35
att167 att179
att35 att179
att51 att39
att51 att3
att51 att183
att21 att134
att21 att213
att21 att38
att21 att189
att21 att129
att21 att81
att21 att153
att21 att117
att21 att9
att142 att46
att142 att130
att142 att118
att142 att70
att142 att10
att142 att202
att142 att190
att142 att106
att46 att130
att46 att118
att46 att70
att46 att34
att46 att166
att46 att82
att134 att2
att39 att3
att102 att78
att102 att174
att102 att54
att102 att198
att130 att118
att130 att10
att130 att202
att130 att190
att130 att106
att149 att125
att96 att216
att96 att204
att96 att24
att75 att15
att75 att99
att118 att70
att118 att10
att118 att202
att78 att198
att213 att189
att213 att129
att213 att69
att213 att81
att38 att50
att38 att26
att174 att54
att174 att66
att174 att30
att189 att86
att189 att129
att189 att69
att189 att81
att189 att153
att189 att117
att189 att9
att189 att45
att189 att141
att189 att105
att70 att34
att70 att154
att179 att59
att59 att47
att59 att191
att59 att119
att79 att86
att79 att151
att79 att139
att79 att187
att79 att127
att79 att103
att79 att43
att79 att193
att79 att91
att79 att19
att124 att64
att54 att114
att54 att30
att54 att6
att191 att119
att86 att194
att56 att44
att56 att152
att56 att50
att56 att188
att56 att26
att56 att200
att56 att104
att56 att140
att56 att146
att56 att194
att56 att8
att56 att2
att56 att133
att56 att1
att151 att139
att66 att30
att173 att125
att173 att113
att173 att185
att44 att152
att44 att50
att44 att188
att44 att200
att44 att104
att44 att140
att44 att194
att44 att212
att44 att1
att139 att26
att139 att99
att139 att103
att139 att43
att139 att91
att139 att31
att139 att199
att139 att7
att216 att204
att216 att24
att216 att84
att216 att36
att216 att12
att216 att180
att216 att108
att129 att69
att152 att188
att152 att140
att69 att153
att69 att9
att69 att177
att81 att45
att81 att105
att153 att117
att153 att141
att41 att53
att204 att12
att204 att180
att188 att146
att188 att212
att13 att157
att114 att6
att114 att186
att10 att190
att64 att184
att200 att104
att9 att45
att9 att146
att9 att141
att9 att177
att9 att37
att9 att133
att9 att109
att9 att181
att3 att183
att3 att147
att3 att123
att3 att135
att3 att111
att45 att105
att45 att177
att45 att93
att45 att201
att45 att165
att45 att193
att45 att33
att45 att37
att45 att133
att45 att97
att140 att8
att30 att6
att30 att186
att183 att147
att183 att123
att183 att135
att146 att2
att202 att166
att202 att106
att202 att82
att24 att84
att24 att36
att24 att132
att147 att123
att147 att135
att147 att111
att147 att207
att8 att212
att166 att82
att166 att22
att166 att94
att187 att127
att187 att115
att127 att115
att105 att184
att105 att93
att105 att201
att106 att154
att82 att154
att82 att22
att135 att111
att135 att207
att154 att22
att154 att94
att111 att207
att99 att195
att22 att94
att84 att48
att177 att93
att177 att165
att177 att181
att103 att195
att103 att97
att103 att109
att93 att201
att93 att165
att93 att193
att93 att33
att93 att57
att201 att33
att201 att57
att43 att31
att36 att180
att36 att48
att36 att72
att36 att132
att36 att144
att125 att113
att125 att185
att125 att65
att125 att29
att180 att48
att180 att72
att180 att192
att180 att108
att48 att72
att6 att186
att113 att185
att113 att53
att113 att65
att193 att97
att91 att31
att91 att199
att91 att19
att72 att132
att72 att144
att72 att192
att72 att120
att31 att199
att31 att7
att31 att67
att31 att55
att31 att1
att132 att144
att132 att120
att33 att57
att144 att192
att144 att120
att185 att53
att185 att65
att185 att29
att199 att19
att199 att7
att199 att67
att199 att55
att199 att109
att65 att29
att7 att67
att67 att55
att109 att181

29
docs/BoostAODE.md Normal file
View File

@@ -0,0 +1,29 @@
# BoostAODE Algorithm Operation
## Hyperparameters
The hyperparameters defined in the algorithm are:
- ***bisection*** (*boolean*): If set to true allows the algorithm to add *k* models at once (as specified in the algorithm) to the ensemble. Default value: *true*.
- ***order*** (*{"asc", "desc", "rand"}*): Sets the order (ascending/descending/random) in which dataset variables will be processed to choose the parents of the *SPODEs*. Default value: *"desc"*.
- ***block_update*** (*boolean*): Sets whether the algorithm will update the weights of the models in blocks. If set to false, the algorithm will update the weights of the models one by one. Default value: *false*.
- ***convergence*** (*boolean*): Sets whether the convergence of the result will be used as a termination condition. If this hyperparameter is set to true, the training dataset passed to the model is divided into two sets, one serving as training data and the other as a test set (so the original test partition will become a validation partition in this case). The partition is made by taking the first partition generated by a process of generating a 5 fold partition with stratification using a predetermined seed. The exit condition used in this *convergence* is that the difference between the accuracy obtained by the current model and that obtained by the previous model is greater than *1e-4*; otherwise, one will be added to the number of models that worsen the result (see next hyperparameter). Default value: *true*.
- ***maxTolerance*** (*int*): Sets the maximum number of models that can worsen the result without constituting a termination condition. if ***bisection*** is set to *true*, the value of this hyperparameter will be exponent of base 2 to compute the number of models to insert at once. Default value: *3*
- ***select_features*** (*{"IWSS", "FCBF", "CFS", ""}*): Selects the variable selection method to be used to build initial models for the ensemble that will be included without considering any of the other exit conditions. Once the models of the selected variables are built, the algorithm will update the weights using the ensemble and set the significance of all the models built with the same &alpha;<sub>t</sub>. Default value: *""*.
- ***threshold*** (*double*): Sets the necessary value for the IWSS and FCBF algorithms to function. Accepted values are:
- IWSS: $threshold \in [0, 0.5]$
- FCBF: $threshold \in [10^{-7}, 1]$
Default value is *-1* so every time any of those algorithms are called, the threshold has to be set to the desired value.
- ***predict_voting*** (*boolean*): Sets whether the algorithm will use *model voting* to predict the result. If set to false, the weighted average of the probabilities of each model's prediction will be used. Default value: *false*.
## Operation
### [Algorithm](./algorithm.md)

Binary file not shown.

Binary file not shown.

118
docs/algorithm.md Normal file
View File

@@ -0,0 +1,118 @@
# Algorithm
- // notation
- $n$ features ${\cal{X}} = \{X_1, \dots, X_n\}$ and the class $Y$
- $m$ instances.
- $D = \{ (x_1^i, \dots, x_n^i, y^i) \}_{i=1}^{m}$
- $W$ a weights vector. $W_0$ are the initial weights.
- $D[W]$ dataset with weights $W$ for the instances.
1. // initialization
2. $W_0 \leftarrow (w_1, \dots, w_m) \leftarrow 1/m$
3. $W \leftarrow W_0$
4. $Vars \leftarrow {\cal{X}}$
5. $\delta \leftarrow 10^{-4}$
6. $convergence \leftarrow True$ // hyperparameter
7. $maxTolerancia \leftarrow 3$ // hyperparameter
8. $bisection \leftarrow False$ // hyperparameter
9. $finished \leftarrow False$
10. $AODE \leftarrow \emptyset$ // the ensemble
11. $tolerance \leftarrow 0$
12. $numModelsInPack \leftarrow 0$
13. $maxAccuracy \leftarrow -1$
14.
15. // main loop
16. While $(\lnot finished)$
1. $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$
2. $k \leftarrow 2^{tolerance}$
3. if ($tolerance == 0$) $numItemsPack \leftarrow0$
4. $P \leftarrow Head(\pi,k)$ // first k features in order
5. $spodes \leftarrow \emptyset$
6. $i \leftarrow 0$
7. While ($i < size(P)$)
1. $X \leftarrow P[i]$
2. $i \leftarrow i + 1$
3. $numItemsPack \leftarrow numItemsPack + 1$
4. $Vars.remove(X)$
5. $spode \leftarrow BuildSpode(X, {\cal{X}}, D[W])$
6. $\hat{y}[] \leftarrow spode.Predict(D)$
7. $\epsilon \leftarrow error(\hat{y}[], y[])$
8. $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-\epsilon}{\epsilon} \right )$
9. if ($\epsilon > 0.5$)
1. $finished \leftarrow True$
2. break
10. $spodes.add( (spode,\alpha_t) )$
11. $W \leftarrow UpdateWeights(W,\alpha,y[],\hat{y}[])$
8. $AODE.add( spodes )$
9. if ($convergence \land \lnot finished$)
1. $\hat{y}[] \leftarrow AODE.Predict(D)$
2. $actualAccuracy \leftarrow accuracy(\hat{y}[], y[])$
3. $if (maxAccuracy == -1)\; maxAccuracy \leftarrow actualAccuracy$
4. if $((accuracy - maxAccuracy) < \delta)$ // result doesn't
improve enough
1. $tolerance \leftarrow tolerance + 1$
5. else
1. $tolerance \leftarrow 0$
2. $numItemsPack \leftarrow 0$
10. If
$(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
11. $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
17. if ($tolerance > maxTolerance$) // algorithm finished because of
lack of convergence
1. $removeModels(AODE, numItemsPack)$
18. Return $AODE$

80
docs/algorithm.tex Normal file
View File

@@ -0,0 +1,80 @@
\section{Algorithm}
\begin{itemize}
\item[] // notation
\item $n$ features ${\cal{X}} = \{X_1, \dots, X_n\}$ and the class $Y$
\item $m$ instances.
\item $D = \{ (x_1^i, \dots, x_n^i, y^i) \}_{i=1}^{m}$
\item $W$ a weights vector. $W_0$ are the initial weights.
\item $D[W]$ dataset with weights $W$ for the instances.
\end{itemize}
\bigskip
\begin{enumerate}
\item[] // initialization
\item $W_0 \leftarrow (w_1, \dots, w_m) \leftarrow 1/m$
\item $W \leftarrow W_0$
\item $Vars \leftarrow {\cal{X}}$
\item $\delta \leftarrow 10^{-4}$
\item $convergence \leftarrow True$ // hyperparameter
\item $maxTolerancia \leftarrow 3$ // hyperparameter
\item $bisection \leftarrow False$ // hyperparameter
\item $finished \leftarrow False$
\item $AODE \leftarrow \emptyset$ \hspace*{2cm} // the ensemble
\item $tolerance \leftarrow 0$
\item $numModelsInPack \leftarrow 0$
\item $maxAccuracy \leftarrow -1$
\item[]
\newpage
\item[] // main loop
\item While $(\lnot finished)$
\begin{enumerate}
\item $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$
\item $k \leftarrow 2^{tolerance}$
\item if ($tolerance == 0$) $numItemsPack \leftarrow0$
\item $P \leftarrow Head(\pi,k)$ \hspace*{2cm} // first k features in order
\item $spodes \leftarrow \emptyset$
\item $i \leftarrow 0$
\item While ($ i < size(P)$)
\begin{enumerate}
\item $X \leftarrow P[i]$
\item $i \leftarrow i + 1$
\item $numItemsPack \leftarrow numItemsPack + 1$
\item $Vars.remove(X)$
\item $spode \leftarrow BuildSpode(X, {\cal{X}}, D[W])$
\item $\hat{y}[] \leftarrow spode.Predict(D)$
\item $\epsilon \leftarrow error(\hat{y}[], y[])$
\item $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-\epsilon}{\epsilon} \right )$
\item if ($\epsilon > 0.5$)
\begin{enumerate}
\item $finished \leftarrow True$
\item break
\end{enumerate}
\item $spodes.add( (spode,\alpha_t) )$
\item $W \leftarrow UpdateWeights(W,\alpha,y[],\hat{y}[])$
\end{enumerate}
\item $AODE.add( spodes )$
\item if ($convergence \land \lnot finished$)
\begin{enumerate}
\item $\hat{y}[] \leftarrow AODE.Predict(D)$
\item $actualAccuracy \leftarrow accuracy(\hat{y}[], y[])$
\item $if (maxAccuracy == -1)\; maxAccuracy \leftarrow actualAccuracy$
\item if $((accuracy - maxAccuracy) < \delta)$\hspace*{2cm} // result doesn't improve enough
\begin{enumerate}
\item $tolerance \leftarrow tolerance + 1$
\end{enumerate}
\item else
\begin{enumerate}
\item $tolerance \leftarrow 0$
\item $numItemsPack \leftarrow 0$
\end{enumerate}
\end{enumerate}
\item If $(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
\item $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
\end{enumerate}
\item if ($tolerance > maxTolerance$) \hspace*{1cm} // algorithm finished because of lack of convergence
\begin{enumerate}
\item $removeModels(AODE, numItemsPack)$
\end{enumerate}
\item Return $AODE$
\end{enumerate}

View File

@@ -1,4 +1,5 @@
filter = src/
exclude-directories = build/lib/
filter = bayesnet/
exclude-directories = build_debug/lib/
exclude = bayesnet/utils/loguru.*
print-summary = yes
sort-percentage = yes
sort = uncovered-percent

View File

@@ -1,162 +0,0 @@
{
"balance-scale": {
"C": 10000.0,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"balloons": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"breast-cancer-wisc-diag": {
"C": 0.2,
"max_iter": 10000
},
"breast-cancer-wisc-prog": {
"C": 0.2,
"max_iter": 10000
},
"breast-cancer-wisc": {},
"breast-cancer": {},
"cardiotocography-10clases": {},
"cardiotocography-3clases": {},
"conn-bench-sonar-mines-rocks": {},
"cylinder-bands": {},
"dermatology": {
"C": 55,
"max_iter": 10000
},
"echocardiogram": {
"C": 7,
"gamma": 0.1,
"kernel": "poly",
"max_features": "auto",
"max_iter": 10000
},
"fertility": {
"C": 0.05,
"max_features": "auto",
"max_iter": 10000
},
"haberman-survival": {},
"heart-hungarian": {
"C": 0.05,
"max_iter": 10000
},
"hepatitis": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"ilpd-indian-liver": {},
"ionosphere": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"iris": {},
"led-display": {},
"libras": {
"C": 0.08,
"max_iter": 10000
},
"low-res-spect": {
"C": 0.05,
"max_iter": 10000
},
"lymphography": {
"C": 0.05,
"max_iter": 10000
},
"mammographic": {},
"molec-biol-promoter": {
"C": 0.05,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"musk-1": {
"C": 0.05,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"oocytes_merluccius_nucleus_4d": {
"C": 8.25,
"gamma": 0.1,
"kernel": "poly"
},
"oocytes_merluccius_states_2f": {},
"oocytes_trisopterus_nucleus_2f": {},
"oocytes_trisopterus_states_5b": {
"C": 0.11,
"max_iter": 10000
},
"parkinsons": {},
"pima": {},
"pittsburg-bridges-MATERIAL": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"pittsburg-bridges-REL-L": {},
"pittsburg-bridges-SPAN": {
"C": 0.05,
"max_iter": 10000
},
"pittsburg-bridges-T-OR-D": {},
"planning": {
"C": 7,
"gamma": 10.0,
"kernel": "rbf",
"max_iter": 10000
},
"post-operative": {
"C": 55,
"degree": 5,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"seeds": {
"C": 10000.0,
"max_iter": 10000
},
"statlog-australian-credit": {
"C": 0.05,
"max_features": "auto",
"max_iter": 10000
},
"statlog-german-credit": {},
"statlog-heart": {},
"statlog-image": {
"C": 7,
"max_iter": 10000
},
"statlog-vehicle": {},
"synthetic-control": {
"C": 0.55,
"max_iter": 10000
},
"tic-tac-toe": {
"C": 0.2,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"vertebral-column-2clases": {},
"wine": {
"C": 0.55,
"max_iter": 10000
},
"zoo": {
"C": 0.1,
"max_iter": 10000
}
}

Submodule lib/argparse deleted from b0930ab028

1
lib/folding Submodule

Submodule lib/folding added at 71d6055be4

View File

@@ -1,8 +1,20 @@
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
cmake_minimum_required(VERSION 3.20)
project(bayesnet_sample)
set(CMAKE_CXX_STANDARD 17)
find_package(Torch REQUIRED)
find_library(BayesNet NAMES BayesNet.a libBayesNet.a REQUIRED)
include_directories(
lib/Files
lib/mdlp
lib/json/include
/usr/local/include
)
add_subdirectory(lib/Files)
add_subdirectory(lib/mdlp)
add_executable(bayesnet_sample sample.cc)
target_link_libraries(bayesnet_sample ArffFiles mdlp "${TORCH_LIBRARIES}" "${BayesNet}")

View File

@@ -0,0 +1,174 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include "ArffFiles.h"
#include <fstream>
#include <sstream>
#include <map>
#include <iostream>
ArffFiles::ArffFiles() = default;
std::vector<std::string> ArffFiles::getLines() const
{
return lines;
}
unsigned long int ArffFiles::getSize() const
{
return lines.size();
}
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
{
return attributes;
}
std::string ArffFiles::getClassName() const
{
return className;
}
std::string ArffFiles::getClassType() const
{
return classType;
}
std::vector<std::vector<float>>& ArffFiles::getX()
{
return X;
}
std::vector<int>& ArffFiles::getY()
{
return y;
}
void ArffFiles::loadCommon(std::string fileName)
{
std::ifstream file(fileName);
if (!file.is_open()) {
throw std::invalid_argument("Unable to open file");
}
std::string line;
std::string keyword;
std::string attribute;
std::string type;
std::string type_w;
while (getline(file, line)) {
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
continue;
}
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
std::stringstream ss(line);
ss >> keyword >> attribute;
type = "";
while (ss >> type_w)
type += type_w + " ";
attributes.emplace_back(trim(attribute), trim(type));
continue;
}
if (line[0] == '@') {
continue;
}
lines.push_back(line);
}
file.close();
if (attributes.empty())
throw std::invalid_argument("No attributes found");
}
void ArffFiles::load(const std::string& fileName, bool classLast)
{
int labelIndex;
loadCommon(fileName);
if (classLast) {
className = std::get<0>(attributes.back());
classType = std::get<1>(attributes.back());
attributes.pop_back();
labelIndex = static_cast<int>(attributes.size());
} else {
className = std::get<0>(attributes.front());
classType = std::get<1>(attributes.front());
attributes.erase(attributes.begin());
labelIndex = 0;
}
generateDataset(labelIndex);
}
void ArffFiles::load(const std::string& fileName, const std::string& name)
{
int labelIndex;
loadCommon(fileName);
bool found = false;
for (int i = 0; i < attributes.size(); ++i) {
if (attributes[i].first == name) {
className = std::get<0>(attributes[i]);
classType = std::get<1>(attributes[i]);
attributes.erase(attributes.begin() + i);
labelIndex = i;
found = true;
break;
}
}
if (!found) {
throw std::invalid_argument("Class name not found");
}
generateDataset(labelIndex);
}
void ArffFiles::generateDataset(int labelIndex)
{
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
auto yy = std::vector<std::string>(lines.size(), "");
auto removeLines = std::vector<int>(); // Lines with missing values
for (size_t i = 0; i < lines.size(); i++) {
std::stringstream ss(lines[i]);
std::string value;
int pos = 0;
int xIndex = 0;
while (getline(ss, value, ',')) {
if (pos++ == labelIndex) {
yy[i] = value;
} else {
if (value == "?") {
X[xIndex++][i] = -1;
removeLines.push_back(i);
} else
X[xIndex++][i] = stof(value);
}
}
}
for (auto i : removeLines) {
yy.erase(yy.begin() + i);
for (auto& x : X) {
x.erase(x.begin() + i);
}
}
y = factorize(yy);
}
std::string ArffFiles::trim(const std::string& source)
{
std::string s(source);
s.erase(0, s.find_first_not_of(" '\n\r\t"));
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
return s;
}
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
{
std::vector<int> yy;
yy.reserve(labels_t.size());
std::map<std::string, int> labelMap;
int i = 0;
for (const std::string& label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
}
yy.push_back(labelMap[label]);
}
return yy;
}

View File

@@ -0,0 +1,38 @@
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#ifndef ARFFFILES_H
#define ARFFFILES_H
#include <string>
#include <vector>
class ArffFiles {
private:
std::vector<std::string> lines;
std::vector<std::pair<std::string, std::string>> attributes;
std::string className;
std::string classType;
std::vector<std::vector<float>> X;
std::vector<int> y;
void generateDataset(int);
void loadCommon(std::string);
public:
ArffFiles();
void load(const std::string&, bool = true);
void load(const std::string&, const std::string&);
std::vector<std::string> getLines() const;
unsigned long int getSize() const;
std::string getClassName() const;
std::string getClassType() const;
static std::string trim(const std::string&);
std::vector<std::vector<float>>& getX();
std::vector<int>& getY();
std::vector<std::pair<std::string, std::string>> getAttributes() const;
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
};
#endif

View File

@@ -0,0 +1 @@
add_library(ArffFiles ArffFiles.cc)

View File

@@ -0,0 +1,55 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <utility>
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/conversions/from_json.hpp>
#include <nlohmann/detail/conversions/to_json.hpp>
#include <nlohmann/detail/meta/identity_tag.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
/// @sa https://json.nlohmann.me/api/adl_serializer/
template<typename ValueType, typename>
struct adl_serializer
{
/// @brief convert a JSON value to any value type
/// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
template<typename BasicJsonType, typename TargetType = ValueType>
static auto from_json(BasicJsonType && j, TargetType& val) noexcept(
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
{
::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
}
/// @brief convert a JSON value to any value type
/// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
template<typename BasicJsonType, typename TargetType = ValueType>
static auto from_json(BasicJsonType && j) noexcept(
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {})))
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {}))
{
return ::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {});
}
/// @brief convert any value type to a JSON value
/// @sa https://json.nlohmann.me/api/adl_serializer/to_json/
template<typename BasicJsonType, typename TargetType = ValueType>
static auto to_json(BasicJsonType& j, TargetType && val) noexcept(
noexcept(::nlohmann::to_json(j, std::forward<TargetType>(val))))
-> decltype(::nlohmann::to_json(j, std::forward<TargetType>(val)), void())
{
::nlohmann::to_json(j, std::forward<TargetType>(val));
}
};
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,103 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstdint> // uint8_t, uint64_t
#include <tuple> // tie
#include <utility> // move
#include <nlohmann/detail/abi_macros.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
/// @brief an internal type for a backed binary type
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/
template<typename BinaryType>
class byte_container_with_subtype : public BinaryType
{
public:
using container_type = BinaryType;
using subtype_type = std::uint64_t;
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
byte_container_with_subtype() noexcept(noexcept(container_type()))
: container_type()
{}
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
byte_container_with_subtype(const container_type& b) noexcept(noexcept(container_type(b)))
: container_type(b)
{}
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
byte_container_with_subtype(container_type&& b) noexcept(noexcept(container_type(std::move(b))))
: container_type(std::move(b))
{}
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
byte_container_with_subtype(const container_type& b, subtype_type subtype_) noexcept(noexcept(container_type(b)))
: container_type(b)
, m_subtype(subtype_)
, m_has_subtype(true)
{}
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
byte_container_with_subtype(container_type&& b, subtype_type subtype_) noexcept(noexcept(container_type(std::move(b))))
: container_type(std::move(b))
, m_subtype(subtype_)
, m_has_subtype(true)
{}
bool operator==(const byte_container_with_subtype& rhs) const
{
return std::tie(static_cast<const BinaryType&>(*this), m_subtype, m_has_subtype) ==
std::tie(static_cast<const BinaryType&>(rhs), rhs.m_subtype, rhs.m_has_subtype);
}
bool operator!=(const byte_container_with_subtype& rhs) const
{
return !(rhs == *this);
}
/// @brief sets the binary subtype
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/set_subtype/
void set_subtype(subtype_type subtype_) noexcept
{
m_subtype = subtype_;
m_has_subtype = true;
}
/// @brief return the binary subtype
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/subtype/
constexpr subtype_type subtype() const noexcept
{
return m_has_subtype ? m_subtype : static_cast<subtype_type>(-1);
}
/// @brief return whether the value has a subtype
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/has_subtype/
constexpr bool has_subtype() const noexcept
{
return m_has_subtype;
}
/// @brief clears the binary subtype
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/clear_subtype/
void clear_subtype() noexcept
{
m_subtype = 0;
m_has_subtype = false;
}
private:
subtype_type m_subtype = 0;
bool m_has_subtype = false;
};
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,100 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
// This file contains all macro definitions affecting or depending on the ABI
#ifndef JSON_SKIP_LIBRARY_VERSION_CHECK
#if defined(NLOHMANN_JSON_VERSION_MAJOR) && defined(NLOHMANN_JSON_VERSION_MINOR) && defined(NLOHMANN_JSON_VERSION_PATCH)
#if NLOHMANN_JSON_VERSION_MAJOR != 3 || NLOHMANN_JSON_VERSION_MINOR != 11 || NLOHMANN_JSON_VERSION_PATCH != 3
#warning "Already included a different version of the library!"
#endif
#endif
#endif
#define NLOHMANN_JSON_VERSION_MAJOR 3 // NOLINT(modernize-macro-to-enum)
#define NLOHMANN_JSON_VERSION_MINOR 11 // NOLINT(modernize-macro-to-enum)
#define NLOHMANN_JSON_VERSION_PATCH 3 // NOLINT(modernize-macro-to-enum)
#ifndef JSON_DIAGNOSTICS
#define JSON_DIAGNOSTICS 0
#endif
#ifndef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
#define JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON 0
#endif
#if JSON_DIAGNOSTICS
#define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS _diag
#else
#define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS
#endif
#if JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
#define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON _ldvcmp
#else
#define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON
#endif
#ifndef NLOHMANN_JSON_NAMESPACE_NO_VERSION
#define NLOHMANN_JSON_NAMESPACE_NO_VERSION 0
#endif
// Construct the namespace ABI tags component
#define NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b) json_abi ## a ## b
#define NLOHMANN_JSON_ABI_TAGS_CONCAT(a, b) \
NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b)
#define NLOHMANN_JSON_ABI_TAGS \
NLOHMANN_JSON_ABI_TAGS_CONCAT( \
NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS, \
NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON)
// Construct the namespace version component
#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch) \
_v ## major ## _ ## minor ## _ ## patch
#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(major, minor, patch) \
NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch)
#if NLOHMANN_JSON_NAMESPACE_NO_VERSION
#define NLOHMANN_JSON_NAMESPACE_VERSION
#else
#define NLOHMANN_JSON_NAMESPACE_VERSION \
NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(NLOHMANN_JSON_VERSION_MAJOR, \
NLOHMANN_JSON_VERSION_MINOR, \
NLOHMANN_JSON_VERSION_PATCH)
#endif
// Combine namespace components
#define NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b) a ## b
#define NLOHMANN_JSON_NAMESPACE_CONCAT(a, b) \
NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b)
#ifndef NLOHMANN_JSON_NAMESPACE
#define NLOHMANN_JSON_NAMESPACE \
nlohmann::NLOHMANN_JSON_NAMESPACE_CONCAT( \
NLOHMANN_JSON_ABI_TAGS, \
NLOHMANN_JSON_NAMESPACE_VERSION)
#endif
#ifndef NLOHMANN_JSON_NAMESPACE_BEGIN
#define NLOHMANN_JSON_NAMESPACE_BEGIN \
namespace nlohmann \
{ \
inline namespace NLOHMANN_JSON_NAMESPACE_CONCAT( \
NLOHMANN_JSON_ABI_TAGS, \
NLOHMANN_JSON_NAMESPACE_VERSION) \
{
#endif
#ifndef NLOHMANN_JSON_NAMESPACE_END
#define NLOHMANN_JSON_NAMESPACE_END \
} /* namespace (inline namespace) NOLINT(readability/namespace) */ \
} // namespace nlohmann
#endif

View File

@@ -0,0 +1,497 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <algorithm> // transform
#include <array> // array
#include <forward_list> // forward_list
#include <iterator> // inserter, front_inserter, end
#include <map> // map
#include <string> // string
#include <tuple> // tuple, make_tuple
#include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
#include <unordered_map> // unordered_map
#include <utility> // pair, declval
#include <valarray> // valarray
#include <nlohmann/detail/exceptions.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/cpp_future.hpp>
#include <nlohmann/detail/meta/identity_tag.hpp>
#include <nlohmann/detail/meta/std_fs.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
#include <nlohmann/detail/string_concat.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_null()))
{
JSON_THROW(type_error::create(302, concat("type must be null, but is ", j.type_name()), &j));
}
n = nullptr;
}
// overloads for basic_json template parameters
template < typename BasicJsonType, typename ArithmeticType,
enable_if_t < std::is_arithmetic<ArithmeticType>::value&&
!std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int > = 0 >
void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
case value_t::null:
case value_t::object:
case value_t::array:
case value_t::string:
case value_t::boolean:
case value_t::binary:
case value_t::discarded:
default:
JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
}
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_boolean()))
{
JSON_THROW(type_error::create(302, concat("type must be boolean, but is ", j.type_name()), &j));
}
b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
{
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template <
typename BasicJsonType, typename StringType,
enable_if_t <
std::is_assignable<StringType&, const typename BasicJsonType::string_t>::value
&& is_detected_exact<typename BasicJsonType::string_t::value_type, value_type_t, StringType>::value
&& !std::is_same<typename BasicJsonType::string_t, StringType>::value
&& !is_json_ref<StringType>::value, int > = 0 >
inline void from_json(const BasicJsonType& j, StringType& s)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
{
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
{
get_arithmetic_value(j, val);
}
#if !JSON_DISABLE_ENUM_SERIALIZATION
template<typename BasicJsonType, typename EnumType,
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
inline void from_json(const BasicJsonType& j, EnumType& e)
{
typename std::underlying_type<EnumType>::type val;
get_arithmetic_value(j, val);
e = static_cast<EnumType>(val);
}
#endif // JSON_DISABLE_ENUM_SERIALIZATION
// forward_list doesn't have an insert method
template<typename BasicJsonType, typename T, typename Allocator,
enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
inline void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
l.clear();
std::transform(j.rbegin(), j.rend(),
std::front_inserter(l), [](const BasicJsonType & i)
{
return i.template get<T>();
});
}
// valarray doesn't have an insert method
template<typename BasicJsonType, typename T,
enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
inline void from_json(const BasicJsonType& j, std::valarray<T>& l)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
l.resize(j.size());
std::transform(j.begin(), j.end(), std::begin(l),
[](const BasicJsonType & elem)
{
return elem.template get<T>();
});
}
template<typename BasicJsonType, typename T, std::size_t N>
auto from_json(const BasicJsonType& j, T (&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
-> decltype(j.template get<T>(), void())
{
for (std::size_t i = 0; i < N; ++i)
{
arr[i] = j.at(i).template get<T>();
}
}
template<typename BasicJsonType>
inline void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
{
arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
}
template<typename BasicJsonType, typename T, std::size_t N>
auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
priority_tag<2> /*unused*/)
-> decltype(j.template get<T>(), void())
{
for (std::size_t i = 0; i < N; ++i)
{
arr[i] = j.at(i).template get<T>();
}
}
template<typename BasicJsonType, typename ConstructibleArrayType,
enable_if_t<
std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
int> = 0>
auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
-> decltype(
arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
j.template get<typename ConstructibleArrayType::value_type>(),
void())
{
using std::end;
ConstructibleArrayType ret;
ret.reserve(j.size());
std::transform(j.begin(), j.end(),
std::inserter(ret, end(ret)), [](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename ConstructibleArrayType::value_type>();
});
arr = std::move(ret);
}
template<typename BasicJsonType, typename ConstructibleArrayType,
enable_if_t<
std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
int> = 0>
inline void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
priority_tag<0> /*unused*/)
{
using std::end;
ConstructibleArrayType ret;
std::transform(
j.begin(), j.end(), std::inserter(ret, end(ret)),
[](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename ConstructibleArrayType::value_type>();
});
arr = std::move(ret);
}
template < typename BasicJsonType, typename ConstructibleArrayType,
enable_if_t <
is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value&&
!is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value&&
!is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value&&
!std::is_same<ConstructibleArrayType, typename BasicJsonType::binary_t>::value&&
!is_basic_json<ConstructibleArrayType>::value,
int > = 0 >
auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
-> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
j.template get<typename ConstructibleArrayType::value_type>(),
void())
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
from_json_array_impl(j, arr, priority_tag<3> {});
}
template < typename BasicJsonType, typename T, std::size_t... Idx >
std::array<T, sizeof...(Idx)> from_json_inplace_array_impl(BasicJsonType&& j,
identity_tag<std::array<T, sizeof...(Idx)>> /*unused*/, index_sequence<Idx...> /*unused*/)
{
return { { std::forward<BasicJsonType>(j).at(Idx).template get<T>()... } };
}
template < typename BasicJsonType, typename T, std::size_t N >
auto from_json(BasicJsonType&& j, identity_tag<std::array<T, N>> tag)
-> decltype(from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {}))
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
return from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {});
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::binary_t& bin)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_binary()))
{
JSON_THROW(type_error::create(302, concat("type must be binary, but is ", j.type_name()), &j));
}
bin = *j.template get_ptr<const typename BasicJsonType::binary_t*>();
}
template<typename BasicJsonType, typename ConstructibleObjectType,
enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0>
inline void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_object()))
{
JSON_THROW(type_error::create(302, concat("type must be object, but is ", j.type_name()), &j));
}
ConstructibleObjectType ret;
const auto* inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
using value_type = typename ConstructibleObjectType::value_type;
std::transform(
inner_object->begin(), inner_object->end(),
std::inserter(ret, ret.begin()),
[](typename BasicJsonType::object_t::value_type const & p)
{
return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
});
obj = std::move(ret);
}
// overload for arithmetic types, not chosen for basic_json template arguments
// (BooleanType, etc..); note: Is it really necessary to provide explicit
// overloads for boolean_t etc. in case of a custom BooleanType which is not
// an arithmetic type?
template < typename BasicJsonType, typename ArithmeticType,
enable_if_t <
std::is_arithmetic<ArithmeticType>::value&&
!std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value&&
!std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value&&
!std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value&&
!std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int > = 0 >
inline void from_json(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
case value_t::boolean:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
break;
}
case value_t::null:
case value_t::object:
case value_t::array:
case value_t::string:
case value_t::binary:
case value_t::discarded:
default:
JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
}
}
template<typename BasicJsonType, typename... Args, std::size_t... Idx>
std::tuple<Args...> from_json_tuple_impl_base(BasicJsonType&& j, index_sequence<Idx...> /*unused*/)
{
return std::make_tuple(std::forward<BasicJsonType>(j).at(Idx).template get<Args>()...);
}
template < typename BasicJsonType, class A1, class A2 >
std::pair<A1, A2> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::pair<A1, A2>> /*unused*/, priority_tag<0> /*unused*/)
{
return {std::forward<BasicJsonType>(j).at(0).template get<A1>(),
std::forward<BasicJsonType>(j).at(1).template get<A2>()};
}
template<typename BasicJsonType, typename A1, typename A2>
inline void from_json_tuple_impl(BasicJsonType&& j, std::pair<A1, A2>& p, priority_tag<1> /*unused*/)
{
p = from_json_tuple_impl(std::forward<BasicJsonType>(j), identity_tag<std::pair<A1, A2>> {}, priority_tag<0> {});
}
template<typename BasicJsonType, typename... Args>
std::tuple<Args...> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::tuple<Args...>> /*unused*/, priority_tag<2> /*unused*/)
{
return from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
}
template<typename BasicJsonType, typename... Args>
inline void from_json_tuple_impl(BasicJsonType&& j, std::tuple<Args...>& t, priority_tag<3> /*unused*/)
{
t = from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
}
template<typename BasicJsonType, typename TupleRelated>
auto from_json(BasicJsonType&& j, TupleRelated&& t)
-> decltype(from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {}))
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
return from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {});
}
template < typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
typename = enable_if_t < !std::is_constructible <
typename BasicJsonType::string_t, Key >::value >>
inline void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
m.clear();
for (const auto& p : j)
{
if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
}
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
}
}
template < typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
typename = enable_if_t < !std::is_constructible <
typename BasicJsonType::string_t, Key >::value >>
inline void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
m.clear();
for (const auto& p : j)
{
if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
}
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
}
}
#if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, std_fs::path& p)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
{
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
}
p = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
#endif
struct from_json_fn
{
template<typename BasicJsonType, typename T>
auto operator()(const BasicJsonType& j, T&& val) const
noexcept(noexcept(from_json(j, std::forward<T>(val))))
-> decltype(from_json(j, std::forward<T>(val)))
{
return from_json(j, std::forward<T>(val));
}
};
} // namespace detail
#ifndef JSON_HAS_CPP_17
/// namespace to hold default `from_json` function
/// to see why this is required:
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
{
#endif
JSON_INLINE_VARIABLE constexpr const auto& from_json = // NOLINT(misc-definitions-in-headers)
detail::static_const<detail::from_json_fn>::value;
#ifndef JSON_HAS_CPP_17
} // namespace
#endif
NLOHMANN_JSON_NAMESPACE_END

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,447 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <algorithm> // copy
#include <iterator> // begin, end
#include <string> // string
#include <tuple> // tuple, get
#include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type
#include <utility> // move, forward, declval, pair
#include <valarray> // valarray
#include <vector> // vector
#include <nlohmann/detail/iterators/iteration_proxy.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/cpp_future.hpp>
#include <nlohmann/detail/meta/std_fs.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
//////////////////
// constructors //
//////////////////
/*
* Note all external_constructor<>::construct functions need to call
* j.m_data.m_value.destroy(j.m_data.m_type) to avoid a memory leak in case j contains an
* allocated value (e.g., a string). See bug issue
* https://github.com/nlohmann/json/issues/2865 for more information.
*/
template<value_t> struct external_constructor;
template<>
struct external_constructor<value_t::boolean>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::boolean;
j.m_data.m_value = b;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::string>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::string;
j.m_data.m_value = s;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::string;
j.m_data.m_value = std::move(s);
j.assert_invariant();
}
template < typename BasicJsonType, typename CompatibleStringType,
enable_if_t < !std::is_same<CompatibleStringType, typename BasicJsonType::string_t>::value,
int > = 0 >
static void construct(BasicJsonType& j, const CompatibleStringType& str)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::string;
j.m_data.m_value.string = j.template create<typename BasicJsonType::string_t>(str);
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::binary>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::binary_t& b)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::binary;
j.m_data.m_value = typename BasicJsonType::binary_t(b);
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::binary_t&& b)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::binary;
j.m_data.m_value = typename BasicJsonType::binary_t(std::move(b));
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_float>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::number_float;
j.m_data.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_unsigned>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::number_unsigned;
j.m_data.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_integer>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::number_integer;
j.m_data.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::array>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::array;
j.m_data.m_value = arr;
j.set_parents();
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::array;
j.m_data.m_value = std::move(arr);
j.set_parents();
j.assert_invariant();
}
template < typename BasicJsonType, typename CompatibleArrayType,
enable_if_t < !std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value,
int > = 0 >
static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
{
using std::begin;
using std::end;
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::array;
j.m_data.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
j.set_parents();
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const std::vector<bool>& arr)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::array;
j.m_data.m_value = value_t::array;
j.m_data.m_value.array->reserve(arr.size());
for (const bool x : arr)
{
j.m_data.m_value.array->push_back(x);
j.set_parent(j.m_data.m_value.array->back());
}
j.assert_invariant();
}
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
static void construct(BasicJsonType& j, const std::valarray<T>& arr)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::array;
j.m_data.m_value = value_t::array;
j.m_data.m_value.array->resize(arr.size());
if (arr.size() > 0)
{
std::copy(std::begin(arr), std::end(arr), j.m_data.m_value.array->begin());
}
j.set_parents();
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::object>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::object;
j.m_data.m_value = obj;
j.set_parents();
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::object;
j.m_data.m_value = std::move(obj);
j.set_parents();
j.assert_invariant();
}
template < typename BasicJsonType, typename CompatibleObjectType,
enable_if_t < !std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int > = 0 >
static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
{
using std::begin;
using std::end;
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::object;
j.m_data.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
j.set_parents();
j.assert_invariant();
}
};
/////////////
// to_json //
/////////////
template<typename BasicJsonType, typename T,
enable_if_t<std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
inline void to_json(BasicJsonType& j, T b) noexcept
{
external_constructor<value_t::boolean>::construct(j, b);
}
template < typename BasicJsonType, typename BoolRef,
enable_if_t <
((std::is_same<std::vector<bool>::reference, BoolRef>::value
&& !std::is_same <std::vector<bool>::reference, typename BasicJsonType::boolean_t&>::value)
|| (std::is_same<std::vector<bool>::const_reference, BoolRef>::value
&& !std::is_same <detail::uncvref_t<std::vector<bool>::const_reference>,
typename BasicJsonType::boolean_t >::value))
&& std::is_convertible<const BoolRef&, typename BasicJsonType::boolean_t>::value, int > = 0 >
inline void to_json(BasicJsonType& j, const BoolRef& b) noexcept
{
external_constructor<value_t::boolean>::construct(j, static_cast<typename BasicJsonType::boolean_t>(b));
}
template<typename BasicJsonType, typename CompatibleString,
enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0>
inline void to_json(BasicJsonType& j, const CompatibleString& s)
{
external_constructor<value_t::string>::construct(j, s);
}
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
{
external_constructor<value_t::string>::construct(j, std::move(s));
}
template<typename BasicJsonType, typename FloatType,
enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
inline void to_json(BasicJsonType& j, FloatType val) noexcept
{
external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
}
template<typename BasicJsonType, typename CompatibleNumberUnsignedType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0>
inline void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
{
external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
}
template<typename BasicJsonType, typename CompatibleNumberIntegerType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0>
inline void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
{
external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
}
#if !JSON_DISABLE_ENUM_SERIALIZATION
template<typename BasicJsonType, typename EnumType,
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
inline void to_json(BasicJsonType& j, EnumType e) noexcept
{
using underlying_type = typename std::underlying_type<EnumType>::type;
static constexpr value_t integral_value_t = std::is_unsigned<underlying_type>::value ? value_t::number_unsigned : value_t::number_integer;
external_constructor<integral_value_t>::construct(j, static_cast<underlying_type>(e));
}
#endif // JSON_DISABLE_ENUM_SERIALIZATION
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, const std::vector<bool>& e)
{
external_constructor<value_t::array>::construct(j, e);
}
template < typename BasicJsonType, typename CompatibleArrayType,
enable_if_t < is_compatible_array_type<BasicJsonType,
CompatibleArrayType>::value&&
!is_compatible_object_type<BasicJsonType, CompatibleArrayType>::value&&
!is_compatible_string_type<BasicJsonType, CompatibleArrayType>::value&&
!std::is_same<typename BasicJsonType::binary_t, CompatibleArrayType>::value&&
!is_basic_json<CompatibleArrayType>::value,
int > = 0 >
inline void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
{
external_constructor<value_t::array>::construct(j, arr);
}
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, const typename BasicJsonType::binary_t& bin)
{
external_constructor<value_t::binary>::construct(j, bin);
}
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
inline void to_json(BasicJsonType& j, const std::valarray<T>& arr)
{
external_constructor<value_t::array>::construct(j, std::move(arr));
}
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
{
external_constructor<value_t::array>::construct(j, std::move(arr));
}
template < typename BasicJsonType, typename CompatibleObjectType,
enable_if_t < is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value&& !is_basic_json<CompatibleObjectType>::value, int > = 0 >
inline void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
{
external_constructor<value_t::object>::construct(j, obj);
}
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
{
external_constructor<value_t::object>::construct(j, std::move(obj));
}
template <
typename BasicJsonType, typename T, std::size_t N,
enable_if_t < !std::is_constructible<typename BasicJsonType::string_t,
const T(&)[N]>::value, // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
int > = 0 >
inline void to_json(BasicJsonType& j, const T(&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
{
external_constructor<value_t::array>::construct(j, arr);
}
template < typename BasicJsonType, typename T1, typename T2, enable_if_t < std::is_constructible<BasicJsonType, T1>::value&& std::is_constructible<BasicJsonType, T2>::value, int > = 0 >
inline void to_json(BasicJsonType& j, const std::pair<T1, T2>& p)
{
j = { p.first, p.second };
}
// for https://github.com/nlohmann/json/pull/1134
template<typename BasicJsonType, typename T,
enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0>
inline void to_json(BasicJsonType& j, const T& b)
{
j = { {b.key(), b.value()} };
}
template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
inline void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/)
{
j = { std::get<Idx>(t)... };
}
template<typename BasicJsonType, typename T, enable_if_t<is_constructible_tuple<BasicJsonType, T>::value, int > = 0>
inline void to_json(BasicJsonType& j, const T& t)
{
to_json_tuple_impl(j, t, make_index_sequence<std::tuple_size<T>::value> {});
}
#if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, const std_fs::path& p)
{
j = p.string();
}
#endif
struct to_json_fn
{
template<typename BasicJsonType, typename T>
auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
-> decltype(to_json(j, std::forward<T>(val)), void())
{
return to_json(j, std::forward<T>(val));
}
};
} // namespace detail
#ifndef JSON_HAS_CPP_17
/// namespace to hold default `to_json` function
/// to see why this is required:
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
{
#endif
JSON_INLINE_VARIABLE constexpr const auto& to_json = // NOLINT(misc-definitions-in-headers)
detail::static_const<detail::to_json_fn>::value;
#ifndef JSON_HAS_CPP_17
} // namespace
#endif
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,257 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef> // nullptr_t
#include <exception> // exception
#if JSON_DIAGNOSTICS
#include <numeric> // accumulate
#endif
#include <stdexcept> // runtime_error
#include <string> // to_string
#include <vector> // vector
#include <nlohmann/detail/value_t.hpp>
#include <nlohmann/detail/string_escape.hpp>
#include <nlohmann/detail/input/position_t.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/cpp_future.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
#include <nlohmann/detail/string_concat.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
////////////////
// exceptions //
////////////////
/// @brief general exception of the @ref basic_json class
/// @sa https://json.nlohmann.me/api/basic_json/exception/
class exception : public std::exception
{
public:
/// returns the explanatory string
const char* what() const noexcept override
{
return m.what();
}
/// the id of the exception
const int id; // NOLINT(cppcoreguidelines-non-private-member-variables-in-classes)
protected:
JSON_HEDLEY_NON_NULL(3)
exception(int id_, const char* what_arg) : id(id_), m(what_arg) {} // NOLINT(bugprone-throw-keyword-missing)
static std::string name(const std::string& ename, int id_)
{
return concat("[json.exception.", ename, '.', std::to_string(id_), "] ");
}
static std::string diagnostics(std::nullptr_t /*leaf_element*/)
{
return "";
}
template<typename BasicJsonType>
static std::string diagnostics(const BasicJsonType* leaf_element)
{
#if JSON_DIAGNOSTICS
std::vector<std::string> tokens;
for (const auto* current = leaf_element; current != nullptr && current->m_parent != nullptr; current = current->m_parent)
{
switch (current->m_parent->type())
{
case value_t::array:
{
for (std::size_t i = 0; i < current->m_parent->m_data.m_value.array->size(); ++i)
{
if (&current->m_parent->m_data.m_value.array->operator[](i) == current)
{
tokens.emplace_back(std::to_string(i));
break;
}
}
break;
}
case value_t::object:
{
for (const auto& element : *current->m_parent->m_data.m_value.object)
{
if (&element.second == current)
{
tokens.emplace_back(element.first.c_str());
break;
}
}
break;
}
case value_t::null: // LCOV_EXCL_LINE
case value_t::string: // LCOV_EXCL_LINE
case value_t::boolean: // LCOV_EXCL_LINE
case value_t::number_integer: // LCOV_EXCL_LINE
case value_t::number_unsigned: // LCOV_EXCL_LINE
case value_t::number_float: // LCOV_EXCL_LINE
case value_t::binary: // LCOV_EXCL_LINE
case value_t::discarded: // LCOV_EXCL_LINE
default: // LCOV_EXCL_LINE
break; // LCOV_EXCL_LINE
}
}
if (tokens.empty())
{
return "";
}
auto str = std::accumulate(tokens.rbegin(), tokens.rend(), std::string{},
[](const std::string & a, const std::string & b)
{
return concat(a, '/', detail::escape(b));
});
return concat('(', str, ") ");
#else
static_cast<void>(leaf_element);
return "";
#endif
}
private:
/// an exception object as storage for error messages
std::runtime_error m;
};
/// @brief exception indicating a parse error
/// @sa https://json.nlohmann.me/api/basic_json/parse_error/
class parse_error : public exception
{
public:
/*!
@brief create a parse error exception
@param[in] id_ the id of the exception
@param[in] pos the position where the error occurred (or with
chars_read_total=0 if the position cannot be
determined)
@param[in] what_arg the explanatory string
@return parse_error object
*/
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static parse_error create(int id_, const position_t& pos, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("parse_error", id_), "parse error",
position_string(pos), ": ", exception::diagnostics(context), what_arg);
return {id_, pos.chars_read_total, w.c_str()};
}
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static parse_error create(int id_, std::size_t byte_, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("parse_error", id_), "parse error",
(byte_ != 0 ? (concat(" at byte ", std::to_string(byte_))) : ""),
": ", exception::diagnostics(context), what_arg);
return {id_, byte_, w.c_str()};
}
/*!
@brief byte index of the parse error
The byte index of the last read character in the input file.
@note For an input with n bytes, 1 is the index of the first character and
n+1 is the index of the terminating null byte or the end of file.
This also holds true when reading a byte vector (CBOR or MessagePack).
*/
const std::size_t byte;
private:
parse_error(int id_, std::size_t byte_, const char* what_arg)
: exception(id_, what_arg), byte(byte_) {}
static std::string position_string(const position_t& pos)
{
return concat(" at line ", std::to_string(pos.lines_read + 1),
", column ", std::to_string(pos.chars_read_current_line));
}
};
/// @brief exception indicating errors with iterators
/// @sa https://json.nlohmann.me/api/basic_json/invalid_iterator/
class invalid_iterator : public exception
{
public:
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static invalid_iterator create(int id_, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("invalid_iterator", id_), exception::diagnostics(context), what_arg);
return {id_, w.c_str()};
}
private:
JSON_HEDLEY_NON_NULL(3)
invalid_iterator(int id_, const char* what_arg)
: exception(id_, what_arg) {}
};
/// @brief exception indicating executing a member function with a wrong type
/// @sa https://json.nlohmann.me/api/basic_json/type_error/
class type_error : public exception
{
public:
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static type_error create(int id_, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("type_error", id_), exception::diagnostics(context), what_arg);
return {id_, w.c_str()};
}
private:
JSON_HEDLEY_NON_NULL(3)
type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
/// @brief exception indicating access out of the defined range
/// @sa https://json.nlohmann.me/api/basic_json/out_of_range/
class out_of_range : public exception
{
public:
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static out_of_range create(int id_, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("out_of_range", id_), exception::diagnostics(context), what_arg);
return {id_, w.c_str()};
}
private:
JSON_HEDLEY_NON_NULL(3)
out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
/// @brief exception indicating other library errors
/// @sa https://json.nlohmann.me/api/basic_json/other_error/
class other_error : public exception
{
public:
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static other_error create(int id_, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("other_error", id_), exception::diagnostics(context), what_arg);
return {id_, w.c_str()};
}
private:
JSON_HEDLEY_NON_NULL(3)
other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,129 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstdint> // uint8_t
#include <cstddef> // size_t
#include <functional> // hash
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
// boost::hash_combine
inline std::size_t combine(std::size_t seed, std::size_t h) noexcept
{
seed ^= h + 0x9e3779b9 + (seed << 6U) + (seed >> 2U);
return seed;
}
/*!
@brief hash a JSON value
The hash function tries to rely on std::hash where possible. Furthermore, the
type of the JSON value is taken into account to have different hash values for
null, 0, 0U, and false, etc.
@tparam BasicJsonType basic_json specialization
@param j JSON value to hash
@return hash value of j
*/
template<typename BasicJsonType>
std::size_t hash(const BasicJsonType& j)
{
using string_t = typename BasicJsonType::string_t;
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
const auto type = static_cast<std::size_t>(j.type());
switch (j.type())
{
case BasicJsonType::value_t::null:
case BasicJsonType::value_t::discarded:
{
return combine(type, 0);
}
case BasicJsonType::value_t::object:
{
auto seed = combine(type, j.size());
for (const auto& element : j.items())
{
const auto h = std::hash<string_t> {}(element.key());
seed = combine(seed, h);
seed = combine(seed, hash(element.value()));
}
return seed;
}
case BasicJsonType::value_t::array:
{
auto seed = combine(type, j.size());
for (const auto& element : j)
{
seed = combine(seed, hash(element));
}
return seed;
}
case BasicJsonType::value_t::string:
{
const auto h = std::hash<string_t> {}(j.template get_ref<const string_t&>());
return combine(type, h);
}
case BasicJsonType::value_t::boolean:
{
const auto h = std::hash<bool> {}(j.template get<bool>());
return combine(type, h);
}
case BasicJsonType::value_t::number_integer:
{
const auto h = std::hash<number_integer_t> {}(j.template get<number_integer_t>());
return combine(type, h);
}
case BasicJsonType::value_t::number_unsigned:
{
const auto h = std::hash<number_unsigned_t> {}(j.template get<number_unsigned_t>());
return combine(type, h);
}
case BasicJsonType::value_t::number_float:
{
const auto h = std::hash<number_float_t> {}(j.template get<number_float_t>());
return combine(type, h);
}
case BasicJsonType::value_t::binary:
{
auto seed = combine(type, j.get_binary().size());
const auto h = std::hash<bool> {}(j.get_binary().has_subtype());
seed = combine(seed, h);
seed = combine(seed, static_cast<std::size_t>(j.get_binary().subtype()));
for (const auto byte : j.get_binary())
{
seed = combine(seed, std::hash<std::uint8_t> {}(byte));
}
return seed;
}
default: // LCOV_EXCL_LINE
JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
return 0; // LCOV_EXCL_LINE
}
}
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,492 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <array> // array
#include <cstddef> // size_t
#include <cstring> // strlen
#include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next
#include <memory> // shared_ptr, make_shared, addressof
#include <numeric> // accumulate
#include <string> // string, char_traits
#include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer
#include <utility> // pair, declval
#ifndef JSON_NO_IO
#include <cstdio> // FILE *
#include <istream> // istream
#endif // JSON_NO_IO
#include <nlohmann/detail/iterators/iterator_traits.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
/// the supported input formats
enum class input_format_t { json, cbor, msgpack, ubjson, bson, bjdata };
////////////////////
// input adapters //
////////////////////
#ifndef JSON_NO_IO
/*!
Input adapter for stdio file access. This adapter read only 1 byte and do not use any
buffer. This adapter is a very low level adapter.
*/
class file_input_adapter
{
public:
using char_type = char;
JSON_HEDLEY_NON_NULL(2)
explicit file_input_adapter(std::FILE* f) noexcept
: m_file(f)
{
JSON_ASSERT(m_file != nullptr);
}
// make class move-only
file_input_adapter(const file_input_adapter&) = delete;
file_input_adapter(file_input_adapter&&) noexcept = default;
file_input_adapter& operator=(const file_input_adapter&) = delete;
file_input_adapter& operator=(file_input_adapter&&) = delete;
~file_input_adapter() = default;
std::char_traits<char>::int_type get_character() noexcept
{
return std::fgetc(m_file);
}
private:
/// the file pointer to read from
std::FILE* m_file;
};
/*!
Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
beginning of input. Does not support changing the underlying std::streambuf
in mid-input. Maintains underlying std::istream and std::streambuf to support
subsequent use of standard std::istream operations to process any input
characters following those used in parsing the JSON input. Clears the
std::istream flags; any input errors (e.g., EOF) will be detected by the first
subsequent call for input from the std::istream.
*/
class input_stream_adapter
{
public:
using char_type = char;
~input_stream_adapter()
{
// clear stream flags; we use underlying streambuf I/O, do not
// maintain ifstream flags, except eof
if (is != nullptr)
{
is->clear(is->rdstate() & std::ios::eofbit);
}
}
explicit input_stream_adapter(std::istream& i)
: is(&i), sb(i.rdbuf())
{}
// delete because of pointer members
input_stream_adapter(const input_stream_adapter&) = delete;
input_stream_adapter& operator=(input_stream_adapter&) = delete;
input_stream_adapter& operator=(input_stream_adapter&&) = delete;
input_stream_adapter(input_stream_adapter&& rhs) noexcept
: is(rhs.is), sb(rhs.sb)
{
rhs.is = nullptr;
rhs.sb = nullptr;
}
// std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
// ensure that std::char_traits<char>::eof() and the character 0xFF do not
// end up as the same value, e.g. 0xFFFFFFFF.
std::char_traits<char>::int_type get_character()
{
auto res = sb->sbumpc();
// set eof manually, as we don't use the istream interface.
if (JSON_HEDLEY_UNLIKELY(res == std::char_traits<char>::eof()))
{
is->clear(is->rdstate() | std::ios::eofbit);
}
return res;
}
private:
/// the associated input stream
std::istream* is = nullptr;
std::streambuf* sb = nullptr;
};
#endif // JSON_NO_IO
// General-purpose iterator-based adapter. It might not be as fast as
// theoretically possible for some containers, but it is extremely versatile.
template<typename IteratorType>
class iterator_input_adapter
{
public:
using char_type = typename std::iterator_traits<IteratorType>::value_type;
iterator_input_adapter(IteratorType first, IteratorType last)
: current(std::move(first)), end(std::move(last))
{}
typename char_traits<char_type>::int_type get_character()
{
if (JSON_HEDLEY_LIKELY(current != end))
{
auto result = char_traits<char_type>::to_int_type(*current);
std::advance(current, 1);
return result;
}
return char_traits<char_type>::eof();
}
private:
IteratorType current;
IteratorType end;
template<typename BaseInputAdapter, size_t T>
friend struct wide_string_input_helper;
bool empty() const
{
return current == end;
}
};
template<typename BaseInputAdapter, size_t T>
struct wide_string_input_helper;
template<typename BaseInputAdapter>
struct wide_string_input_helper<BaseInputAdapter, 4>
{
// UTF-32
static void fill_buffer(BaseInputAdapter& input,
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
size_t& utf8_bytes_index,
size_t& utf8_bytes_filled)
{
utf8_bytes_index = 0;
if (JSON_HEDLEY_UNLIKELY(input.empty()))
{
utf8_bytes[0] = std::char_traits<char>::eof();
utf8_bytes_filled = 1;
}
else
{
// get the current character
const auto wc = input.get_character();
// UTF-32 to UTF-8 encoding
if (wc < 0x80)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
else if (wc <= 0x7FF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((static_cast<unsigned int>(wc) >> 6u) & 0x1Fu));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
utf8_bytes_filled = 2;
}
else if (wc <= 0xFFFF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((static_cast<unsigned int>(wc) >> 12u) & 0x0Fu));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
utf8_bytes_filled = 3;
}
else if (wc <= 0x10FFFF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | ((static_cast<unsigned int>(wc) >> 18u) & 0x07u));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 12u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
utf8_bytes_filled = 4;
}
else
{
// unknown character
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
}
}
};
template<typename BaseInputAdapter>
struct wide_string_input_helper<BaseInputAdapter, 2>
{
// UTF-16
static void fill_buffer(BaseInputAdapter& input,
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
size_t& utf8_bytes_index,
size_t& utf8_bytes_filled)
{
utf8_bytes_index = 0;
if (JSON_HEDLEY_UNLIKELY(input.empty()))
{
utf8_bytes[0] = std::char_traits<char>::eof();
utf8_bytes_filled = 1;
}
else
{
// get the current character
const auto wc = input.get_character();
// UTF-16 to UTF-8 encoding
if (wc < 0x80)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
else if (wc <= 0x7FF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((static_cast<unsigned int>(wc) >> 6u)));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
utf8_bytes_filled = 2;
}
else if (0xD800 > wc || wc >= 0xE000)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((static_cast<unsigned int>(wc) >> 12u)));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
utf8_bytes_filled = 3;
}
else
{
if (JSON_HEDLEY_UNLIKELY(!input.empty()))
{
const auto wc2 = static_cast<unsigned int>(input.get_character());
const auto charcode = 0x10000u + (((static_cast<unsigned int>(wc) & 0x3FFu) << 10u) | (wc2 & 0x3FFu));
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | (charcode >> 18u));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 12u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 6u) & 0x3Fu));
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (charcode & 0x3Fu));
utf8_bytes_filled = 4;
}
else
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
}
}
}
};
// Wraps another input adapter to convert wide character types into individual bytes.
template<typename BaseInputAdapter, typename WideCharType>
class wide_string_input_adapter
{
public:
using char_type = char;
wide_string_input_adapter(BaseInputAdapter base)
: base_adapter(base) {}
typename std::char_traits<char>::int_type get_character() noexcept
{
// check if buffer needs to be filled
if (utf8_bytes_index == utf8_bytes_filled)
{
fill_buffer<sizeof(WideCharType)>();
JSON_ASSERT(utf8_bytes_filled > 0);
JSON_ASSERT(utf8_bytes_index == 0);
}
// use buffer
JSON_ASSERT(utf8_bytes_filled > 0);
JSON_ASSERT(utf8_bytes_index < utf8_bytes_filled);
return utf8_bytes[utf8_bytes_index++];
}
private:
BaseInputAdapter base_adapter;
template<size_t T>
void fill_buffer()
{
wide_string_input_helper<BaseInputAdapter, T>::fill_buffer(base_adapter, utf8_bytes, utf8_bytes_index, utf8_bytes_filled);
}
/// a buffer for UTF-8 bytes
std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
/// index to the utf8_codes array for the next valid byte
std::size_t utf8_bytes_index = 0;
/// number of valid bytes in the utf8_codes array
std::size_t utf8_bytes_filled = 0;
};
template<typename IteratorType, typename Enable = void>
struct iterator_input_adapter_factory
{
using iterator_type = IteratorType;
using char_type = typename std::iterator_traits<iterator_type>::value_type;
using adapter_type = iterator_input_adapter<iterator_type>;
static adapter_type create(IteratorType first, IteratorType last)
{
return adapter_type(std::move(first), std::move(last));
}
};
template<typename T>
struct is_iterator_of_multibyte
{
using value_type = typename std::iterator_traits<T>::value_type;
enum
{
value = sizeof(value_type) > 1
};
};
template<typename IteratorType>
struct iterator_input_adapter_factory<IteratorType, enable_if_t<is_iterator_of_multibyte<IteratorType>::value>>
{
using iterator_type = IteratorType;
using char_type = typename std::iterator_traits<iterator_type>::value_type;
using base_adapter_type = iterator_input_adapter<iterator_type>;
using adapter_type = wide_string_input_adapter<base_adapter_type, char_type>;
static adapter_type create(IteratorType first, IteratorType last)
{
return adapter_type(base_adapter_type(std::move(first), std::move(last)));
}
};
// General purpose iterator-based input
template<typename IteratorType>
typename iterator_input_adapter_factory<IteratorType>::adapter_type input_adapter(IteratorType first, IteratorType last)
{
using factory_type = iterator_input_adapter_factory<IteratorType>;
return factory_type::create(first, last);
}
// Convenience shorthand from container to iterator
// Enables ADL on begin(container) and end(container)
// Encloses the using declarations in namespace for not to leak them to outside scope
namespace container_input_adapter_factory_impl
{
using std::begin;
using std::end;
template<typename ContainerType, typename Enable = void>
struct container_input_adapter_factory {};
template<typename ContainerType>
struct container_input_adapter_factory< ContainerType,
void_t<decltype(begin(std::declval<ContainerType>()), end(std::declval<ContainerType>()))>>
{
using adapter_type = decltype(input_adapter(begin(std::declval<ContainerType>()), end(std::declval<ContainerType>())));
static adapter_type create(const ContainerType& container)
{
return input_adapter(begin(container), end(container));
}
};
} // namespace container_input_adapter_factory_impl
template<typename ContainerType>
typename container_input_adapter_factory_impl::container_input_adapter_factory<ContainerType>::adapter_type input_adapter(const ContainerType& container)
{
return container_input_adapter_factory_impl::container_input_adapter_factory<ContainerType>::create(container);
}
#ifndef JSON_NO_IO
// Special cases with fast paths
inline file_input_adapter input_adapter(std::FILE* file)
{
return file_input_adapter(file);
}
inline input_stream_adapter input_adapter(std::istream& stream)
{
return input_stream_adapter(stream);
}
inline input_stream_adapter input_adapter(std::istream&& stream)
{
return input_stream_adapter(stream);
}
#endif // JSON_NO_IO
using contiguous_bytes_input_adapter = decltype(input_adapter(std::declval<const char*>(), std::declval<const char*>()));
// Null-delimited strings, and the like.
template < typename CharT,
typename std::enable_if <
std::is_pointer<CharT>::value&&
!std::is_array<CharT>::value&&
std::is_integral<typename std::remove_pointer<CharT>::type>::value&&
sizeof(typename std::remove_pointer<CharT>::type) == 1,
int >::type = 0 >
contiguous_bytes_input_adapter input_adapter(CharT b)
{
auto length = std::strlen(reinterpret_cast<const char*>(b));
const auto* ptr = reinterpret_cast<const char*>(b);
return input_adapter(ptr, ptr + length);
}
template<typename T, std::size_t N>
auto input_adapter(T (&array)[N]) -> decltype(input_adapter(array, array + N)) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
{
return input_adapter(array, array + N);
}
// This class only handles inputs of input_buffer_adapter type.
// It's required so that expressions like {ptr, len} can be implicitly cast
// to the correct adapter.
class span_input_adapter
{
public:
template < typename CharT,
typename std::enable_if <
std::is_pointer<CharT>::value&&
std::is_integral<typename std::remove_pointer<CharT>::type>::value&&
sizeof(typename std::remove_pointer<CharT>::type) == 1,
int >::type = 0 >
span_input_adapter(CharT b, std::size_t l)
: ia(reinterpret_cast<const char*>(b), reinterpret_cast<const char*>(b) + l) {}
template<class IteratorType,
typename std::enable_if<
std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
int>::type = 0>
span_input_adapter(IteratorType first, IteratorType last)
: ia(input_adapter(first, last)) {}
contiguous_bytes_input_adapter&& get()
{
return std::move(ia); // NOLINT(hicpp-move-const-arg,performance-move-const-arg)
}
private:
contiguous_bytes_input_adapter ia;
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,727 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef>
#include <string> // string
#include <utility> // move
#include <vector> // vector
#include <nlohmann/detail/exceptions.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/string_concat.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
/*!
@brief SAX interface
This class describes the SAX interface used by @ref nlohmann::json::sax_parse.
Each function is called in different situations while the input is parsed. The
boolean return value informs the parser whether to continue processing the
input.
*/
template<typename BasicJsonType>
struct json_sax
{
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using binary_t = typename BasicJsonType::binary_t;
/*!
@brief a null value was read
@return whether parsing should proceed
*/
virtual bool null() = 0;
/*!
@brief a boolean value was read
@param[in] val boolean value
@return whether parsing should proceed
*/
virtual bool boolean(bool val) = 0;
/*!
@brief an integer number was read
@param[in] val integer value
@return whether parsing should proceed
*/
virtual bool number_integer(number_integer_t val) = 0;
/*!
@brief an unsigned integer number was read
@param[in] val unsigned integer value
@return whether parsing should proceed
*/
virtual bool number_unsigned(number_unsigned_t val) = 0;
/*!
@brief a floating-point number was read
@param[in] val floating-point value
@param[in] s raw token value
@return whether parsing should proceed
*/
virtual bool number_float(number_float_t val, const string_t& s) = 0;
/*!
@brief a string value was read
@param[in] val string value
@return whether parsing should proceed
@note It is safe to move the passed string value.
*/
virtual bool string(string_t& val) = 0;
/*!
@brief a binary value was read
@param[in] val binary value
@return whether parsing should proceed
@note It is safe to move the passed binary value.
*/
virtual bool binary(binary_t& val) = 0;
/*!
@brief the beginning of an object was read
@param[in] elements number of object elements or -1 if unknown
@return whether parsing should proceed
@note binary formats may report the number of elements
*/
virtual bool start_object(std::size_t elements) = 0;
/*!
@brief an object key was read
@param[in] val object key
@return whether parsing should proceed
@note It is safe to move the passed string.
*/
virtual bool key(string_t& val) = 0;
/*!
@brief the end of an object was read
@return whether parsing should proceed
*/
virtual bool end_object() = 0;
/*!
@brief the beginning of an array was read
@param[in] elements number of array elements or -1 if unknown
@return whether parsing should proceed
@note binary formats may report the number of elements
*/
virtual bool start_array(std::size_t elements) = 0;
/*!
@brief the end of an array was read
@return whether parsing should proceed
*/
virtual bool end_array() = 0;
/*!
@brief a parse error occurred
@param[in] position the position in the input where the error occurs
@param[in] last_token the last read token
@param[in] ex an exception object describing the error
@return whether parsing should proceed (must return false)
*/
virtual bool parse_error(std::size_t position,
const std::string& last_token,
const detail::exception& ex) = 0;
json_sax() = default;
json_sax(const json_sax&) = default;
json_sax(json_sax&&) noexcept = default;
json_sax& operator=(const json_sax&) = default;
json_sax& operator=(json_sax&&) noexcept = default;
virtual ~json_sax() = default;
};
namespace detail
{
/*!
@brief SAX implementation to create a JSON value from SAX events
This class implements the @ref json_sax interface and processes the SAX events
to create a JSON value which makes it basically a DOM parser. The structure or
hierarchy of the JSON value is managed by the stack `ref_stack` which contains
a pointer to the respective array or object for each recursion depth.
After successful parsing, the value that is passed by reference to the
constructor contains the parsed value.
@tparam BasicJsonType the JSON type
*/
template<typename BasicJsonType>
class json_sax_dom_parser
{
public:
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using binary_t = typename BasicJsonType::binary_t;
/*!
@param[in,out] r reference to a JSON value that is manipulated while
parsing
@param[in] allow_exceptions_ whether parse errors yield exceptions
*/
explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true)
: root(r), allow_exceptions(allow_exceptions_)
{}
// make class move-only
json_sax_dom_parser(const json_sax_dom_parser&) = delete;
json_sax_dom_parser(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete;
json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
~json_sax_dom_parser() = default;
bool null()
{
handle_value(nullptr);
return true;
}
bool boolean(bool val)
{
handle_value(val);
return true;
}
bool number_integer(number_integer_t val)
{
handle_value(val);
return true;
}
bool number_unsigned(number_unsigned_t val)
{
handle_value(val);
return true;
}
bool number_float(number_float_t val, const string_t& /*unused*/)
{
handle_value(val);
return true;
}
bool string(string_t& val)
{
handle_value(val);
return true;
}
bool binary(binary_t& val)
{
handle_value(std::move(val));
return true;
}
bool start_object(std::size_t len)
{
ref_stack.push_back(handle_value(BasicJsonType::value_t::object));
if (JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back()));
}
return true;
}
bool key(string_t& val)
{
JSON_ASSERT(!ref_stack.empty());
JSON_ASSERT(ref_stack.back()->is_object());
// add null at given key and store the reference for later
object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val));
return true;
}
bool end_object()
{
JSON_ASSERT(!ref_stack.empty());
JSON_ASSERT(ref_stack.back()->is_object());
ref_stack.back()->set_parents();
ref_stack.pop_back();
return true;
}
bool start_array(std::size_t len)
{
ref_stack.push_back(handle_value(BasicJsonType::value_t::array));
if (JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back()));
}
return true;
}
bool end_array()
{
JSON_ASSERT(!ref_stack.empty());
JSON_ASSERT(ref_stack.back()->is_array());
ref_stack.back()->set_parents();
ref_stack.pop_back();
return true;
}
template<class Exception>
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
const Exception& ex)
{
errored = true;
static_cast<void>(ex);
if (allow_exceptions)
{
JSON_THROW(ex);
}
return false;
}
constexpr bool is_errored() const
{
return errored;
}
private:
/*!
@invariant If the ref stack is empty, then the passed value will be the new
root.
@invariant If the ref stack contains a value, then it is an array or an
object to which we can add elements
*/
template<typename Value>
JSON_HEDLEY_RETURNS_NON_NULL
BasicJsonType* handle_value(Value&& v)
{
if (ref_stack.empty())
{
root = BasicJsonType(std::forward<Value>(v));
return &root;
}
JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object());
if (ref_stack.back()->is_array())
{
ref_stack.back()->m_data.m_value.array->emplace_back(std::forward<Value>(v));
return &(ref_stack.back()->m_data.m_value.array->back());
}
JSON_ASSERT(ref_stack.back()->is_object());
JSON_ASSERT(object_element);
*object_element = BasicJsonType(std::forward<Value>(v));
return object_element;
}
/// the parsed JSON value
BasicJsonType& root;
/// stack to model hierarchy of values
std::vector<BasicJsonType*> ref_stack {};
/// helper to hold the reference for the next object element
BasicJsonType* object_element = nullptr;
/// whether a syntax error occurred
bool errored = false;
/// whether to throw exceptions in case of errors
const bool allow_exceptions = true;
};
template<typename BasicJsonType>
class json_sax_dom_callback_parser
{
public:
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using binary_t = typename BasicJsonType::binary_t;
using parser_callback_t = typename BasicJsonType::parser_callback_t;
using parse_event_t = typename BasicJsonType::parse_event_t;
json_sax_dom_callback_parser(BasicJsonType& r,
const parser_callback_t cb,
const bool allow_exceptions_ = true)
: root(r), callback(cb), allow_exceptions(allow_exceptions_)
{
keep_stack.push_back(true);
}
// make class move-only
json_sax_dom_callback_parser(const json_sax_dom_callback_parser&) = delete;
json_sax_dom_callback_parser(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete;
json_sax_dom_callback_parser& operator=(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
~json_sax_dom_callback_parser() = default;
bool null()
{
handle_value(nullptr);
return true;
}
bool boolean(bool val)
{
handle_value(val);
return true;
}
bool number_integer(number_integer_t val)
{
handle_value(val);
return true;
}
bool number_unsigned(number_unsigned_t val)
{
handle_value(val);
return true;
}
bool number_float(number_float_t val, const string_t& /*unused*/)
{
handle_value(val);
return true;
}
bool string(string_t& val)
{
handle_value(val);
return true;
}
bool binary(binary_t& val)
{
handle_value(std::move(val));
return true;
}
bool start_object(std::size_t len)
{
// check callback for object start
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::object_start, discarded);
keep_stack.push_back(keep);
auto val = handle_value(BasicJsonType::value_t::object, true);
ref_stack.push_back(val.second);
// check object limit
if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back()));
}
return true;
}
bool key(string_t& val)
{
BasicJsonType k = BasicJsonType(val);
// check callback for key
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::key, k);
key_keep_stack.push_back(keep);
// add discarded value at given key and store the reference for later
if (keep && ref_stack.back())
{
object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val) = discarded);
}
return true;
}
bool end_object()
{
if (ref_stack.back())
{
if (!callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back()))
{
// discard object
*ref_stack.back() = discarded;
}
else
{
ref_stack.back()->set_parents();
}
}
JSON_ASSERT(!ref_stack.empty());
JSON_ASSERT(!keep_stack.empty());
ref_stack.pop_back();
keep_stack.pop_back();
if (!ref_stack.empty() && ref_stack.back() && ref_stack.back()->is_structured())
{
// remove discarded value
for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it)
{
if (it->is_discarded())
{
ref_stack.back()->erase(it);
break;
}
}
}
return true;
}
bool start_array(std::size_t len)
{
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::array_start, discarded);
keep_stack.push_back(keep);
auto val = handle_value(BasicJsonType::value_t::array, true);
ref_stack.push_back(val.second);
// check array limit
if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back()));
}
return true;
}
bool end_array()
{
bool keep = true;
if (ref_stack.back())
{
keep = callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back());
if (keep)
{
ref_stack.back()->set_parents();
}
else
{
// discard array
*ref_stack.back() = discarded;
}
}
JSON_ASSERT(!ref_stack.empty());
JSON_ASSERT(!keep_stack.empty());
ref_stack.pop_back();
keep_stack.pop_back();
// remove discarded value
if (!keep && !ref_stack.empty() && ref_stack.back()->is_array())
{
ref_stack.back()->m_data.m_value.array->pop_back();
}
return true;
}
template<class Exception>
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
const Exception& ex)
{
errored = true;
static_cast<void>(ex);
if (allow_exceptions)
{
JSON_THROW(ex);
}
return false;
}
constexpr bool is_errored() const
{
return errored;
}
private:
/*!
@param[in] v value to add to the JSON value we build during parsing
@param[in] skip_callback whether we should skip calling the callback
function; this is required after start_array() and
start_object() SAX events, because otherwise we would call the
callback function with an empty array or object, respectively.
@invariant If the ref stack is empty, then the passed value will be the new
root.
@invariant If the ref stack contains a value, then it is an array or an
object to which we can add elements
@return pair of boolean (whether value should be kept) and pointer (to the
passed value in the ref_stack hierarchy; nullptr if not kept)
*/
template<typename Value>
std::pair<bool, BasicJsonType*> handle_value(Value&& v, const bool skip_callback = false)
{
JSON_ASSERT(!keep_stack.empty());
// do not handle this value if we know it would be added to a discarded
// container
if (!keep_stack.back())
{
return {false, nullptr};
}
// create value
auto value = BasicJsonType(std::forward<Value>(v));
// check callback
const bool keep = skip_callback || callback(static_cast<int>(ref_stack.size()), parse_event_t::value, value);
// do not handle this value if we just learnt it shall be discarded
if (!keep)
{
return {false, nullptr};
}
if (ref_stack.empty())
{
root = std::move(value);
return {true, & root};
}
// skip this value if we already decided to skip the parent
// (https://github.com/nlohmann/json/issues/971#issuecomment-413678360)
if (!ref_stack.back())
{
return {false, nullptr};
}
// we now only expect arrays and objects
JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object());
// array
if (ref_stack.back()->is_array())
{
ref_stack.back()->m_data.m_value.array->emplace_back(std::move(value));
return {true, & (ref_stack.back()->m_data.m_value.array->back())};
}
// object
JSON_ASSERT(ref_stack.back()->is_object());
// check if we should store an element for the current key
JSON_ASSERT(!key_keep_stack.empty());
const bool store_element = key_keep_stack.back();
key_keep_stack.pop_back();
if (!store_element)
{
return {false, nullptr};
}
JSON_ASSERT(object_element);
*object_element = std::move(value);
return {true, object_element};
}
/// the parsed JSON value
BasicJsonType& root;
/// stack to model hierarchy of values
std::vector<BasicJsonType*> ref_stack {};
/// stack to manage which values to keep
std::vector<bool> keep_stack {}; // NOLINT(readability-redundant-member-init)
/// stack to manage which object keys to keep
std::vector<bool> key_keep_stack {}; // NOLINT(readability-redundant-member-init)
/// helper to hold the reference for the next object element
BasicJsonType* object_element = nullptr;
/// whether a syntax error occurred
bool errored = false;
/// callback function
const parser_callback_t callback = nullptr;
/// whether to throw exceptions in case of errors
const bool allow_exceptions = true;
/// a discarded value for the callback
BasicJsonType discarded = BasicJsonType::value_t::discarded;
};
template<typename BasicJsonType>
class json_sax_acceptor
{
public:
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using binary_t = typename BasicJsonType::binary_t;
bool null()
{
return true;
}
bool boolean(bool /*unused*/)
{
return true;
}
bool number_integer(number_integer_t /*unused*/)
{
return true;
}
bool number_unsigned(number_unsigned_t /*unused*/)
{
return true;
}
bool number_float(number_float_t /*unused*/, const string_t& /*unused*/)
{
return true;
}
bool string(string_t& /*unused*/)
{
return true;
}
bool binary(binary_t& /*unused*/)
{
return true;
}
bool start_object(std::size_t /*unused*/ = static_cast<std::size_t>(-1))
{
return true;
}
bool key(string_t& /*unused*/)
{
return true;
}
bool end_object()
{
return true;
}
bool start_array(std::size_t /*unused*/ = static_cast<std::size_t>(-1))
{
return true;
}
bool end_array()
{
return true;
}
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/)
{
return false;
}
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,519 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cmath> // isfinite
#include <cstdint> // uint8_t
#include <functional> // function
#include <string> // string
#include <utility> // move
#include <vector> // vector
#include <nlohmann/detail/exceptions.hpp>
#include <nlohmann/detail/input/input_adapters.hpp>
#include <nlohmann/detail/input/json_sax.hpp>
#include <nlohmann/detail/input/lexer.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/is_sax.hpp>
#include <nlohmann/detail/string_concat.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
////////////
// parser //
////////////
enum class parse_event_t : std::uint8_t
{
/// the parser read `{` and started to process a JSON object
object_start,
/// the parser read `}` and finished processing a JSON object
object_end,
/// the parser read `[` and started to process a JSON array
array_start,
/// the parser read `]` and finished processing a JSON array
array_end,
/// the parser read a key of a value in an object
key,
/// the parser finished reading a JSON value
value
};
template<typename BasicJsonType>
using parser_callback_t =
std::function<bool(int /*depth*/, parse_event_t /*event*/, BasicJsonType& /*parsed*/)>;
/*!
@brief syntax analysis
This class implements a recursive descent parser.
*/
template<typename BasicJsonType, typename InputAdapterType>
class parser
{
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using lexer_t = lexer<BasicJsonType, InputAdapterType>;
using token_type = typename lexer_t::token_type;
public:
/// a parser reading from an input adapter
explicit parser(InputAdapterType&& adapter,
const parser_callback_t<BasicJsonType> cb = nullptr,
const bool allow_exceptions_ = true,
const bool skip_comments = false)
: callback(cb)
, m_lexer(std::move(adapter), skip_comments)
, allow_exceptions(allow_exceptions_)
{
// read first token
get_token();
}
/*!
@brief public parser interface
@param[in] strict whether to expect the last token to be EOF
@param[in,out] result parsed JSON value
@throw parse_error.101 in case of an unexpected token
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
*/
void parse(const bool strict, BasicJsonType& result)
{
if (callback)
{
json_sax_dom_callback_parser<BasicJsonType> sdp(result, callback, allow_exceptions);
sax_parse_internal(&sdp);
// in strict mode, input must be completely read
if (strict && (get_token() != token_type::end_of_input))
{
sdp.parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::end_of_input, "value"), nullptr));
}
// in case of an error, return discarded value
if (sdp.is_errored())
{
result = value_t::discarded;
return;
}
// set top-level value to null if it was discarded by the callback
// function
if (result.is_discarded())
{
result = nullptr;
}
}
else
{
json_sax_dom_parser<BasicJsonType> sdp(result, allow_exceptions);
sax_parse_internal(&sdp);
// in strict mode, input must be completely read
if (strict && (get_token() != token_type::end_of_input))
{
sdp.parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"), nullptr));
}
// in case of an error, return discarded value
if (sdp.is_errored())
{
result = value_t::discarded;
return;
}
}
result.assert_invariant();
}
/*!
@brief public accept interface
@param[in] strict whether to expect the last token to be EOF
@return whether the input is a proper JSON text
*/
bool accept(const bool strict = true)
{
json_sax_acceptor<BasicJsonType> sax_acceptor;
return sax_parse(&sax_acceptor, strict);
}
template<typename SAX>
JSON_HEDLEY_NON_NULL(2)
bool sax_parse(SAX* sax, const bool strict = true)
{
(void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
const bool result = sax_parse_internal(sax);
// strict mode: next byte must be EOF
if (result && strict && (get_token() != token_type::end_of_input))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"), nullptr));
}
return result;
}
private:
template<typename SAX>
JSON_HEDLEY_NON_NULL(2)
bool sax_parse_internal(SAX* sax)
{
// stack to remember the hierarchy of structured values we are parsing
// true = array; false = object
std::vector<bool> states;
// value to avoid a goto (see comment where set to true)
bool skip_to_state_evaluation = false;
while (true)
{
if (!skip_to_state_evaluation)
{
// invariant: get_token() was called before each iteration
switch (last_token)
{
case token_type::begin_object:
{
if (JSON_HEDLEY_UNLIKELY(!sax->start_object(static_cast<std::size_t>(-1))))
{
return false;
}
// closing } -> we are done
if (get_token() == token_type::end_object)
{
if (JSON_HEDLEY_UNLIKELY(!sax->end_object()))
{
return false;
}
break;
}
// parse key
if (JSON_HEDLEY_UNLIKELY(last_token != token_type::value_string))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"), nullptr));
}
if (JSON_HEDLEY_UNLIKELY(!sax->key(m_lexer.get_string())))
{
return false;
}
// parse separator (:)
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"), nullptr));
}
// remember we are now inside an object
states.push_back(false);
// parse values
get_token();
continue;
}
case token_type::begin_array:
{
if (JSON_HEDLEY_UNLIKELY(!sax->start_array(static_cast<std::size_t>(-1))))
{
return false;
}
// closing ] -> we are done
if (get_token() == token_type::end_array)
{
if (JSON_HEDLEY_UNLIKELY(!sax->end_array()))
{
return false;
}
break;
}
// remember we are now inside an array
states.push_back(true);
// parse values (no need to call get_token)
continue;
}
case token_type::value_float:
{
const auto res = m_lexer.get_number_float();
if (JSON_HEDLEY_UNLIKELY(!std::isfinite(res)))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
out_of_range::create(406, concat("number overflow parsing '", m_lexer.get_token_string(), '\''), nullptr));
}
if (JSON_HEDLEY_UNLIKELY(!sax->number_float(res, m_lexer.get_string())))
{
return false;
}
break;
}
case token_type::literal_false:
{
if (JSON_HEDLEY_UNLIKELY(!sax->boolean(false)))
{
return false;
}
break;
}
case token_type::literal_null:
{
if (JSON_HEDLEY_UNLIKELY(!sax->null()))
{
return false;
}
break;
}
case token_type::literal_true:
{
if (JSON_HEDLEY_UNLIKELY(!sax->boolean(true)))
{
return false;
}
break;
}
case token_type::value_integer:
{
if (JSON_HEDLEY_UNLIKELY(!sax->number_integer(m_lexer.get_number_integer())))
{
return false;
}
break;
}
case token_type::value_string:
{
if (JSON_HEDLEY_UNLIKELY(!sax->string(m_lexer.get_string())))
{
return false;
}
break;
}
case token_type::value_unsigned:
{
if (JSON_HEDLEY_UNLIKELY(!sax->number_unsigned(m_lexer.get_number_unsigned())))
{
return false;
}
break;
}
case token_type::parse_error:
{
// using "uninitialized" to avoid "expected" message
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::uninitialized, "value"), nullptr));
}
case token_type::end_of_input:
{
if (JSON_HEDLEY_UNLIKELY(m_lexer.get_position().chars_read_total == 1))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
"attempting to parse an empty input; check that your input string or stream contains the expected JSON", nullptr));
}
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"), nullptr));
}
case token_type::uninitialized:
case token_type::end_array:
case token_type::end_object:
case token_type::name_separator:
case token_type::value_separator:
case token_type::literal_or_value:
default: // the last token was unexpected
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"), nullptr));
}
}
}
else
{
skip_to_state_evaluation = false;
}
// we reached this line after we successfully parsed a value
if (states.empty())
{
// empty stack: we reached the end of the hierarchy: done
return true;
}
if (states.back()) // array
{
// comma -> next value
if (get_token() == token_type::value_separator)
{
// parse a new value
get_token();
continue;
}
// closing ]
if (JSON_HEDLEY_LIKELY(last_token == token_type::end_array))
{
if (JSON_HEDLEY_UNLIKELY(!sax->end_array()))
{
return false;
}
// We are done with this array. Before we can parse a
// new value, we need to evaluate the new state first.
// By setting skip_to_state_evaluation to false, we
// are effectively jumping to the beginning of this if.
JSON_ASSERT(!states.empty());
states.pop_back();
skip_to_state_evaluation = true;
continue;
}
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_array, "array"), nullptr));
}
// states.back() is false -> object
// comma -> next value
if (get_token() == token_type::value_separator)
{
// parse key
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::value_string))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"), nullptr));
}
if (JSON_HEDLEY_UNLIKELY(!sax->key(m_lexer.get_string())))
{
return false;
}
// parse separator (:)
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"), nullptr));
}
// parse values
get_token();
continue;
}
// closing }
if (JSON_HEDLEY_LIKELY(last_token == token_type::end_object))
{
if (JSON_HEDLEY_UNLIKELY(!sax->end_object()))
{
return false;
}
// We are done with this object. Before we can parse a
// new value, we need to evaluate the new state first.
// By setting skip_to_state_evaluation to false, we
// are effectively jumping to the beginning of this if.
JSON_ASSERT(!states.empty());
states.pop_back();
skip_to_state_evaluation = true;
continue;
}
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_object, "object"), nullptr));
}
}
/// get next token from lexer
token_type get_token()
{
return last_token = m_lexer.scan();
}
std::string exception_message(const token_type expected, const std::string& context)
{
std::string error_msg = "syntax error ";
if (!context.empty())
{
error_msg += concat("while parsing ", context, ' ');
}
error_msg += "- ";
if (last_token == token_type::parse_error)
{
error_msg += concat(m_lexer.get_error_message(), "; last read: '",
m_lexer.get_token_string(), '\'');
}
else
{
error_msg += concat("unexpected ", lexer_t::token_type_name(last_token));
}
if (expected != token_type::uninitialized)
{
error_msg += concat("; expected ", lexer_t::token_type_name(expected));
}
return error_msg;
}
private:
/// callback function
const parser_callback_t<BasicJsonType> callback = nullptr;
/// the type of the last read token
token_type last_token = token_type::uninitialized;
/// the lexer
lexer_t m_lexer;
/// whether to throw exceptions in case of errors
const bool allow_exceptions = true;
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,37 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef> // size_t
#include <nlohmann/detail/abi_macros.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
/// struct to capture the start position of the current token
struct position_t
{
/// the total number of characters read
std::size_t chars_read_total = 0;
/// the number of characters read in the current line
std::size_t chars_read_current_line = 0;
/// the number of lines read
std::size_t lines_read = 0;
/// conversion to size_t to preserve SAX interface
constexpr operator size_t() const
{
return chars_read_total;
}
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,35 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/iterators/primitive_iterator.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
/*!
@brief an iterator value
@note This structure could easily be a union, but MSVC currently does not allow
unions members with complex constructors, see https://github.com/nlohmann/json/pull/105.
*/
template<typename BasicJsonType> struct internal_iterator
{
/// iterator for JSON objects
typename BasicJsonType::object_t::iterator object_iterator {};
/// iterator for JSON arrays
typename BasicJsonType::array_t::iterator array_iterator {};
/// generic iterator for all other types
primitive_iterator_t primitive_iterator {};
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,751 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <iterator> // iterator, random_access_iterator_tag, bidirectional_iterator_tag, advance, next
#include <type_traits> // conditional, is_const, remove_const
#include <nlohmann/detail/exceptions.hpp>
#include <nlohmann/detail/iterators/internal_iterator.hpp>
#include <nlohmann/detail/iterators/primitive_iterator.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/cpp_future.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
// forward declare, to be able to friend it later on
template<typename IteratorType> class iteration_proxy;
template<typename IteratorType> class iteration_proxy_value;
/*!
@brief a template for a bidirectional iterator for the @ref basic_json class
This class implements a both iterators (iterator and const_iterator) for the
@ref basic_json class.
@note An iterator is called *initialized* when a pointer to a JSON value has
been set (e.g., by a constructor or a copy assignment). If the iterator is
default-constructed, it is *uninitialized* and most methods are undefined.
**The library uses assertions to detect calls on uninitialized iterators.**
@requirement The class satisfies the following concept requirements:
-
[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
The iterator that can be moved can be moved in both directions (i.e.
incremented and decremented).
@since version 1.0.0, simplified in version 2.0.9, change to bidirectional
iterators in version 3.0.0 (see https://github.com/nlohmann/json/issues/593)
*/
template<typename BasicJsonType>
class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-special-member-functions)
{
/// the iterator with BasicJsonType of different const-ness
using other_iter_impl = iter_impl<typename std::conditional<std::is_const<BasicJsonType>::value, typename std::remove_const<BasicJsonType>::type, const BasicJsonType>::type>;
/// allow basic_json to access private members
friend other_iter_impl;
friend BasicJsonType;
friend iteration_proxy<iter_impl>;
friend iteration_proxy_value<iter_impl>;
using object_t = typename BasicJsonType::object_t;
using array_t = typename BasicJsonType::array_t;
// make sure BasicJsonType is basic_json or const basic_json
static_assert(is_basic_json<typename std::remove_const<BasicJsonType>::type>::value,
"iter_impl only accepts (const) basic_json");
// superficial check for the LegacyBidirectionalIterator named requirement
static_assert(std::is_base_of<std::bidirectional_iterator_tag, std::bidirectional_iterator_tag>::value
&& std::is_base_of<std::bidirectional_iterator_tag, typename std::iterator_traits<typename array_t::iterator>::iterator_category>::value,
"basic_json iterator assumes array and object type iterators satisfy the LegacyBidirectionalIterator named requirement.");
public:
/// The std::iterator class template (used as a base class to provide typedefs) is deprecated in C++17.
/// The C++ Standard has never required user-defined iterators to derive from std::iterator.
/// A user-defined iterator should provide publicly accessible typedefs named
/// iterator_category, value_type, difference_type, pointer, and reference.
/// Note that value_type is required to be non-const, even for constant iterators.
using iterator_category = std::bidirectional_iterator_tag;
/// the type of the values when the iterator is dereferenced
using value_type = typename BasicJsonType::value_type;
/// a type to represent differences between iterators
using difference_type = typename BasicJsonType::difference_type;
/// defines a pointer to the type iterated over (value_type)
using pointer = typename std::conditional<std::is_const<BasicJsonType>::value,
typename BasicJsonType::const_pointer,
typename BasicJsonType::pointer>::type;
/// defines a reference to the type iterated over (value_type)
using reference =
typename std::conditional<std::is_const<BasicJsonType>::value,
typename BasicJsonType::const_reference,
typename BasicJsonType::reference>::type;
iter_impl() = default;
~iter_impl() = default;
iter_impl(iter_impl&&) noexcept = default;
iter_impl& operator=(iter_impl&&) noexcept = default;
/*!
@brief constructor for a given JSON instance
@param[in] object pointer to a JSON object for this iterator
@pre object != nullptr
@post The iterator is initialized; i.e. `m_object != nullptr`.
*/
explicit iter_impl(pointer object) noexcept : m_object(object)
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
m_it.object_iterator = typename object_t::iterator();
break;
}
case value_t::array:
{
m_it.array_iterator = typename array_t::iterator();
break;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
m_it.primitive_iterator = primitive_iterator_t();
break;
}
}
}
/*!
@note The conventional copy constructor and copy assignment are implicitly
defined. Combined with the following converting constructor and
assignment, they support: (1) copy from iterator to iterator, (2)
copy from const iterator to const iterator, and (3) conversion from
iterator to const iterator. However conversion from const iterator
to iterator is not defined.
*/
/*!
@brief const copy constructor
@param[in] other const iterator to copy from
@note This copy constructor had to be defined explicitly to circumvent a bug
occurring on msvc v19.0 compiler (VS 2015) debug build. For more
information refer to: https://github.com/nlohmann/json/issues/1608
*/
iter_impl(const iter_impl<const BasicJsonType>& other) noexcept
: m_object(other.m_object), m_it(other.m_it)
{}
/*!
@brief converting assignment
@param[in] other const iterator to copy from
@return const/non-const iterator
@note It is not checked whether @a other is initialized.
*/
iter_impl& operator=(const iter_impl<const BasicJsonType>& other) noexcept
{
if (&other != this)
{
m_object = other.m_object;
m_it = other.m_it;
}
return *this;
}
/*!
@brief converting constructor
@param[in] other non-const iterator to copy from
@note It is not checked whether @a other is initialized.
*/
iter_impl(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
: m_object(other.m_object), m_it(other.m_it)
{}
/*!
@brief converting assignment
@param[in] other non-const iterator to copy from
@return const/non-const iterator
@note It is not checked whether @a other is initialized.
*/
iter_impl& operator=(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept // NOLINT(cert-oop54-cpp)
{
m_object = other.m_object;
m_it = other.m_it;
return *this;
}
JSON_PRIVATE_UNLESS_TESTED:
/*!
@brief set the iterator to the first value
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
void set_begin() noexcept
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
m_it.object_iterator = m_object->m_data.m_value.object->begin();
break;
}
case value_t::array:
{
m_it.array_iterator = m_object->m_data.m_value.array->begin();
break;
}
case value_t::null:
{
// set to end so begin()==end() is true: null is empty
m_it.primitive_iterator.set_end();
break;
}
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
m_it.primitive_iterator.set_begin();
break;
}
}
}
/*!
@brief set the iterator past the last value
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
void set_end() noexcept
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
m_it.object_iterator = m_object->m_data.m_value.object->end();
break;
}
case value_t::array:
{
m_it.array_iterator = m_object->m_data.m_value.array->end();
break;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
m_it.primitive_iterator.set_end();
break;
}
}
}
public:
/*!
@brief return a reference to the value pointed to by the iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference operator*() const
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
JSON_ASSERT(m_it.object_iterator != m_object->m_data.m_value.object->end());
return m_it.object_iterator->second;
}
case value_t::array:
{
JSON_ASSERT(m_it.array_iterator != m_object->m_data.m_value.array->end());
return *m_it.array_iterator;
}
case value_t::null:
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
{
return *m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
}
}
}
/*!
@brief dereference the iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
pointer operator->() const
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
JSON_ASSERT(m_it.object_iterator != m_object->m_data.m_value.object->end());
return &(m_it.object_iterator->second);
}
case value_t::array:
{
JSON_ASSERT(m_it.array_iterator != m_object->m_data.m_value.array->end());
return &*m_it.array_iterator;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
{
return m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
}
}
}
/*!
@brief post-increment (it++)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator++(int)& // NOLINT(cert-dcl21-cpp)
{
auto result = *this;
++(*this);
return result;
}
/*!
@brief pre-increment (++it)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator++()
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
std::advance(m_it.object_iterator, 1);
break;
}
case value_t::array:
{
std::advance(m_it.array_iterator, 1);
break;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
++m_it.primitive_iterator;
break;
}
}
return *this;
}
/*!
@brief post-decrement (it--)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator--(int)& // NOLINT(cert-dcl21-cpp)
{
auto result = *this;
--(*this);
return result;
}
/*!
@brief pre-decrement (--it)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator--()
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
std::advance(m_it.object_iterator, -1);
break;
}
case value_t::array:
{
std::advance(m_it.array_iterator, -1);
break;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
--m_it.primitive_iterator;
break;
}
}
return *this;
}
/*!
@brief comparison: equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
template < typename IterImpl, detail::enable_if_t < (std::is_same<IterImpl, iter_impl>::value || std::is_same<IterImpl, other_iter_impl>::value), std::nullptr_t > = nullptr >
bool operator==(const IterImpl& other) const
{
// if objects are not the same, the comparison is undefined
if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
{
JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers", m_object));
}
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
return (m_it.object_iterator == other.m_it.object_iterator);
case value_t::array:
return (m_it.array_iterator == other.m_it.array_iterator);
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
return (m_it.primitive_iterator == other.m_it.primitive_iterator);
}
}
/*!
@brief comparison: not equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
template < typename IterImpl, detail::enable_if_t < (std::is_same<IterImpl, iter_impl>::value || std::is_same<IterImpl, other_iter_impl>::value), std::nullptr_t > = nullptr >
bool operator!=(const IterImpl& other) const
{
return !operator==(other);
}
/*!
@brief comparison: smaller
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator<(const iter_impl& other) const
{
// if objects are not the same, the comparison is undefined
if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
{
JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers", m_object));
}
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(213, "cannot compare order of object iterators", m_object));
case value_t::array:
return (m_it.array_iterator < other.m_it.array_iterator);
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
return (m_it.primitive_iterator < other.m_it.primitive_iterator);
}
}
/*!
@brief comparison: less than or equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator<=(const iter_impl& other) const
{
return !other.operator < (*this);
}
/*!
@brief comparison: greater than
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator>(const iter_impl& other) const
{
return !operator<=(other);
}
/*!
@brief comparison: greater than or equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator>=(const iter_impl& other) const
{
return !operator<(other);
}
/*!
@brief add to iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator+=(difference_type i)
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators", m_object));
case value_t::array:
{
std::advance(m_it.array_iterator, i);
break;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
m_it.primitive_iterator += i;
break;
}
}
return *this;
}
/*!
@brief subtract from iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator-=(difference_type i)
{
return operator+=(-i);
}
/*!
@brief add to iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator+(difference_type i) const
{
auto result = *this;
result += i;
return result;
}
/*!
@brief addition of distance and iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
friend iter_impl operator+(difference_type i, const iter_impl& it)
{
auto result = it;
result += i;
return result;
}
/*!
@brief subtract from iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator-(difference_type i) const
{
auto result = *this;
result -= i;
return result;
}
/*!
@brief return difference
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
difference_type operator-(const iter_impl& other) const
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators", m_object));
case value_t::array:
return m_it.array_iterator - other.m_it.array_iterator;
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
return m_it.primitive_iterator - other.m_it.primitive_iterator;
}
}
/*!
@brief access to successor
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference operator[](difference_type n) const
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(208, "cannot use operator[] for object iterators", m_object));
case value_t::array:
return *std::next(m_it.array_iterator, n);
case value_t::null:
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.get_value() == -n))
{
return *m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
}
}
}
/*!
@brief return the key of an object iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const typename object_t::key_type& key() const
{
JSON_ASSERT(m_object != nullptr);
if (JSON_HEDLEY_LIKELY(m_object->is_object()))
{
return m_it.object_iterator->first;
}
JSON_THROW(invalid_iterator::create(207, "cannot use key() for non-object iterators", m_object));
}
/*!
@brief return the value of an iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference value() const
{
return operator*();
}
JSON_PRIVATE_UNLESS_TESTED:
/// associated JSON instance
pointer m_object = nullptr;
/// the actual iterator of the associated instance
internal_iterator<typename std::remove_const<BasicJsonType>::type> m_it {};
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,242 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef> // size_t
#include <iterator> // input_iterator_tag
#include <string> // string, to_string
#include <tuple> // tuple_size, get, tuple_element
#include <utility> // move
#if JSON_HAS_RANGES
#include <ranges> // enable_borrowed_range
#endif
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
template<typename string_type>
void int_to_string( string_type& target, std::size_t value )
{
// For ADL
using std::to_string;
target = to_string(value);
}
template<typename IteratorType> class iteration_proxy_value
{
public:
using difference_type = std::ptrdiff_t;
using value_type = iteration_proxy_value;
using pointer = value_type *;
using reference = value_type &;
using iterator_category = std::input_iterator_tag;
using string_type = typename std::remove_cv< typename std::remove_reference<decltype( std::declval<IteratorType>().key() ) >::type >::type;
private:
/// the iterator
IteratorType anchor{};
/// an index for arrays (used to create key names)
std::size_t array_index = 0;
/// last stringified array index
mutable std::size_t array_index_last = 0;
/// a string representation of the array index
mutable string_type array_index_str = "0";
/// an empty string (to return a reference for primitive values)
string_type empty_str{};
public:
explicit iteration_proxy_value() = default;
explicit iteration_proxy_value(IteratorType it, std::size_t array_index_ = 0)
noexcept(std::is_nothrow_move_constructible<IteratorType>::value
&& std::is_nothrow_default_constructible<string_type>::value)
: anchor(std::move(it))
, array_index(array_index_)
{}
iteration_proxy_value(iteration_proxy_value const&) = default;
iteration_proxy_value& operator=(iteration_proxy_value const&) = default;
// older GCCs are a bit fussy and require explicit noexcept specifiers on defaulted functions
iteration_proxy_value(iteration_proxy_value&&)
noexcept(std::is_nothrow_move_constructible<IteratorType>::value
&& std::is_nothrow_move_constructible<string_type>::value) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor,cppcoreguidelines-noexcept-move-operations)
iteration_proxy_value& operator=(iteration_proxy_value&&)
noexcept(std::is_nothrow_move_assignable<IteratorType>::value
&& std::is_nothrow_move_assignable<string_type>::value) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor,cppcoreguidelines-noexcept-move-operations)
~iteration_proxy_value() = default;
/// dereference operator (needed for range-based for)
const iteration_proxy_value& operator*() const
{
return *this;
}
/// increment operator (needed for range-based for)
iteration_proxy_value& operator++()
{
++anchor;
++array_index;
return *this;
}
iteration_proxy_value operator++(int)& // NOLINT(cert-dcl21-cpp)
{
auto tmp = iteration_proxy_value(anchor, array_index);
++anchor;
++array_index;
return tmp;
}
/// equality operator (needed for InputIterator)
bool operator==(const iteration_proxy_value& o) const
{
return anchor == o.anchor;
}
/// inequality operator (needed for range-based for)
bool operator!=(const iteration_proxy_value& o) const
{
return anchor != o.anchor;
}
/// return key of the iterator
const string_type& key() const
{
JSON_ASSERT(anchor.m_object != nullptr);
switch (anchor.m_object->type())
{
// use integer array index as key
case value_t::array:
{
if (array_index != array_index_last)
{
int_to_string( array_index_str, array_index );
array_index_last = array_index;
}
return array_index_str;
}
// use key from the object
case value_t::object:
return anchor.key();
// use an empty key for all primitive types
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
return empty_str;
}
}
/// return value of the iterator
typename IteratorType::reference value() const
{
return anchor.value();
}
};
/// proxy class for the items() function
template<typename IteratorType> class iteration_proxy
{
private:
/// the container to iterate
typename IteratorType::pointer container = nullptr;
public:
explicit iteration_proxy() = default;
/// construct iteration proxy from a container
explicit iteration_proxy(typename IteratorType::reference cont) noexcept
: container(&cont) {}
iteration_proxy(iteration_proxy const&) = default;
iteration_proxy& operator=(iteration_proxy const&) = default;
iteration_proxy(iteration_proxy&&) noexcept = default;
iteration_proxy& operator=(iteration_proxy&&) noexcept = default;
~iteration_proxy() = default;
/// return iterator begin (needed for range-based for)
iteration_proxy_value<IteratorType> begin() const noexcept
{
return iteration_proxy_value<IteratorType>(container->begin());
}
/// return iterator end (needed for range-based for)
iteration_proxy_value<IteratorType> end() const noexcept
{
return iteration_proxy_value<IteratorType>(container->end());
}
};
// Structured Bindings Support
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
template<std::size_t N, typename IteratorType, enable_if_t<N == 0, int> = 0>
auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.key())
{
return i.key();
}
// Structured Bindings Support
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
template<std::size_t N, typename IteratorType, enable_if_t<N == 1, int> = 0>
auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.value())
{
return i.value();
}
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END
// The Addition to the STD Namespace is required to add
// Structured Bindings Support to the iteration_proxy_value class
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
namespace std
{
#if defined(__clang__)
// Fix: https://github.com/nlohmann/json/issues/1401
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmismatched-tags"
#endif
template<typename IteratorType>
class tuple_size<::nlohmann::detail::iteration_proxy_value<IteratorType>> // NOLINT(cert-dcl58-cpp)
: public std::integral_constant<std::size_t, 2> {};
template<std::size_t N, typename IteratorType>
class tuple_element<N, ::nlohmann::detail::iteration_proxy_value<IteratorType >> // NOLINT(cert-dcl58-cpp)
{
public:
using type = decltype(
get<N>(std::declval <
::nlohmann::detail::iteration_proxy_value<IteratorType >> ()));
};
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
} // namespace std
#if JSON_HAS_RANGES
template <typename IteratorType>
inline constexpr bool ::std::ranges::enable_borrowed_range<::nlohmann::detail::iteration_proxy<IteratorType>> = true;
#endif

View File

@@ -0,0 +1,61 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <iterator> // random_access_iterator_tag
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/meta/void_t.hpp>
#include <nlohmann/detail/meta/cpp_future.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
template<typename It, typename = void>
struct iterator_types {};
template<typename It>
struct iterator_types <
It,
void_t<typename It::difference_type, typename It::value_type, typename It::pointer,
typename It::reference, typename It::iterator_category >>
{
using difference_type = typename It::difference_type;
using value_type = typename It::value_type;
using pointer = typename It::pointer;
using reference = typename It::reference;
using iterator_category = typename It::iterator_category;
};
// This is required as some compilers implement std::iterator_traits in a way that
// doesn't work with SFINAE. See https://github.com/nlohmann/json/issues/1341.
template<typename T, typename = void>
struct iterator_traits
{
};
template<typename T>
struct iterator_traits < T, enable_if_t < !std::is_pointer<T>::value >>
: iterator_types<T>
{
};
template<typename T>
struct iterator_traits<T*, enable_if_t<std::is_object<T>::value>>
{
using iterator_category = std::random_access_iterator_tag;
using value_type = T;
using difference_type = ptrdiff_t;
using pointer = T*;
using reference = T&;
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,130 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef> // ptrdiff_t
#include <iterator> // reverse_iterator
#include <utility> // declval
#include <nlohmann/detail/abi_macros.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
//////////////////////
// reverse_iterator //
//////////////////////
/*!
@brief a template for a reverse iterator class
@tparam Base the base iterator type to reverse. Valid types are @ref
iterator (to create @ref reverse_iterator) and @ref const_iterator (to
create @ref const_reverse_iterator).
@requirement The class satisfies the following concept requirements:
-
[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
The iterator that can be moved can be moved in both directions (i.e.
incremented and decremented).
- [OutputIterator](https://en.cppreference.com/w/cpp/named_req/OutputIterator):
It is possible to write to the pointed-to element (only if @a Base is
@ref iterator).
@since version 1.0.0
*/
template<typename Base>
class json_reverse_iterator : public std::reverse_iterator<Base>
{
public:
using difference_type = std::ptrdiff_t;
/// shortcut to the reverse iterator adapter
using base_iterator = std::reverse_iterator<Base>;
/// the reference type for the pointed-to element
using reference = typename Base::reference;
/// create reverse iterator from iterator
explicit json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
: base_iterator(it) {}
/// create reverse iterator from base class
explicit json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {}
/// post-increment (it++)
json_reverse_iterator operator++(int)& // NOLINT(cert-dcl21-cpp)
{
return static_cast<json_reverse_iterator>(base_iterator::operator++(1));
}
/// pre-increment (++it)
json_reverse_iterator& operator++()
{
return static_cast<json_reverse_iterator&>(base_iterator::operator++());
}
/// post-decrement (it--)
json_reverse_iterator operator--(int)& // NOLINT(cert-dcl21-cpp)
{
return static_cast<json_reverse_iterator>(base_iterator::operator--(1));
}
/// pre-decrement (--it)
json_reverse_iterator& operator--()
{
return static_cast<json_reverse_iterator&>(base_iterator::operator--());
}
/// add to iterator
json_reverse_iterator& operator+=(difference_type i)
{
return static_cast<json_reverse_iterator&>(base_iterator::operator+=(i));
}
/// add to iterator
json_reverse_iterator operator+(difference_type i) const
{
return static_cast<json_reverse_iterator>(base_iterator::operator+(i));
}
/// subtract from iterator
json_reverse_iterator operator-(difference_type i) const
{
return static_cast<json_reverse_iterator>(base_iterator::operator-(i));
}
/// return difference
difference_type operator-(const json_reverse_iterator& other) const
{
return base_iterator(*this) - base_iterator(other);
}
/// access to successor
reference operator[](difference_type n) const
{
return *(this->operator+(n));
}
/// return the key of an object iterator
auto key() const -> decltype(std::declval<Base>().key())
{
auto it = --this->base();
return it.key();
}
/// return the value of an iterator
reference value() const
{
auto it = --this->base();
return it.operator * ();
}
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,132 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef> // ptrdiff_t
#include <limits> // numeric_limits
#include <nlohmann/detail/macro_scope.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
/*
@brief an iterator for primitive JSON types
This class models an iterator for primitive JSON types (boolean, number,
string). It's only purpose is to allow the iterator/const_iterator classes
to "iterate" over primitive values. Internally, the iterator is modeled by
a `difference_type` variable. Value begin_value (`0`) models the begin,
end_value (`1`) models past the end.
*/
class primitive_iterator_t
{
private:
using difference_type = std::ptrdiff_t;
static constexpr difference_type begin_value = 0;
static constexpr difference_type end_value = begin_value + 1;
JSON_PRIVATE_UNLESS_TESTED:
/// iterator as signed integer type
difference_type m_it = (std::numeric_limits<std::ptrdiff_t>::min)();
public:
constexpr difference_type get_value() const noexcept
{
return m_it;
}
/// set iterator to a defined beginning
void set_begin() noexcept
{
m_it = begin_value;
}
/// set iterator to a defined past the end
void set_end() noexcept
{
m_it = end_value;
}
/// return whether the iterator can be dereferenced
constexpr bool is_begin() const noexcept
{
return m_it == begin_value;
}
/// return whether the iterator is at end
constexpr bool is_end() const noexcept
{
return m_it == end_value;
}
friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it == rhs.m_it;
}
friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it < rhs.m_it;
}
primitive_iterator_t operator+(difference_type n) noexcept
{
auto result = *this;
result += n;
return result;
}
friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it - rhs.m_it;
}
primitive_iterator_t& operator++() noexcept
{
++m_it;
return *this;
}
primitive_iterator_t operator++(int)& noexcept // NOLINT(cert-dcl21-cpp)
{
auto result = *this;
++m_it;
return result;
}
primitive_iterator_t& operator--() noexcept
{
--m_it;
return *this;
}
primitive_iterator_t operator--(int)& noexcept // NOLINT(cert-dcl21-cpp)
{
auto result = *this;
--m_it;
return result;
}
primitive_iterator_t& operator+=(difference_type n) noexcept
{
m_it += n;
return *this;
}
primitive_iterator_t& operator-=(difference_type n) noexcept
{
m_it -= n;
return *this;
}
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

Some files were not shown because too many files have changed in this diff Show More