Compare commits
1 Commits
da357ac5ba
...
cuda
Author | SHA1 | Date | |
---|---|---|---|
baa631dd66
|
@@ -1,10 +0,0 @@
|
||||
# .clang-format
|
||||
---
|
||||
BasedOnStyle: LLVM
|
||||
AccessModifierOffset: -4
|
||||
BreakBeforeBraces: Linux
|
||||
ColumnLimit: 0
|
||||
FixNamespaceComments: false
|
||||
IndentWidth: 4
|
||||
NamespaceIndentation: All
|
||||
TabWidth: 4
|
@@ -1,4 +1,4 @@
|
||||
compilation_database_dir: build_Debug
|
||||
compilation_database_dir: build_debug
|
||||
output_directory: diagrams
|
||||
diagrams:
|
||||
BayesNet:
|
||||
|
@@ -1,6 +1,6 @@
|
||||
FROM mcr.microsoft.com/devcontainers/cpp:ubuntu22.04
|
||||
|
||||
ARG REINSTALL_CMAKE_VERSION_FROM_SOURCE="3.29.3"
|
||||
ARG REINSTALL_CMAKE_VERSION_FROM_SOURCE="3.22.2"
|
||||
|
||||
# Optionally install the cmake for vcpkg
|
||||
COPY ./reinstall-cmake.sh /tmp/
|
||||
@@ -23,7 +23,7 @@ RUN add-apt-repository ppa:ubuntu-toolchain-r/test
|
||||
RUN apt-get update
|
||||
|
||||
# Install GCC 13.1
|
||||
RUN apt-get install -y gcc-13 g++-13 doxygen
|
||||
RUN apt-get install -y gcc-13 g++-13
|
||||
|
||||
# Install lcov 2.1
|
||||
RUN wget --quiet https://github.com/linux-test-project/lcov/releases/download/v2.1/lcov-2.1.tar.gz && \
|
||||
|
3
.gitignore
vendored
3
.gitignore
vendored
@@ -44,5 +44,4 @@ docs/manual
|
||||
docs/man3
|
||||
docs/man
|
||||
docs/Doxyfile
|
||||
.cache
|
||||
vcpkg_installed
|
||||
|
||||
|
23
.gitmodules
vendored
Normal file
23
.gitmodules
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
[submodule "lib/mdlp"]
|
||||
path = lib/mdlp
|
||||
url = https://github.com/rmontanana/mdlp
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
master = master
|
||||
update = merge
|
||||
[submodule "lib/folding"]
|
||||
path = lib/folding
|
||||
url = https://github.com/rmontanana/folding
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "tests/lib/catch2"]
|
||||
path = tests/lib/catch2
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "tests/lib/Files"]
|
||||
path = tests/lib/Files
|
||||
url = https://github.com/rmontanana/ArffFiles
|
4
.vscode/launch.json
vendored
4
.vscode/launch.json
vendored
@@ -5,7 +5,7 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "sample",
|
||||
"program": "${workspaceFolder}/sample/build/bayesnet_sample",
|
||||
"program": "${workspaceFolder}/build_release/sample/bayesnet_sample",
|
||||
"args": [
|
||||
"${workspaceFolder}/tests/data/glass.arff"
|
||||
]
|
||||
@@ -16,7 +16,7 @@
|
||||
"name": "test",
|
||||
"program": "${workspaceFolder}/build_Debug/tests/TestBayesNet",
|
||||
"args": [
|
||||
"[XBAODE]"
|
||||
"[Network]"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/build_Debug/tests"
|
||||
},
|
||||
|
64
CHANGELOG.md
64
CHANGELOG.md
@@ -7,55 +7,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
|
||||
## [Unreleased]
|
||||
|
||||
## [1.1.1] - 2025-05-20
|
||||
|
||||
### Internal
|
||||
|
||||
- Fix CFS metric expression in the FeatureSelection class.
|
||||
- Fix the vcpkg configuration in building the library.
|
||||
- Fix the sample app to use the vcpkg configuration.
|
||||
- Add predict_proba method to all Ld classifiers.
|
||||
- Refactor the computeCPT method in the Node class with libtorch vectorized operations.
|
||||
- Refactor the sample to use local discretization models.
|
||||
|
||||
## [1.1.0] - 2025-04-27
|
||||
|
||||
### Internal
|
||||
|
||||
- Add changes to .clang-format to adjust to vscode format style thanks to <https://clang-format-configurator.site/>
|
||||
- Remove all the dependencies as git submodules and add them as vcpkg dependencies.
|
||||
- Fix the dependencies versions for this specific BayesNet version.
|
||||
|
||||
## [1.0.7] 2025-03-16
|
||||
|
||||
### Added
|
||||
|
||||
- A new hyperparameter to the BoostAODE class, *alphablock*, to control the way α is computed, with the last model or with the ensmble built so far. Default value is *false*.
|
||||
- A new hyperparameter to the SPODE class, *parent*, to set the root node of the model. If no value is set the root parameter of the constructor is used.
|
||||
- A new hyperparameter to the TAN class, *parent*, to set the root node of the model. If not set the first feature is used as root.
|
||||
- A new model named XSPODE, an optimized for speed averaged one dependence estimator.
|
||||
- A new model named XSP2DE, an optimized for speed averaged two dependence estimator.
|
||||
- A new model named XBAODE, an optimized for speed BoostAODE model.
|
||||
- A new model named XBA2DE, an optimized for speed BoostA2DE model.
|
||||
|
||||
### Internal
|
||||
|
||||
- Optimize ComputeCPT method in the Node class.
|
||||
- Add methods getCount and getMaxCount to the CountingSemaphore class, returning the current count and the maximum count of threads respectively.
|
||||
|
||||
### Changed
|
||||
|
||||
- Hyperparameter *maxTolerance* in the BoostAODE class is now in [1, 6] range (it was in [1, 4] range before).
|
||||
|
||||
## [1.0.6] 2024-11-23
|
||||
|
||||
### Fixed
|
||||
|
||||
- Prevent existing edges to be added to the network in the `add_edge` method.
|
||||
- Don't allow to add nodes or edges on already fiited networks.
|
||||
- Number of threads spawned
|
||||
- Network class tests
|
||||
|
||||
### Added
|
||||
|
||||
- Library logo generated with <https://openart.ai> to README.md
|
||||
@@ -63,21 +14,15 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
- *convergence_best* hyperparameter to the BoostAODE class, to control the way the prior accuracy is computed if convergence is set. Default value is *false*.
|
||||
- SPnDE model.
|
||||
- A2DE model.
|
||||
- BoostA2DE model.
|
||||
- A2DE & SPnDE tests.
|
||||
- Add tests to reach 99% of coverage.
|
||||
- Add tests to check the correct version of the mdlp, folding and json libraries.
|
||||
- Library documentation generated with Doxygen.
|
||||
- Link to documentation in the README.md.
|
||||
- Three types of smoothing the Bayesian Network ORIGINAL, LAPLACE and CESTNIK.
|
||||
- Three types of smoothing the Bayesian Network OLD_LAPLACE, LAPLACE and CESTNIK.
|
||||
|
||||
### Internal
|
||||
|
||||
- Fixed doxygen optional dependency
|
||||
- Add env parallel variable to Makefile
|
||||
- Add CountingSemaphore class to manage the number of threads spawned.
|
||||
- Ignore CUDA language in CMake CodeCoverage module.
|
||||
- Update mdlp library as a git submodule.
|
||||
- Create library ShuffleArffFile to limit the number of samples with a parameter and shuffle them.
|
||||
- Refactor catch2 library location to test/lib
|
||||
- Refactor loadDataset function in tests.
|
||||
@@ -88,13 +33,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
- Add a Makefile target (doc) to generate the documentation.
|
||||
- Add a Makefile target (doc-install) to install the documentation.
|
||||
|
||||
### Libraries versions
|
||||
|
||||
- mdlp: 2.0.1
|
||||
- Folding: 1.1.0
|
||||
- json: 3.11
|
||||
- ArffFiles: 1.1.0
|
||||
|
||||
## [1.0.5] 2024-04-20
|
||||
|
||||
### Added
|
||||
|
132
CMakeLists.txt
132
CMakeLists.txt
@@ -1,19 +1,21 @@
|
||||
cmake_minimum_required(VERSION 3.27)
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(bayesnet
|
||||
VERSION 1.1.1
|
||||
project(BayesNet
|
||||
VERSION 1.0.6
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
if (CODE_COVERAGE AND NOT ENABLE_TESTING)
|
||||
MESSAGE(FATAL_ERROR "Code coverage requires testing enabled")
|
||||
endif (CODE_COVERAGE AND NOT ENABLE_TESTING)
|
||||
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
find_package(fimdlp CONFIG REQUIRED)
|
||||
find_package(nlohmann_json CONFIG REQUIRED)
|
||||
find_package(folding CONFIG REQUIRED)
|
||||
find_package(Torch REQUIRED)
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
endif ()
|
||||
|
||||
# Global CMake variables
|
||||
# ----------------------
|
||||
@@ -31,83 +33,75 @@ endif()
|
||||
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy" OFF)
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
option(ENABLE_TESTING "Unit testing build" OFF)
|
||||
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||
option(INSTALL_GTEST "Enable installation of googletest" OFF)
|
||||
option(INSTALL_GTEST "Enable installation of googletest." OFF)
|
||||
|
||||
add_subdirectory(config)
|
||||
# CMakes modules
|
||||
# --------------
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
||||
include(AddGitSubmodule)
|
||||
|
||||
if (ENABLE_CLANG_TIDY)
|
||||
include(StaticAnalyzers) # clang-tidy
|
||||
endif (ENABLE_CLANG_TIDY)
|
||||
|
||||
# Add the library
|
||||
# ---------------
|
||||
include_directories(
|
||||
${bayesnet_SOURCE_DIR}
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
|
||||
file(GLOB_RECURSE Sources "bayesnet/*.cc")
|
||||
|
||||
add_library(bayesnet ${Sources})
|
||||
target_link_libraries(bayesnet fimdlp::fimdlp folding::folding "${TORCH_LIBRARIES}")
|
||||
|
||||
# Testing
|
||||
# -------
|
||||
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
MESSAGE("Debug mode")
|
||||
set(ENABLE_TESTING ON)
|
||||
set(CODE_COVERAGE ON)
|
||||
endif (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE(STATUS "Testing enabled")
|
||||
find_package(Catch2 CONFIG REQUIRED)
|
||||
find_package(arff-files CONFIG REQUIRED)
|
||||
|
||||
|
||||
if (CODE_COVERAGE)
|
||||
get_property(LANGUAGES GLOBAL PROPERTY ENABLED_LANGUAGES)
|
||||
message("ALL LANGUAGES: ${LANGUAGES}")
|
||||
foreach(LANG ${LANGUAGES})
|
||||
message("${LANG} compiler is \"${CMAKE_${LANG}_COMPILER_ID}\"")
|
||||
endforeach()
|
||||
enable_testing()
|
||||
#include(CodeCoverage)
|
||||
#MESSAGE("Code coverage enabled")
|
||||
#SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
endif (CODE_COVERAGE)
|
||||
|
||||
if (ENABLE_CLANG_TIDY)
|
||||
include(StaticAnalyzers) # clang-tidy
|
||||
endif (ENABLE_CLANG_TIDY)
|
||||
|
||||
# External libraries - dependencies of BayesNet
|
||||
# ---------------------------------------------
|
||||
# include(FetchContent)
|
||||
add_git_submodule("lib/json")
|
||||
add_git_submodule("lib/mdlp")
|
||||
|
||||
# Subdirectories
|
||||
# --------------
|
||||
add_subdirectory(config)
|
||||
add_subdirectory(bayesnet)
|
||||
|
||||
# Testing
|
||||
# -------
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE("Testing enabled")
|
||||
add_subdirectory(tests/lib/catch2)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
else(ENABLE_TESTING)
|
||||
message("Release mode")
|
||||
endif (ENABLE_TESTING)
|
||||
|
||||
# Installation
|
||||
# ------------
|
||||
include(CMakePackageConfigHelpers)
|
||||
write_basic_package_version_file(
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/bayesnetConfigVersion.cmake"
|
||||
VERSION ${PROJECT_VERSION}
|
||||
COMPATIBILITY AnyNewerVersion
|
||||
)
|
||||
|
||||
configure_package_config_file(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/bayesnetConfig.cmake.in
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/bayesnetConfig.cmake"
|
||||
INSTALL_DESTINATION share/bayesnet)
|
||||
|
||||
install(TARGETS bayesnet
|
||||
EXPORT bayesnetTargets
|
||||
install(TARGETS BayesNet
|
||||
ARCHIVE DESTINATION lib
|
||||
LIBRARY DESTINATION lib
|
||||
CONFIGURATIONS Release)
|
||||
install(DIRECTORY bayesnet/ DESTINATION include/bayesnet FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h")
|
||||
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DESTINATION include/bayesnet CONFIGURATIONS Release)
|
||||
|
||||
install(DIRECTORY bayesnet/
|
||||
DESTINATION include/bayesnet
|
||||
FILES_MATCHING
|
||||
CONFIGURATIONS Release
|
||||
PATTERN "*.h")
|
||||
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h
|
||||
DESTINATION include/bayesnet
|
||||
CONFIGURATIONS Release)
|
||||
|
||||
install(EXPORT bayesnetTargets
|
||||
FILE bayesnetTargets.cmake
|
||||
NAMESPACE bayesnet::
|
||||
DESTINATION share/bayesnet)
|
||||
|
||||
install(FILES
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/bayesnetConfig.cmake"
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/bayesnetConfigVersion.cmake"
|
||||
DESTINATION share/bayesnet
|
||||
)
|
||||
# Documentation
|
||||
# -------------
|
||||
find_package(Doxygen)
|
||||
set(DOC_DIR ${CMAKE_CURRENT_SOURCE_DIR}/docs)
|
||||
set(doxyfile_in ${DOC_DIR}/Doxyfile.in)
|
||||
set(doxyfile ${DOC_DIR}/Doxyfile)
|
||||
configure_file(${doxyfile_in} ${doxyfile} @ONLY)
|
||||
doxygen_add_docs(doxygen
|
||||
WORKING_DIRECTORY ${DOC_DIR}
|
||||
CONFIG_FILE ${doxyfile})
|
||||
|
54
Makefile
54
Makefile
@@ -1,11 +1,11 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge doc doc-install init clean-test
|
||||
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge doc doc-install
|
||||
|
||||
f_release = build_Release
|
||||
f_debug = build_Debug
|
||||
f_diagrams = diagrams
|
||||
app_targets = bayesnet
|
||||
app_targets = BayesNet
|
||||
test_targets = TestBayesNet
|
||||
clang-uml = clang-uml
|
||||
plantuml = plantuml
|
||||
@@ -43,7 +43,7 @@ setup: ## Install dependencies for tests and coverage
|
||||
fi
|
||||
@echo "* You should install plantuml & graphviz for the diagrams"
|
||||
|
||||
diagrams: ## Create an UML class diagram & dependency of the project (diagrams/BayesNet.png)
|
||||
diagrams: ## Create an UML class diagram & depnendency of the project (diagrams/BayesNet.png)
|
||||
@which $(plantuml) || (echo ">>> Please install plantuml"; exit 1)
|
||||
@which $(dot) || (echo ">>> Please install graphviz"; exit 1)
|
||||
@which $(clang-uml) || (echo ">>> Please install clang-uml"; exit 1)
|
||||
@@ -58,12 +58,12 @@ diagrams: ## Create an UML class diagram & dependency of the project (diagrams/B
|
||||
@$(dot) -Tsvg $(f_debug)/dependency.dot.BayesNet -o $(f_diagrams)/dependency.svg
|
||||
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||
cmake --build $(f_debug) -t $(app_targets) --parallel
|
||||
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||
cmake --build $(f_release) -t $(app_targets) --parallel
|
||||
|
||||
clean-test: ## Clean the tests info
|
||||
clean: ## Clean the tests info
|
||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||
$(call ClearTests)
|
||||
@echo ">>> Done";
|
||||
@@ -79,60 +79,33 @@ install: ## Install library
|
||||
@cmake --install $(f_release) --prefix $(prefix)
|
||||
@echo ">>> Done";
|
||||
|
||||
init: ## Initialize the project installing dependencies
|
||||
@echo ">>> Installing dependencies"
|
||||
@vcpkg install
|
||||
@echo ">>> Done";
|
||||
|
||||
clean: ## Clean the project
|
||||
@echo ">>> Cleaning the project..."
|
||||
@if test -f CMakeCache.txt ; then echo "- Deleting CMakeCache.txt"; rm -f CMakeCache.txt; fi
|
||||
@for folder in $(f_release) $(f_debug) vpcpkg_installed install_test ; do \
|
||||
if test -d "$$folder" ; then \
|
||||
echo "- Deleting $$folder folder" ; \
|
||||
rm -rf "$$folder"; \
|
||||
fi; \
|
||||
done
|
||||
@$(MAKE) clean-test
|
||||
@echo ">>> Done";
|
||||
|
||||
debug: ## Build a debug version of the project
|
||||
@echo ">>> Building Debug BayesNet...";
|
||||
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
|
||||
@mkdir $(f_debug);
|
||||
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON -DCMAKE_TOOLCHAIN_FILE=${VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake
|
||||
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON
|
||||
@echo ">>> Done";
|
||||
|
||||
release: ## Build a Release version of the project
|
||||
@echo ">>> Building Release BayesNet...";
|
||||
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
|
||||
@mkdir $(f_release);
|
||||
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=${VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake
|
||||
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
|
||||
@echo ">>> Done";
|
||||
|
||||
fname = "tests/data/iris.arff"
|
||||
model = "TANLd"
|
||||
sample: ## Build sample
|
||||
@echo ">>> Building Sample...";
|
||||
@if [ -d ./sample/build ]; then rm -rf ./sample/build; fi
|
||||
@cd sample && cmake -B build -S . -D CMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=${VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake && \
|
||||
cmake --build build -t bayesnet_sample
|
||||
sample/build/bayesnet_sample $(fname) $(model)
|
||||
@echo ">>> Done";
|
||||
|
||||
fname = "tests/data/iris.arff"
|
||||
sample2: ## Build sample2
|
||||
@echo ">>> Building Sample...";
|
||||
@if [ -d ./sample/build ]; then rm -rf ./sample/build; fi
|
||||
@cd sample && cmake -B build -S . -D CMAKE_BUILD_TYPE=Debug && cmake --build build -t bayesnet_sample_xspode
|
||||
sample/build/bayesnet_sample_xspode $(fname)
|
||||
@cd sample && cmake -B build -S . && cmake --build build -t bayesnet_sample
|
||||
sample/build/bayesnet_sample $(fname)
|
||||
@echo ">>> Done";
|
||||
|
||||
opt = ""
|
||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet tests...";
|
||||
@$(MAKE) clean-test
|
||||
@cmake --build $(f_debug) -t $(test_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) -t $(test_targets) --parallel
|
||||
@for t in $(test_targets); do \
|
||||
echo ">>> Running $$t...";\
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
@@ -152,7 +125,6 @@ coverage: ## Run tests and generate coverage report (build/index.html)
|
||||
$(lcov) --directory CMakeFiles --capture --demangle-cpp --ignore-errors source,source --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'include/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'bayesnet/utils/loguru.*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
|
||||
@@ -200,7 +172,7 @@ docdir = ""
|
||||
doc-install: ## Install documentation
|
||||
@echo ">>> Installing documentation..."
|
||||
@if [ "$(docdir)" = "" ]; then \
|
||||
echo "docdir parameter has to be set when calling doc-install, i.e. docdir=../bayesnet_help"; \
|
||||
echo "docdir parameter has to be set when calling doc-install"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@if [ ! -d $(docdir) ]; then \
|
||||
|
102
README.md
102
README.md
@@ -2,114 +2,52 @@
|
||||
|
||||

|
||||
[](<https://opensource.org/licenses/MIT>)
|
||||

|
||||

|
||||
[](https://app.codacy.com/gh/Doctorado-ML/BayesNet/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade)
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||
[](https://deepwiki.com/Doctorado-ML/BayesNet)
|
||||

|
||||
[](https://gitea.rmontanana.es/rmontanana/BayesNet)
|
||||
[](https://doi.org/10.5281/zenodo.14210344)
|
||||

|
||||
[](html/index.html)
|
||||
|
||||
Bayesian Network Classifiers library
|
||||
Bayesian Network Classifiers using libtorch from scratch
|
||||
|
||||
## Setup
|
||||
## Dependencies
|
||||
|
||||
### Using the vcpkg library
|
||||
|
||||
You can use the library with the vcpkg library manager. In your project you have to add the following files:
|
||||
|
||||
#### vcpkg.json
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "sample-project",
|
||||
"version-string": "0.1.0",
|
||||
"dependencies": [
|
||||
"bayesnet"
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
#### vcpkg-configuration.json
|
||||
|
||||
```json
|
||||
{
|
||||
"registries": [
|
||||
{
|
||||
"kind": "git",
|
||||
"repository": "https://github.com/rmontanana/vcpkg-stash",
|
||||
"baseline": "393efa4e74e053b6f02c4ab03738c8fe796b28e5",
|
||||
"packages": [
|
||||
"folding",
|
||||
"bayesnet",
|
||||
"arff-files",
|
||||
"fimdlp",
|
||||
"libtorch-bin"
|
||||
]
|
||||
}
|
||||
],
|
||||
"default-registry": {
|
||||
"kind": "git",
|
||||
"repository": "https://github.com/microsoft/vcpkg",
|
||||
"baseline": "760bfd0c8d7c89ec640aec4df89418b7c2745605"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### CMakeLists.txt
|
||||
|
||||
You have to include the following lines in your `CMakeLists.txt` file:
|
||||
|
||||
```cmake
|
||||
find_package(bayesnet CONFIG REQUIRED)
|
||||
|
||||
add_executable(myapp main.cpp)
|
||||
|
||||
target_link_libraries(myapp PRIVATE bayesnet::bayesnet)
|
||||
```
|
||||
|
||||
After that, you can use the `vcpkg` command to install the dependencies:
|
||||
The only external dependency is [libtorch](https://pytorch.org/cppdocs/installing.html) which can be installed with the following commands:
|
||||
|
||||
```bash
|
||||
vcpkg install
|
||||
wget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zip
|
||||
unzip libtorch-shared-with-deps-latest.zips
|
||||
```
|
||||
|
||||
**Note: In the `sample` folder you can find a sample application that uses the library. You can use it as a reference to create your own application.**
|
||||
|
||||
## Playing with the library
|
||||
|
||||
The dependencies are managed with [vcpkg](https://vcpkg.io/) and supported by a private vcpkg repository in [https://github.com/rmontanana/vcpkg-stash](https://github.com/rmontanana/vcpkg-stash).
|
||||
## Setup
|
||||
|
||||
### Getting the code
|
||||
|
||||
```bash
|
||||
git clone https://github.com/doctorado-ml/bayesnet
|
||||
git clone --recurse-submodules https://github.com/doctorado-ml/bayesnet
|
||||
```
|
||||
|
||||
Once you have the code, you can use the `make` command to build the project. The `Makefile` is used to manage the build process and it will automatically download and install the dependencies.
|
||||
|
||||
### Release
|
||||
|
||||
```bash
|
||||
make init # Install dependencies
|
||||
make release # Build the release version
|
||||
make buildr # compile and link the release version
|
||||
make release
|
||||
make buildr
|
||||
sudo make install
|
||||
```
|
||||
|
||||
### Debug & Tests
|
||||
|
||||
```bash
|
||||
make init # Install dependencies
|
||||
make debug # Build the debug version
|
||||
make test # Run the tests
|
||||
make debug
|
||||
make test
|
||||
```
|
||||
|
||||
### Coverage
|
||||
|
||||
```bash
|
||||
make coverage # Run the tests with coverage
|
||||
make viewcoverage # View the coverage report in the browser
|
||||
make coverage
|
||||
make viewcoverage
|
||||
```
|
||||
|
||||
### Sample app
|
||||
@@ -133,16 +71,10 @@ make sample fname=tests/data/glass.arff
|
||||
|
||||
#### - AODE
|
||||
|
||||
#### - A2DE
|
||||
|
||||
#### - [BoostAODE](docs/BoostAODE.md)
|
||||
|
||||
#### - XBAODE
|
||||
|
||||
#### - BoostA2DE
|
||||
|
||||
#### - XBA2DE
|
||||
|
||||
### With Local Discretization
|
||||
|
||||
#### - TANLd
|
||||
|
@@ -14,13 +14,13 @@ namespace bayesnet {
|
||||
enum status_t { NORMAL, WARNING, ERROR };
|
||||
class BaseClassifier {
|
||||
public:
|
||||
virtual ~BaseClassifier() = default;
|
||||
// X is nxm std::vector, y is nx1 std::vector
|
||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
|
||||
virtual ~BaseClassifier() = default;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
|
||||
torch::Tensor virtual predict_proba(torch::Tensor& X) = 0;
|
||||
@@ -43,7 +43,5 @@ namespace bayesnet {
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
|
||||
std::vector<std::string> validHyperparameters;
|
||||
std::vector<std::string> notes; // Used to store messages occurred during the fit process
|
||||
status_t status = NORMAL;
|
||||
};
|
||||
}
|
@@ -1,5 +1,4 @@
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/lib/log
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp/src
|
||||
${BayesNet_SOURCE_DIR}/lib/folding
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
@@ -10,4 +9,4 @@ include_directories(
|
||||
file(GLOB_RECURSE Sources "*.cc")
|
||||
|
||||
add_library(BayesNet ${Sources})
|
||||
target_link_libraries(BayesNet fimdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")
|
||||
|
@@ -9,7 +9,16 @@
|
||||
#include "Classifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false), device(torch::kCPU)
|
||||
{
|
||||
if (torch::cuda::is_available()) {
|
||||
device = torch::Device(torch::kCUDA);
|
||||
std::cout << "CUDA is available! Using GPU." << std::endl;
|
||||
} else {
|
||||
std::cout << "CUDA is not available. Using CPU." << std::endl;
|
||||
}
|
||||
}
|
||||
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
this->features = features;
|
||||
@@ -30,7 +39,7 @@ namespace bayesnet {
|
||||
{
|
||||
try {
|
||||
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
|
||||
dataset = torch::cat({ dataset, yresized }, 0);
|
||||
dataset = torch::cat({ dataset, yresized }, 0).to(device);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::stringstream oss;
|
||||
@@ -49,7 +58,7 @@ namespace bayesnet {
|
||||
{
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble).to(device);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
|
@@ -38,6 +38,7 @@ namespace bayesnet {
|
||||
std::string dump_cpt() const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
||||
protected:
|
||||
torch::Device device;
|
||||
bool fitted;
|
||||
unsigned int m, n; // m: number of samples, n: number of features
|
||||
Network model;
|
||||
@@ -46,11 +47,12 @@ namespace bayesnet {
|
||||
std::string className;
|
||||
std::map<std::string, std::vector<int>> states;
|
||||
torch::Tensor dataset; // (n+1)xm tensor
|
||||
status_t status = NORMAL;
|
||||
std::vector<std::string> notes; // Used to store messages occurred during the fit process
|
||||
void checkFitParameters();
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void buildDataset(torch::Tensor& y);
|
||||
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||
private:
|
||||
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing);
|
||||
};
|
||||
|
@@ -3,7 +3,7 @@
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
|
||||
#include "KDB.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
@@ -7,14 +7,15 @@
|
||||
#ifndef KDB_H
|
||||
#define KDB_H
|
||||
#include <torch/torch.h>
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
#include "Classifier.h"
|
||||
namespace bayesnet {
|
||||
class KDB : public Classifier {
|
||||
private:
|
||||
int k;
|
||||
float theta;
|
||||
protected:
|
||||
void add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights);
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit KDB(int k, float theta = 0.03);
|
||||
|
@@ -28,11 +28,6 @@ namespace bayesnet {
|
||||
auto Xt = prepareX(X);
|
||||
return KDB::predict(Xt);
|
||||
}
|
||||
torch::Tensor KDBLd::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return KDB::predict_proba(Xt);
|
||||
}
|
||||
std::vector<std::string> KDBLd::graph(const std::string& name) const
|
||||
{
|
||||
return KDB::graph(name);
|
||||
|
@@ -18,7 +18,6 @@ namespace bayesnet {
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
|
@@ -23,7 +23,6 @@ namespace bayesnet {
|
||||
throw std::invalid_argument("y must be an integer tensor");
|
||||
}
|
||||
}
|
||||
// Fit method for single classifier
|
||||
map<std::string, std::vector<int>> Proposal::localDiscretizationProposal(const map<std::string, std::vector<int>>& oldStates, Network& model)
|
||||
{
|
||||
// order of local discretization is important. no good 0, 1, 2...
|
||||
|
@@ -9,7 +9,7 @@
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <torch/torch.h>
|
||||
#include <fimdlp/CPPFImdlp.h>
|
||||
#include <CPPFImdlp.h>
|
||||
#include "bayesnet/network/Network.h"
|
||||
#include "Classifier.h"
|
||||
|
||||
|
@@ -8,29 +8,14 @@
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
SPODE::SPODE(int root) : Classifier(Network()), root(root)
|
||||
{
|
||||
validHyperparameters = { "parent" };
|
||||
}
|
||||
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
|
||||
|
||||
void SPODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent")) {
|
||||
root = hyperparameters["parent"];
|
||||
hyperparameters.erase("parent");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void SPODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
// 1. Add edges from the class node to all other nodes
|
||||
// 2. Add edges from the root node to all other nodes
|
||||
if (root >= static_cast<int>(features.size())) {
|
||||
throw std::invalid_argument("The parent node is not in the dataset");
|
||||
}
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
model.addEdge(className, features[i]);
|
||||
if (i != root) {
|
||||
|
@@ -10,15 +10,14 @@
|
||||
|
||||
namespace bayesnet {
|
||||
class SPODE : public Classifier {
|
||||
private:
|
||||
int root;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit SPODE(int root);
|
||||
virtual ~SPODE() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
int root;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -43,11 +43,6 @@ namespace bayesnet {
|
||||
auto Xt = prepareX(X);
|
||||
return SPODE::predict(Xt);
|
||||
}
|
||||
torch::Tensor SPODELd::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return SPODE::predict_proba(Xt);
|
||||
}
|
||||
std::vector<std::string> SPODELd::graph(const std::string& name) const
|
||||
{
|
||||
return SPODE::graph(name);
|
||||
|
@@ -19,7 +19,6 @@ namespace bayesnet {
|
||||
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
std::vector<std::string> graph(const std::string& name = "SPODELd") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
|
@@ -7,20 +7,8 @@
|
||||
#include "TAN.h"
|
||||
|
||||
namespace bayesnet {
|
||||
TAN::TAN() : Classifier(Network())
|
||||
{
|
||||
validHyperparameters = { "parent" };
|
||||
}
|
||||
TAN::TAN() : Classifier(Network()) {}
|
||||
|
||||
void TAN::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent")) {
|
||||
parent = hyperparameters["parent"];
|
||||
hyperparameters.erase("parent");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void TAN::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
@@ -35,10 +23,7 @@ namespace bayesnet {
|
||||
mi.push_back({ i, mi_value });
|
||||
}
|
||||
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
||||
auto root = parent == -1 ? mi[mi.size() - 1].first : parent;
|
||||
if (root >= static_cast<int>(features.size())) {
|
||||
throw std::invalid_argument("The parent node is not in the dataset");
|
||||
}
|
||||
auto root = mi[mi.size() - 1].first;
|
||||
// 2. Compute mutual information between each feature and the class
|
||||
auto weights_matrix = metrics.conditionalEdge(weights);
|
||||
// 3. Compute the maximum spanning tree
|
||||
|
@@ -9,15 +9,13 @@
|
||||
#include "Classifier.h"
|
||||
namespace bayesnet {
|
||||
class TAN : public Classifier {
|
||||
private:
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
TAN();
|
||||
virtual ~TAN() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
int parent = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -29,11 +29,6 @@ namespace bayesnet {
|
||||
auto Xt = prepareX(X);
|
||||
return TAN::predict(Xt);
|
||||
}
|
||||
torch::Tensor TANLd::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
return TAN::predict_proba(Xt);
|
||||
}
|
||||
std::vector<std::string> TANLd::graph(const std::string& name) const
|
||||
{
|
||||
return TAN::graph(name);
|
||||
|
@@ -18,7 +18,6 @@ namespace bayesnet {
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TANLd") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||
};
|
||||
}
|
||||
#endif // !TANLD_H
|
@@ -1,575 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "XSP2DE.h"
|
||||
#include <pthread.h> // for pthread_setname_np on linux
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <stdexcept>
|
||||
#include <iostream>
|
||||
#include "bayesnet/utils/TensorUtils.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
// --------------------------------------
|
||||
// Constructor
|
||||
// --------------------------------------
|
||||
XSp2de::XSp2de(int spIndex1, int spIndex2)
|
||||
: superParent1_{ spIndex1 }
|
||||
, superParent2_{ spIndex2 }
|
||||
, nFeatures_{0}
|
||||
, statesClass_{0}
|
||||
, alpha_{1.0}
|
||||
, initializer_{1.0}
|
||||
, semaphore_{ CountingSemaphore::getInstance() }
|
||||
, Classifier(Network())
|
||||
{
|
||||
validHyperparameters = { "parent1", "parent2" };
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// setHyperparameters
|
||||
// --------------------------------------
|
||||
void XSp2de::setHyperparameters(const nlohmann::json &hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent1")) {
|
||||
superParent1_ = hyperparameters["parent1"];
|
||||
hyperparameters.erase("parent1");
|
||||
}
|
||||
if (hyperparameters.contains("parent2")) {
|
||||
superParent2_ = hyperparameters["parent2"];
|
||||
hyperparameters.erase("parent2");
|
||||
}
|
||||
// Hand off anything else to base Classifier
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// fitx
|
||||
// --------------------------------------
|
||||
void XSp2de::fitx(torch::Tensor & X, torch::Tensor & y,
|
||||
torch::Tensor & weights_, const Smoothing_t smoothing)
|
||||
{
|
||||
m = X.size(1); // number of samples
|
||||
n = X.size(0); // number of features
|
||||
dataset = X;
|
||||
|
||||
// Build the dataset in your environment if needed:
|
||||
buildDataset(y);
|
||||
|
||||
// Construct the data structures needed for counting
|
||||
buildModel(weights_);
|
||||
|
||||
// Accumulate counts & convert to probabilities
|
||||
trainModel(weights_, smoothing);
|
||||
fitted = true;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// buildModel
|
||||
// --------------------------------------
|
||||
void XSp2de::buildModel(const torch::Tensor &weights)
|
||||
{
|
||||
nFeatures_ = n;
|
||||
|
||||
// Derive the number of states for each feature from the dataset
|
||||
// states_[f] = max value in dataset[f] + 1.
|
||||
states_.resize(nFeatures_);
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
// This is naive: we take max in feature f. You might adapt for real data.
|
||||
states_[f] = dataset[f].max().item<int>() + 1;
|
||||
}
|
||||
// Class states:
|
||||
statesClass_ = dataset[-1].max().item<int>() + 1;
|
||||
|
||||
// Initialize the class counts
|
||||
classCounts_.resize(statesClass_, 0.0);
|
||||
|
||||
// For sp1 -> p(sp1Val| c)
|
||||
sp1FeatureCounts_.resize(states_[superParent1_] * statesClass_, 0.0);
|
||||
|
||||
// For sp2 -> p(sp2Val| c)
|
||||
sp2FeatureCounts_.resize(states_[superParent2_] * statesClass_, 0.0);
|
||||
|
||||
// For child features, we store p(childVal | c, sp1Val, sp2Val).
|
||||
// childCounts_ will hold raw counts. We’ll gather them in one big vector.
|
||||
// We need an offset for each feature.
|
||||
childOffsets_.resize(nFeatures_, -1);
|
||||
|
||||
int totalSize = 0;
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent1_ || f == superParent2_) {
|
||||
// skip the superparents
|
||||
childOffsets_[f] = -1;
|
||||
continue;
|
||||
}
|
||||
childOffsets_[f] = totalSize;
|
||||
// block size for a single child f: states_[f] * statesClass_
|
||||
// * states_[superParent1_]
|
||||
// * states_[superParent2_].
|
||||
totalSize += (states_[f] * statesClass_
|
||||
* states_[superParent1_]
|
||||
* states_[superParent2_]);
|
||||
}
|
||||
childCounts_.resize(totalSize, 0.0);
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// trainModel
|
||||
// --------------------------------------
|
||||
void XSp2de::trainModel(const torch::Tensor &weights,
|
||||
const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
// Accumulate raw counts
|
||||
for (int i = 0; i < m; i++) {
|
||||
std::vector<int> instance(nFeatures_ + 1);
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
instance[f] = dataset[f][i].item<int>();
|
||||
}
|
||||
instance[nFeatures_] = dataset[-1][i].item<int>(); // class
|
||||
double w = weights[i].item<double>();
|
||||
addSample(instance, w);
|
||||
}
|
||||
|
||||
// Choose alpha based on smoothing:
|
||||
switch (smoothing) {
|
||||
case bayesnet::Smoothing_t::ORIGINAL:
|
||||
alpha_ = 1.0 / m;
|
||||
break;
|
||||
case bayesnet::Smoothing_t::LAPLACE:
|
||||
alpha_ = 1.0;
|
||||
break;
|
||||
default:
|
||||
alpha_ = 0.0; // no smoothing
|
||||
}
|
||||
|
||||
// Large initializer factor for numerical stability
|
||||
initializer_ = std::numeric_limits<double>::max() / (nFeatures_ * nFeatures_);
|
||||
|
||||
// Convert raw counts to probabilities
|
||||
computeProbabilities();
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// addSample
|
||||
// --------------------------------------
|
||||
void XSp2de::addSample(const std::vector<int> &instance, double weight)
|
||||
{
|
||||
if (weight <= 0.0)
|
||||
return;
|
||||
|
||||
int c = instance.back();
|
||||
// increment classCounts
|
||||
classCounts_[c] += weight;
|
||||
|
||||
int sp1Val = instance[superParent1_];
|
||||
int sp2Val = instance[superParent2_];
|
||||
|
||||
// p(sp1|c)
|
||||
sp1FeatureCounts_[sp1Val * statesClass_ + c] += weight;
|
||||
|
||||
// p(sp2|c)
|
||||
sp2FeatureCounts_[sp2Val * statesClass_ + c] += weight;
|
||||
|
||||
// p(childVal| c, sp1Val, sp2Val)
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent1_ || f == superParent2_)
|
||||
continue;
|
||||
|
||||
int childVal = instance[f];
|
||||
int offset = childOffsets_[f];
|
||||
// block layout:
|
||||
// offset + (sp1Val*(states_[sp2_]* states_[f]* statesClass_))
|
||||
// + (sp2Val*(states_[f]* statesClass_))
|
||||
// + childVal*(statesClass_)
|
||||
// + c
|
||||
int blockSizeSp2 = states_[superParent2_]
|
||||
* states_[f]
|
||||
* statesClass_;
|
||||
int blockSizeChild = states_[f] * statesClass_;
|
||||
|
||||
int idx = offset
|
||||
+ sp1Val*blockSizeSp2
|
||||
+ sp2Val*blockSizeChild
|
||||
+ childVal*statesClass_
|
||||
+ c;
|
||||
childCounts_[idx] += weight;
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// computeProbabilities
|
||||
// --------------------------------------
|
||||
void XSp2de::computeProbabilities()
|
||||
{
|
||||
double totalCount = std::accumulate(classCounts_.begin(),
|
||||
classCounts_.end(), 0.0);
|
||||
|
||||
// classPriors_
|
||||
classPriors_.resize(statesClass_, 0.0);
|
||||
if (totalCount <= 0.0) {
|
||||
// fallback => uniform
|
||||
double unif = 1.0 / static_cast<double>(statesClass_);
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
classPriors_[c] = unif;
|
||||
}
|
||||
} else {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
classPriors_[c] =
|
||||
(classCounts_[c] + alpha_)
|
||||
/ (totalCount + alpha_ * statesClass_);
|
||||
}
|
||||
}
|
||||
|
||||
// p(sp1Val| c)
|
||||
sp1FeatureProbs_.resize(sp1FeatureCounts_.size());
|
||||
int sp1Card = states_[superParent1_];
|
||||
for (int spVal = 0; spVal < sp1Card; spVal++) {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
double denom = classCounts_[c] + alpha_ * sp1Card;
|
||||
double num = sp1FeatureCounts_[spVal * statesClass_ + c] + alpha_;
|
||||
sp1FeatureProbs_[spVal * statesClass_ + c] =
|
||||
(denom <= 0.0 ? 0.0 : num / denom);
|
||||
}
|
||||
}
|
||||
|
||||
// p(sp2Val| c)
|
||||
sp2FeatureProbs_.resize(sp2FeatureCounts_.size());
|
||||
int sp2Card = states_[superParent2_];
|
||||
for (int spVal = 0; spVal < sp2Card; spVal++) {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
double denom = classCounts_[c] + alpha_ * sp2Card;
|
||||
double num = sp2FeatureCounts_[spVal * statesClass_ + c] + alpha_;
|
||||
sp2FeatureProbs_[spVal * statesClass_ + c] =
|
||||
(denom <= 0.0 ? 0.0 : num / denom);
|
||||
}
|
||||
}
|
||||
|
||||
// p(childVal| c, sp1Val, sp2Val)
|
||||
childProbs_.resize(childCounts_.size());
|
||||
int offset = 0;
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent1_ || f == superParent2_)
|
||||
continue;
|
||||
|
||||
int fCard = states_[f];
|
||||
int sp1Card_ = states_[superParent1_];
|
||||
int sp2Card_ = states_[superParent2_];
|
||||
int childBlockSizeSp2 = sp2Card_ * fCard * statesClass_;
|
||||
int childBlockSizeF = fCard * statesClass_;
|
||||
|
||||
int blockSize = fCard * sp1Card_ * sp2Card_ * statesClass_;
|
||||
for (int sp1Val = 0; sp1Val < sp1Card_; sp1Val++) {
|
||||
for (int sp2Val = 0; sp2Val < sp2Card_; sp2Val++) {
|
||||
for (int childVal = 0; childVal < fCard; childVal++) {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
// index in childCounts_
|
||||
int idx = offset
|
||||
+ sp1Val*childBlockSizeSp2
|
||||
+ sp2Val*childBlockSizeF
|
||||
+ childVal*statesClass_
|
||||
+ c;
|
||||
double num = childCounts_[idx] + alpha_;
|
||||
// denominator is the count of (sp1Val,sp2Val,c) plus alpha * fCard
|
||||
// We can find that by summing childVal dimension, but we already
|
||||
// have it in childCounts_[...] or we can re-check the superparent
|
||||
// counts if your approach is purely hierarchical.
|
||||
// Here we'll do it like the XSpode approach: sp1&sp2 are
|
||||
// conditionally independent given c, so denominators come from
|
||||
// summing the relevant block or we treat sp1,sp2 as "parents."
|
||||
// A simpler approach:
|
||||
double sumSp1Sp2C = 0.0;
|
||||
// sum over all childVal:
|
||||
for (int cv = 0; cv < fCard; cv++) {
|
||||
int idx2 = offset
|
||||
+ sp1Val*childBlockSizeSp2
|
||||
+ sp2Val*childBlockSizeF
|
||||
+ cv*statesClass_ + c;
|
||||
sumSp1Sp2C += childCounts_[idx2];
|
||||
}
|
||||
double denom = sumSp1Sp2C + alpha_ * fCard;
|
||||
childProbs_[idx] = (denom <= 0.0 ? 0.0 : num / denom);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
offset += blockSize;
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict_proba (single instance)
|
||||
// --------------------------------------
|
||||
std::vector<double> XSp2de::predict_proba(const std::vector<int> &instance) const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||
}
|
||||
std::vector<double> probs(statesClass_, 0.0);
|
||||
|
||||
int sp1Val = instance[superParent1_];
|
||||
int sp2Val = instance[superParent2_];
|
||||
|
||||
// Start with p(c) * p(sp1Val| c) * p(sp2Val| c)
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
double pC = classPriors_[c];
|
||||
double pSp1C = sp1FeatureProbs_[sp1Val * statesClass_ + c];
|
||||
double pSp2C = sp2FeatureProbs_[sp2Val * statesClass_ + c];
|
||||
probs[c] = pC * pSp1C * pSp2C * initializer_;
|
||||
}
|
||||
|
||||
// Multiply by each child feature f
|
||||
int offset = 0;
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent1_ || f == superParent2_)
|
||||
continue;
|
||||
|
||||
int valF = instance[f];
|
||||
int fCard = states_[f];
|
||||
int sp1Card = states_[superParent1_];
|
||||
int sp2Card = states_[superParent2_];
|
||||
int blockSizeSp2 = sp2Card * fCard * statesClass_;
|
||||
int blockSizeF = fCard * statesClass_;
|
||||
|
||||
// base index for childProbs_ for this child and sp1Val, sp2Val
|
||||
int base = offset
|
||||
+ sp1Val*blockSizeSp2
|
||||
+ sp2Val*blockSizeF
|
||||
+ valF*statesClass_;
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
probs[c] *= childProbs_[base + c];
|
||||
}
|
||||
offset += (fCard * sp1Card * sp2Card * statesClass_);
|
||||
}
|
||||
|
||||
// Normalize
|
||||
normalize(probs);
|
||||
return probs;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict_proba (batch)
|
||||
// --------------------------------------
|
||||
std::vector<std::vector<double>> XSp2de::predict_proba(std::vector<std::vector<int>> &test_data)
|
||||
{
|
||||
int test_size = test_data[0].size(); // each feature is test_data[f], size = #samples
|
||||
int sample_size = test_data.size(); // = nFeatures_
|
||||
std::vector<std::vector<double>> probabilities(
|
||||
test_size, std::vector<double>(statesClass_, 0.0));
|
||||
|
||||
// same concurrency approach
|
||||
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
|
||||
std::vector<std::thread> threads;
|
||||
|
||||
auto worker = [&](const std::vector<std::vector<int>> &samples,
|
||||
int begin,
|
||||
int chunk,
|
||||
int sample_size,
|
||||
std::vector<std::vector<double>> &predictions) {
|
||||
std::string threadName =
|
||||
"XSp2de-" + std::to_string(begin) + "-" + std::to_string(chunk);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
|
||||
std::vector<int> instance(sample_size);
|
||||
for (int sample = begin; sample < begin + chunk; ++sample) {
|
||||
for (int feature = 0; feature < sample_size; ++feature) {
|
||||
instance[feature] = samples[feature][sample];
|
||||
}
|
||||
predictions[sample] = predict_proba(instance);
|
||||
}
|
||||
semaphore_.release();
|
||||
};
|
||||
|
||||
for (int begin = 0; begin < test_size; begin += chunk_size) {
|
||||
int chunk = std::min(chunk_size, test_size - begin);
|
||||
semaphore_.acquire();
|
||||
threads.emplace_back(worker, test_data, begin, chunk, sample_size,
|
||||
std::ref(probabilities));
|
||||
}
|
||||
for (auto &th : threads) {
|
||||
th.join();
|
||||
}
|
||||
return probabilities;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict (single instance)
|
||||
// --------------------------------------
|
||||
int XSp2de::predict(const std::vector<int> &instance) const
|
||||
{
|
||||
auto p = predict_proba(instance);
|
||||
return static_cast<int>(
|
||||
std::distance(p.begin(), std::max_element(p.begin(), p.end()))
|
||||
);
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict (batch of data)
|
||||
// --------------------------------------
|
||||
std::vector<int> XSp2de::predict(std::vector<std::vector<int>> &test_data)
|
||||
{
|
||||
auto probabilities = predict_proba(test_data);
|
||||
std::vector<int> predictions(probabilities.size(), 0);
|
||||
|
||||
for (size_t i = 0; i < probabilities.size(); i++) {
|
||||
predictions[i] = static_cast<int>(
|
||||
std::distance(probabilities[i].begin(),
|
||||
std::max_element(probabilities[i].begin(),
|
||||
probabilities[i].end()))
|
||||
);
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict (torch::Tensor version)
|
||||
// --------------------------------------
|
||||
torch::Tensor XSp2de::predict(torch::Tensor &X)
|
||||
{
|
||||
auto X_ = TensorUtils::to_matrix(X);
|
||||
auto result_v = predict(X_);
|
||||
return torch::tensor(result_v, torch::kInt32);
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict_proba (torch::Tensor version)
|
||||
// --------------------------------------
|
||||
torch::Tensor XSp2de::predict_proba(torch::Tensor &X)
|
||||
{
|
||||
auto X_ = TensorUtils::to_matrix(X);
|
||||
auto result_v = predict_proba(X_);
|
||||
int n_samples = X.size(1);
|
||||
torch::Tensor result =
|
||||
torch::zeros({ n_samples, statesClass_ }, torch::kDouble);
|
||||
for (int i = 0; i < (int)result_v.size(); ++i) {
|
||||
result.index_put_({ i, "..." }, torch::tensor(result_v[i]));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// score (torch::Tensor version)
|
||||
// --------------------------------------
|
||||
float XSp2de::score(torch::Tensor &X, torch::Tensor &y)
|
||||
{
|
||||
torch::Tensor y_pred = predict(X);
|
||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// score (vector version)
|
||||
// --------------------------------------
|
||||
float XSp2de::score(std::vector<std::vector<int>> &X, std::vector<int> &y)
|
||||
{
|
||||
auto y_pred = predict(X);
|
||||
int correct = 0;
|
||||
for (size_t i = 0; i < y_pred.size(); ++i) {
|
||||
if (y_pred[i] == y[i]) {
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
return static_cast<float>(correct) / static_cast<float>(y_pred.size());
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// Utility: normalize
|
||||
// --------------------------------------
|
||||
void XSp2de::normalize(std::vector<double> &v) const
|
||||
{
|
||||
double sum = 0.0;
|
||||
for (auto &val : v) {
|
||||
sum += val;
|
||||
}
|
||||
if (sum > 0.0) {
|
||||
for (auto &val : v) {
|
||||
val /= sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// to_string
|
||||
// --------------------------------------
|
||||
std::string XSp2de::to_string() const
|
||||
{
|
||||
std::ostringstream oss;
|
||||
oss << "----- XSp2de Model -----\n"
|
||||
<< "nFeatures_ = " << nFeatures_ << "\n"
|
||||
<< "superParent1_ = " << superParent1_ << "\n"
|
||||
<< "superParent2_ = " << superParent2_ << "\n"
|
||||
<< "statesClass_ = " << statesClass_ << "\n\n";
|
||||
|
||||
oss << "States: [";
|
||||
for (auto s : states_) oss << s << " ";
|
||||
oss << "]\n";
|
||||
|
||||
oss << "classCounts_:\n";
|
||||
for (auto v : classCounts_) oss << v << " ";
|
||||
oss << "\nclassPriors_:\n";
|
||||
for (auto v : classPriors_) oss << v << " ";
|
||||
oss << "\nsp1FeatureCounts_ (size=" << sp1FeatureCounts_.size() << ")\n";
|
||||
for (auto v : sp1FeatureCounts_) oss << v << " ";
|
||||
oss << "\nsp2FeatureCounts_ (size=" << sp2FeatureCounts_.size() << ")\n";
|
||||
for (auto v : sp2FeatureCounts_) oss << v << " ";
|
||||
oss << "\nchildCounts_ (size=" << childCounts_.size() << ")\n";
|
||||
for (auto v : childCounts_) oss << v << " ";
|
||||
|
||||
oss << "\nchildOffsets_:\n";
|
||||
for (auto c : childOffsets_) oss << c << " ";
|
||||
|
||||
oss << "\n----------------------------------------\n";
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// Some introspection about the graph
|
||||
// --------------------------------------
|
||||
int XSp2de::getNumberOfNodes() const
|
||||
{
|
||||
// nFeatures + 1 class node
|
||||
return nFeatures_ + 1;
|
||||
}
|
||||
|
||||
int XSp2de::getClassNumStates() const
|
||||
{
|
||||
return statesClass_;
|
||||
}
|
||||
|
||||
int XSp2de::getNFeatures() const
|
||||
{
|
||||
return nFeatures_;
|
||||
}
|
||||
|
||||
int XSp2de::getNumberOfStates() const
|
||||
{
|
||||
// purely an example. Possibly you want to sum up actual
|
||||
// cardinalities or something else.
|
||||
return std::accumulate(states_.begin(), states_.end(), 0) * nFeatures_;
|
||||
}
|
||||
|
||||
int XSp2de::getNumberOfEdges() const
|
||||
{
|
||||
// In an SPNDE with n=2, for each feature we have edges from class, sp1, sp2.
|
||||
// So that’s 3*(nFeatures_) edges, minus the ones for the superparents themselves,
|
||||
// plus the edges from class->superparent1, class->superparent2.
|
||||
// For a quick approximation:
|
||||
// - class->sp1, class->sp2 => 2 edges
|
||||
// - class->child => (nFeatures -2) edges
|
||||
// - sp1->child, sp2->child => 2*(nFeatures -2) edges
|
||||
// total = 2 + (nFeatures-2) + 2*(nFeatures-2) = 2 + 3*(nFeatures-2)
|
||||
// = 3nFeatures - 4 (just an example).
|
||||
// You can adapt to your liking:
|
||||
return 3 * nFeatures_ - 4;
|
||||
}
|
||||
|
||||
} // namespace bayesnet
|
||||
|
@@ -1,75 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XSP2DE_H
|
||||
#define XSP2DE_H
|
||||
|
||||
#include "Classifier.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
class XSp2de : public Classifier {
|
||||
public:
|
||||
XSp2de(int spIndex1, int spIndex2);
|
||||
void setHyperparameters(const nlohmann::json &hyperparameters_) override;
|
||||
void fitx(torch::Tensor &X, torch::Tensor &y, torch::Tensor &weights_, const Smoothing_t smoothing);
|
||||
std::vector<double> predict_proba(const std::vector<int> &instance) const;
|
||||
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>> &test_data) override;
|
||||
int predict(const std::vector<int> &instance) const;
|
||||
std::vector<int> predict(std::vector<std::vector<int>> &test_data) override;
|
||||
torch::Tensor predict(torch::Tensor &X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor &X) override;
|
||||
|
||||
float score(torch::Tensor &X, torch::Tensor &y) override;
|
||||
float score(std::vector<std::vector<int>> &X, std::vector<int> &y) override;
|
||||
std::string to_string() const;
|
||||
std::vector<std::string> graph(const std::string &title) const override {
|
||||
return std::vector<std::string>({title});
|
||||
}
|
||||
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNFeatures() const;
|
||||
int getClassNumStates() const override;
|
||||
int getNumberOfStates() const override;
|
||||
|
||||
protected:
|
||||
void buildModel(const torch::Tensor &weights) override;
|
||||
void trainModel(const torch::Tensor &weights, const bayesnet::Smoothing_t smoothing) override;
|
||||
|
||||
private:
|
||||
void addSample(const std::vector<int> &instance, double weight);
|
||||
void normalize(std::vector<double> &v) const;
|
||||
void computeProbabilities();
|
||||
|
||||
int superParent1_;
|
||||
int superParent2_;
|
||||
int nFeatures_;
|
||||
int statesClass_;
|
||||
double alpha_;
|
||||
double initializer_;
|
||||
|
||||
std::vector<int> states_;
|
||||
std::vector<double> classCounts_;
|
||||
std::vector<double> classPriors_;
|
||||
std::vector<double> sp1FeatureCounts_, sp1FeatureProbs_;
|
||||
std::vector<double> sp2FeatureCounts_, sp2FeatureProbs_;
|
||||
// childOffsets_[f] will be the offset into childCounts_ for feature f.
|
||||
// If f is either superParent1 or superParent2, childOffsets_[f] = -1
|
||||
std::vector<int> childOffsets_;
|
||||
// For each child f, we store p(x_f | c, sp1Val, sp2Val). We'll store the raw
|
||||
// counts in childCounts_, and the probabilities in childProbs_, with a
|
||||
// dimension block of size: states_[f]* statesClass_* states_[sp1]* states_[sp2].
|
||||
std::vector<double> childCounts_;
|
||||
std::vector<double> childProbs_;
|
||||
CountingSemaphore &semaphore_;
|
||||
};
|
||||
|
||||
} // namespace bayesnet
|
||||
#endif // XSP2DE_H
|
@@ -1,450 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <numeric>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
#include "XSPODE.h"
|
||||
#include "bayesnet/utils/TensorUtils.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
// --------------------------------------
|
||||
// Constructor
|
||||
// --------------------------------------
|
||||
XSpode::XSpode(int spIndex)
|
||||
: superParent_{ spIndex }, nFeatures_{ 0 }, statesClass_{ 0 }, alpha_{ 1.0 },
|
||||
initializer_{ 1.0 }, semaphore_{ CountingSemaphore::getInstance() },
|
||||
Classifier(Network())
|
||||
{
|
||||
validHyperparameters = { "parent" };
|
||||
}
|
||||
|
||||
void XSpode::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent")) {
|
||||
superParent_ = hyperparameters["parent"];
|
||||
hyperparameters.erase("parent");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
|
||||
void XSpode::fitx(torch::Tensor & X, torch::Tensor& y, torch::Tensor& weights_, const Smoothing_t smoothing)
|
||||
{
|
||||
m = X.size(1);
|
||||
n = X.size(0);
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
buildModel(weights_);
|
||||
trainModel(weights_, smoothing);
|
||||
fitted = true;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// trainModel
|
||||
// --------------------------------------
|
||||
// Initialize storage needed for the super-parent and child features counts and
|
||||
// probs.
|
||||
// --------------------------------------
|
||||
void XSpode::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
int numInstances = m;
|
||||
nFeatures_ = n;
|
||||
|
||||
// Derive the number of states for each feature and for the class.
|
||||
// (This is just one approach; adapt to match your environment.)
|
||||
// Here, we assume the user also gave us the total #states per feature in e.g.
|
||||
// statesMap. We'll simply reconstruct the integer states_ array. The last
|
||||
// entry is statesClass_.
|
||||
states_.resize(nFeatures_);
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
// Suppose you look up in “statesMap” by the feature name, or read directly
|
||||
// from X. We'll assume states_[f] = max value in X[f] + 1.
|
||||
states_[f] = dataset[f].max().item<int>() + 1;
|
||||
}
|
||||
// For the class: states_.back() = max(y)+1
|
||||
statesClass_ = dataset[-1].max().item<int>() + 1;
|
||||
|
||||
// Initialize counts
|
||||
classCounts_.resize(statesClass_, 0.0);
|
||||
// p(x_sp = spVal | c)
|
||||
// We'll store these counts in spFeatureCounts_[spVal * statesClass_ + c].
|
||||
spFeatureCounts_.resize(states_[superParent_] * statesClass_, 0.0);
|
||||
|
||||
// For each child ≠ sp, we store p(childVal| c, spVal) in a separate block of
|
||||
// childCounts_. childCounts_ will be sized as sum_{child≠sp} (states_[child]
|
||||
// * statesClass_ * states_[sp]). We also need an offset for each child to
|
||||
// index into childCounts_.
|
||||
childOffsets_.resize(nFeatures_, -1);
|
||||
int totalSize = 0;
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent_)
|
||||
continue; // skip sp
|
||||
childOffsets_[f] = totalSize;
|
||||
// block size for this child's counts: states_[f] * statesClass_ *
|
||||
// states_[superParent_]
|
||||
totalSize += (states_[f] * statesClass_ * states_[superParent_]);
|
||||
}
|
||||
childCounts_.resize(totalSize, 0.0);
|
||||
}
|
||||
// --------------------------------------
|
||||
// buildModel
|
||||
// --------------------------------------
|
||||
//
|
||||
// We only store conditional probabilities for:
|
||||
// p(x_sp| c) (the super-parent feature)
|
||||
// p(x_child| c, x_sp) for all child ≠ sp
|
||||
//
|
||||
// --------------------------------------
|
||||
void XSpode::trainModel(const torch::Tensor& weights,
|
||||
const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
// Accumulate raw counts
|
||||
for (int i = 0; i < m; i++) {
|
||||
std::vector<int> instance(nFeatures_ + 1);
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
instance[f] = dataset[f][i].item<int>();
|
||||
}
|
||||
instance[nFeatures_] = dataset[-1][i].item<int>();
|
||||
addSample(instance, weights[i].item<double>());
|
||||
}
|
||||
switch (smoothing) {
|
||||
case bayesnet::Smoothing_t::ORIGINAL:
|
||||
alpha_ = 1.0 / m;
|
||||
break;
|
||||
case bayesnet::Smoothing_t::LAPLACE:
|
||||
alpha_ = 1.0;
|
||||
break;
|
||||
default:
|
||||
alpha_ = 0.0; // No smoothing
|
||||
}
|
||||
initializer_ = std::numeric_limits<double>::max() /
|
||||
(nFeatures_ * nFeatures_); // for numerical stability
|
||||
// Convert raw counts to probabilities
|
||||
computeProbabilities();
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// addSample
|
||||
// --------------------------------------
|
||||
//
|
||||
// instance has size nFeatures_ + 1, with the class at the end.
|
||||
// We add 1 to the appropriate counters for each (c, superParentVal, childVal).
|
||||
//
|
||||
void XSpode::addSample(const std::vector<int>& instance, double weight)
|
||||
{
|
||||
if (weight <= 0.0)
|
||||
return;
|
||||
|
||||
int c = instance.back();
|
||||
// (A) increment classCounts
|
||||
classCounts_[c] += weight;
|
||||
|
||||
// (B) increment super-parent counts => p(x_sp | c)
|
||||
int spVal = instance[superParent_];
|
||||
spFeatureCounts_[spVal * statesClass_ + c] += weight;
|
||||
|
||||
// (C) increment child counts => p(childVal | c, x_sp)
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent_)
|
||||
continue;
|
||||
int childVal = instance[f];
|
||||
int offset = childOffsets_[f];
|
||||
// Compute index in childCounts_.
|
||||
// Layout: [ offset + (spVal * states_[f] + childVal) * statesClass_ + c ]
|
||||
int blockSize = states_[f] * statesClass_;
|
||||
int idx = offset + spVal * blockSize + childVal * statesClass_ + c;
|
||||
childCounts_[idx] += weight;
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// computeProbabilities
|
||||
// --------------------------------------
|
||||
//
|
||||
// Once all samples are added in COUNTS mode, call this to:
|
||||
// p(c)
|
||||
// p(x_sp = spVal | c)
|
||||
// p(x_child = v | c, x_sp = s_sp)
|
||||
//
|
||||
// --------------------------------------
|
||||
void XSpode::computeProbabilities()
|
||||
{
|
||||
double totalCount =
|
||||
std::accumulate(classCounts_.begin(), classCounts_.end(), 0.0);
|
||||
|
||||
// p(c) => classPriors_
|
||||
classPriors_.resize(statesClass_, 0.0);
|
||||
if (totalCount <= 0.0) {
|
||||
// fallback => uniform
|
||||
double unif = 1.0 / static_cast<double>(statesClass_);
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
classPriors_[c] = unif;
|
||||
}
|
||||
} else {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
classPriors_[c] =
|
||||
(classCounts_[c] + alpha_) / (totalCount + alpha_ * statesClass_);
|
||||
}
|
||||
}
|
||||
|
||||
// p(x_sp | c)
|
||||
spFeatureProbs_.resize(spFeatureCounts_.size());
|
||||
// denominator for spVal * statesClass_ + c is just classCounts_[c] + alpha_ *
|
||||
// (#states of sp)
|
||||
int spCard = states_[superParent_];
|
||||
for (int spVal = 0; spVal < spCard; spVal++) {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
double denom = classCounts_[c] + alpha_ * spCard;
|
||||
double num = spFeatureCounts_[spVal * statesClass_ + c] + alpha_;
|
||||
spFeatureProbs_[spVal * statesClass_ + c] = (denom <= 0.0 ? 0.0 : num / denom);
|
||||
}
|
||||
}
|
||||
|
||||
// p(x_child | c, x_sp)
|
||||
childProbs_.resize(childCounts_.size());
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent_)
|
||||
continue;
|
||||
int offset = childOffsets_[f];
|
||||
int childCard = states_[f];
|
||||
|
||||
// For each spVal, c, childVal in childCounts_:
|
||||
for (int spVal = 0; spVal < spCard; spVal++) {
|
||||
for (int childVal = 0; childVal < childCard; childVal++) {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
int idx = offset + spVal * (childCard * statesClass_) +
|
||||
childVal * statesClass_ + c;
|
||||
|
||||
double num = childCounts_[idx] + alpha_;
|
||||
// denominator = spFeatureCounts_[spVal * statesClass_ + c] + alpha_ *
|
||||
// (#states of child)
|
||||
double denom =
|
||||
spFeatureCounts_[spVal * statesClass_ + c] + alpha_ * childCard;
|
||||
childProbs_[idx] = (denom <= 0.0 ? 0.0 : num / denom);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict_proba
|
||||
// --------------------------------------
|
||||
//
|
||||
// For a single instance x of dimension nFeatures_:
|
||||
// P(c | x) ∝ p(c) × p(x_sp | c) × ∏(child ≠ sp) p(x_child | c, x_sp).
|
||||
//
|
||||
// --------------------------------------
|
||||
std::vector<double> XSpode::predict_proba(const std::vector<int>& instance) const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||
}
|
||||
std::vector<double> probs(statesClass_, 0.0);
|
||||
// Multiply p(c) × p(x_sp | c)
|
||||
int spVal = instance[superParent_];
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
double pc = classPriors_[c];
|
||||
double pSpC = spFeatureProbs_[spVal * statesClass_ + c];
|
||||
probs[c] = pc * pSpC * initializer_;
|
||||
}
|
||||
|
||||
// Multiply by each child’s probability p(x_child | c, x_sp)
|
||||
for (int feature = 0; feature < nFeatures_; feature++) {
|
||||
if (feature == superParent_)
|
||||
continue; // skip sp
|
||||
int sf = instance[feature];
|
||||
int offset = childOffsets_[feature];
|
||||
int childCard = states_[feature]; // not used directly, but for clarity
|
||||
// Index into childProbs_ = offset + spVal*(childCard*statesClass_) +
|
||||
// childVal*statesClass_ + c
|
||||
int base = offset + spVal * (childCard * statesClass_) + sf * statesClass_;
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
probs[c] *= childProbs_[base + c];
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize
|
||||
normalize(probs);
|
||||
return probs;
|
||||
}
|
||||
std::vector<std::vector<double>> XSpode::predict_proba(std::vector<std::vector<int>>& test_data)
|
||||
{
|
||||
int test_size = test_data[0].size();
|
||||
int sample_size = test_data.size();
|
||||
auto probabilities = std::vector<std::vector<double>>(
|
||||
test_size, std::vector<double>(statesClass_));
|
||||
|
||||
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
|
||||
std::vector<std::thread> threads;
|
||||
auto worker = [&](const std::vector<std::vector<int>>& samples, int begin,
|
||||
int chunk, int sample_size,
|
||||
std::vector<std::vector<double>>& predictions) {
|
||||
std::string threadName =
|
||||
"(V)PWorker-" + std::to_string(begin) + "-" + std::to_string(chunk);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
|
||||
std::vector<int> instance(sample_size);
|
||||
for (int sample = begin; sample < begin + chunk; ++sample) {
|
||||
for (int feature = 0; feature < sample_size; ++feature) {
|
||||
instance[feature] = samples[feature][sample];
|
||||
}
|
||||
predictions[sample] = predict_proba(instance);
|
||||
}
|
||||
semaphore_.release();
|
||||
};
|
||||
for (int begin = 0; begin < test_size; begin += chunk_size) {
|
||||
int chunk = std::min(chunk_size, test_size - begin);
|
||||
semaphore_.acquire();
|
||||
threads.emplace_back(worker, test_data, begin, chunk, sample_size, std::ref(probabilities));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return probabilities;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// Utility: normalize
|
||||
// --------------------------------------
|
||||
void XSpode::normalize(std::vector<double>& v) const
|
||||
{
|
||||
double sum = 0.0;
|
||||
for (auto val : v) {
|
||||
sum += val;
|
||||
}
|
||||
if (sum <= 0.0) {
|
||||
return;
|
||||
}
|
||||
for (auto& val : v) {
|
||||
val /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// representation of the model
|
||||
// --------------------------------------
|
||||
std::string XSpode::to_string() const
|
||||
{
|
||||
std::ostringstream oss;
|
||||
oss << "----- XSpode Model -----" << std::endl
|
||||
<< "nFeatures_ = " << nFeatures_ << std::endl
|
||||
<< "superParent_ = " << superParent_ << std::endl
|
||||
<< "statesClass_ = " << statesClass_ << std::endl
|
||||
<< std::endl;
|
||||
|
||||
oss << "States: [";
|
||||
for (int s : states_)
|
||||
oss << s << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "classCounts_: [";
|
||||
for (double c : classCounts_)
|
||||
oss << c << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "classPriors_: [";
|
||||
for (double c : classPriors_)
|
||||
oss << c << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "spFeatureCounts_: size = " << spFeatureCounts_.size() << std::endl
|
||||
<< "[";
|
||||
for (double c : spFeatureCounts_)
|
||||
oss << c << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "spFeatureProbs_: size = " << spFeatureProbs_.size() << std::endl
|
||||
<< "[";
|
||||
for (double c : spFeatureProbs_)
|
||||
oss << c << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "childCounts_: size = " << childCounts_.size() << std::endl << "[";
|
||||
for (double cc : childCounts_)
|
||||
oss << cc << " ";
|
||||
oss << "]" << std::endl;
|
||||
|
||||
for (double cp : childProbs_)
|
||||
oss << cp << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "childOffsets_: [";
|
||||
for (int co : childOffsets_)
|
||||
oss << co << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << std::string(40,'-') << std::endl;
|
||||
return oss.str();
|
||||
}
|
||||
int XSpode::getNumberOfNodes() const { return nFeatures_ + 1; }
|
||||
int XSpode::getClassNumStates() const { return statesClass_; }
|
||||
int XSpode::getNFeatures() const { return nFeatures_; }
|
||||
int XSpode::getNumberOfStates() const
|
||||
{
|
||||
return std::accumulate(states_.begin(), states_.end(), 0) * nFeatures_;
|
||||
}
|
||||
int XSpode::getNumberOfEdges() const
|
||||
{
|
||||
return 2 * nFeatures_ + 1;
|
||||
}
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Predict overrides (classifier interface)
|
||||
// ------------------------------------------------------
|
||||
int XSpode::predict(const std::vector<int>& instance) const
|
||||
{
|
||||
auto p = predict_proba(instance);
|
||||
return static_cast<int>(std::distance(p.begin(), std::max_element(p.begin(), p.end())));
|
||||
}
|
||||
std::vector<int> XSpode::predict(std::vector<std::vector<int>>& test_data)
|
||||
{
|
||||
auto probabilities = predict_proba(test_data);
|
||||
std::vector<int> predictions(probabilities.size(), 0);
|
||||
|
||||
for (size_t i = 0; i < probabilities.size(); i++) {
|
||||
predictions[i] = std::distance(
|
||||
probabilities[i].begin(),
|
||||
std::max_element(probabilities[i].begin(), probabilities[i].end()));
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
torch::Tensor XSpode::predict(torch::Tensor& X)
|
||||
{
|
||||
auto X_ = TensorUtils::to_matrix(X);
|
||||
auto result_v = predict(X_);
|
||||
return torch::tensor(result_v, torch::kInt32);
|
||||
}
|
||||
torch::Tensor XSpode::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
auto X_ = TensorUtils::to_matrix(X);
|
||||
auto result_v = predict_proba(X_);
|
||||
int n_samples = X.size(1);
|
||||
torch::Tensor result =
|
||||
torch::zeros({ n_samples, statesClass_ }, torch::kDouble);
|
||||
for (int i = 0; i < result_v.size(); ++i) {
|
||||
result.index_put_({ i, "..." }, torch::tensor(result_v[i]));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
float XSpode::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
torch::Tensor y_pred = predict(X);
|
||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||
}
|
||||
float XSpode::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
||||
{
|
||||
auto y_pred = this->predict(X);
|
||||
int correct = 0;
|
||||
for (int i = 0; i < y_pred.size(); ++i) {
|
||||
if (y_pred[i] == y[i]) {
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
return (double)correct / y_pred.size();
|
||||
}
|
||||
} // namespace bayesnet
|
@@ -1,76 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XSPODE_H
|
||||
#define XSPODE_H
|
||||
|
||||
#include <vector>
|
||||
#include <torch/torch.h>
|
||||
#include "Classifier.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
class XSpode : public Classifier {
|
||||
public:
|
||||
explicit XSpode(int spIndex);
|
||||
std::vector<double> predict_proba(const std::vector<int>& instance) const;
|
||||
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
|
||||
int predict(const std::vector<int>& instance) const;
|
||||
void normalize(std::vector<double>& v) const;
|
||||
std::string to_string() const;
|
||||
int getNFeatures() const;
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
int getClassNumStates() const override;
|
||||
std::vector<int>& getStates();
|
||||
std::vector<std::string> graph(const std::string& title) const override { return std::vector<std::string>({ title }); }
|
||||
void fitx(torch::Tensor& X, torch::Tensor& y, torch::Tensor& weights_, const Smoothing_t smoothing);
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
|
||||
//
|
||||
// Classifier interface
|
||||
//
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
|
||||
private:
|
||||
void addSample(const std::vector<int>& instance, double weight);
|
||||
void computeProbabilities();
|
||||
int superParent_;
|
||||
int nFeatures_;
|
||||
int statesClass_;
|
||||
std::vector<int> states_; // [states_feat0, ..., states_feat(N-1)] (class not included in this array)
|
||||
|
||||
// Class counts
|
||||
std::vector<double> classCounts_; // [c], accumulative
|
||||
std::vector<double> classPriors_; // [c], after normalization
|
||||
|
||||
// For p(x_sp = spVal | c)
|
||||
std::vector<double> spFeatureCounts_; // [spVal * statesClass_ + c]
|
||||
std::vector<double> spFeatureProbs_; // same shape, after normalization
|
||||
|
||||
// For p(x_child = childVal | x_sp = spVal, c)
|
||||
// childCounts_ is big enough to hold all child features except sp:
|
||||
// For each child f, we store childOffsets_[f] as the start index, then
|
||||
// childVal, spVal, c => the data.
|
||||
std::vector<double> childCounts_;
|
||||
std::vector<double> childProbs_;
|
||||
std::vector<int> childOffsets_;
|
||||
|
||||
double alpha_ = 1.0;
|
||||
double initializer_; // for numerical stability
|
||||
CountingSemaphore& semaphore_;
|
||||
};
|
||||
}
|
||||
|
||||
#endif // XSPODE_H
|
@@ -20,8 +20,7 @@ namespace bayesnet {
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal AODE structure, Ensemble::fit
|
||||
// calls buildModel to initialize the base models
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
Ensemble::fit(dataset, features, className, states, smoothing);
|
||||
return *this;
|
||||
|
||||
|
@@ -3,32 +3,29 @@
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
#include "Boost.h"
|
||||
#include <folding.hpp>
|
||||
#include "bayesnet/feature_selection/CFS.h"
|
||||
#include "bayesnet/feature_selection/FCBF.h"
|
||||
#include "bayesnet/feature_selection/IWSS.h"
|
||||
#include <folding.hpp>
|
||||
#include "Boost.h"
|
||||
|
||||
namespace bayesnet {
|
||||
Boost::Boost(bool predict_voting) : Ensemble(predict_voting) {
|
||||
validHyperparameters = {"alpha_block", "order", "convergence", "convergence_best", "bisection",
|
||||
"threshold", "maxTolerance", "predict_voting", "select_features", "block_update"};
|
||||
Boost::Boost(bool predict_voting) : Ensemble(predict_voting)
|
||||
{
|
||||
validHyperparameters = { "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
||||
"predict_voting", "select_features", "block_update" };
|
||||
}
|
||||
void Boost::setHyperparameters(const nlohmann::json &hyperparameters_) {
|
||||
void Boost::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("order")) {
|
||||
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
|
||||
order_algorithm = hyperparameters["order"];
|
||||
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC +
|
||||
", " + Orders.RAND + "]");
|
||||
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
|
||||
}
|
||||
hyperparameters.erase("order");
|
||||
}
|
||||
if (hyperparameters.contains("alpha_block")) {
|
||||
alpha_block = hyperparameters["alpha_block"];
|
||||
hyperparameters.erase("alpha_block");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
@@ -47,8 +44,8 @@ void Boost::setHyperparameters(const nlohmann::json &hyperparameters_) {
|
||||
}
|
||||
if (hyperparameters.contains("maxTolerance")) {
|
||||
maxTolerance = hyperparameters["maxTolerance"];
|
||||
if (maxTolerance < 1 || maxTolerance > 6)
|
||||
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 6]");
|
||||
if (maxTolerance < 1 || maxTolerance > 4)
|
||||
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
|
||||
hyperparameters.erase("maxTolerance");
|
||||
}
|
||||
if (hyperparameters.contains("predict_voting")) {
|
||||
@@ -61,8 +58,7 @@ void Boost::setHyperparameters(const nlohmann::json &hyperparameters_) {
|
||||
selectFeatures = true;
|
||||
select_features_algorithm = selectedAlgorithm;
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " +
|
||||
SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||||
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
@@ -70,25 +66,10 @@ void Boost::setHyperparameters(const nlohmann::json &hyperparameters_) {
|
||||
block_update = hyperparameters["block_update"];
|
||||
hyperparameters.erase("block_update");
|
||||
}
|
||||
if (block_update && alpha_block) {
|
||||
throw std::invalid_argument("alpha_block and block_update cannot be true at the same time");
|
||||
}
|
||||
if (block_update && !bisection) {
|
||||
throw std::invalid_argument("block_update needs bisection to be true");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void Boost::add_model(std::unique_ptr<Classifier> model, double significance) {
|
||||
models.push_back(std::move(model));
|
||||
n_models++;
|
||||
significanceModels.push_back(significance);
|
||||
}
|
||||
void Boost::remove_last_model() {
|
||||
models.pop_back();
|
||||
significanceModels.pop_back();
|
||||
n_models--;
|
||||
}
|
||||
void Boost::buildModel(const torch::Tensor &weights) {
|
||||
void Boost::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
models.clear();
|
||||
significanceModels.clear();
|
||||
@@ -118,7 +99,8 @@ void Boost::buildModel(const torch::Tensor &weights) {
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
std::vector<int> Boost::featureSelection(torch::Tensor &weights_) {
|
||||
std::vector<int> Boost::featureSelection(torch::Tensor& weights_)
|
||||
{
|
||||
int maxFeatures = 0;
|
||||
if (select_features_algorithm == SelectFeatures.CFS) {
|
||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||
@@ -126,30 +108,26 @@ std::vector<int> Boost::featureSelection(torch::Tensor &weights_) {
|
||||
if (threshold < 0 || threshold >0.5) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
||||
}
|
||||
featureSelector =
|
||||
new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
||||
if (threshold < 1e-7 || threshold > 1) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
||||
}
|
||||
featureSelector =
|
||||
new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
}
|
||||
featureSelector->fit();
|
||||
auto featuresUsed = featureSelector->getFeatures();
|
||||
delete featureSelector;
|
||||
return featuresUsed;
|
||||
}
|
||||
std::tuple<torch::Tensor &, double, bool> Boost::update_weights(torch::Tensor &ytrain, torch::Tensor &ypred,
|
||||
torch::Tensor &weights) {
|
||||
std::tuple<torch::Tensor&, double, bool> Boost::update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
||||
{
|
||||
bool terminate = false;
|
||||
double alpha_t = 0;
|
||||
auto mask_wrong = ypred != ytrain;
|
||||
auto mask_right = ypred == ytrain;
|
||||
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
// std::cout << "epsilon_t: " << epsilon_t << " count wrong: " << mask_wrong.sum().item<int>() << " count right: "
|
||||
// << mask_right.sum().item<int>() << std::endl;
|
||||
if (epsilon_t > 0.5) {
|
||||
// Inverse the weights policy (plot ln(wt))
|
||||
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||||
@@ -169,8 +147,8 @@ std::tuple<torch::Tensor &, double, bool> Boost::update_weights(torch::Tensor &y
|
||||
}
|
||||
return { weights, alpha_t, terminate };
|
||||
}
|
||||
std::tuple<torch::Tensor &, double, bool> Boost::update_weights_block(int k, torch::Tensor &ytrain,
|
||||
torch::Tensor &weights) {
|
||||
std::tuple<torch::Tensor&, double, bool> Boost::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
|
||||
{
|
||||
/* Update Block algorithm
|
||||
k = # of models in block
|
||||
n_models = # of models in ensemble to make predictions
|
||||
@@ -265,4 +243,4 @@ std::tuple<torch::Tensor &, double, bool> Boost::update_weights_block(int k, tor
|
||||
n_models = n_models_bak;
|
||||
return { weights, alpha_t, terminate };
|
||||
}
|
||||
} // namespace bayesnet
|
||||
}
|
@@ -27,31 +27,26 @@ namespace bayesnet {
|
||||
class Boost : public Ensemble {
|
||||
public:
|
||||
explicit Boost(bool predict_voting = false);
|
||||
virtual ~Boost() override = default;
|
||||
virtual ~Boost() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
protected:
|
||||
std::vector<int> featureSelection(torch::Tensor& weights_);
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights);
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
|
||||
void add_model(std::unique_ptr<Classifier> model, double significance);
|
||||
void remove_last_model();
|
||||
//
|
||||
// Attributes
|
||||
//
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
// Hyperparameters
|
||||
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
||||
int maxTolerance = 3;
|
||||
std::string order_algorithm = Orders.DESC; // order to process the KBest features asc, desc, rand
|
||||
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
||||
bool convergence = true; //if true, stop when the model does not improve
|
||||
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
std::string select_features_algorithm; // Selected feature selection algorithm
|
||||
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
bool block_update = false; // if true, use block update algorithm, only meaningful if bisection is true
|
||||
bool alpha_block = false; // if true, the alpha is computed with the ensemble built so far and the new model
|
||||
bool block_update = false;
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -4,9 +4,14 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <set>
|
||||
#include <functional>
|
||||
#include <limits.h>
|
||||
#include <tuple>
|
||||
#include <folding.hpp>
|
||||
#include "bayesnet/feature_selection/CFS.h"
|
||||
#include "bayesnet/feature_selection/FCBF.h"
|
||||
#include "bayesnet/feature_selection/IWSS.h"
|
||||
#include "BoostA2DE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
@@ -54,9 +59,6 @@ namespace bayesnet {
|
||||
std::vector<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
if (featuresUsed.size() == 0) {
|
||||
return;
|
||||
}
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
|
@@ -4,14 +4,12 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "BoostAODE.h"
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
#include <limits.h>
|
||||
// #include <loguru.cpp>
|
||||
// #include <loguru.hpp>
|
||||
#include <random>
|
||||
#include <set>
|
||||
#include <functional>
|
||||
#include <limits.h>
|
||||
#include <tuple>
|
||||
#include "BoostAODE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
@@ -48,16 +46,14 @@ namespace bayesnet {
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
n_models = 0;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
for (int i = 0; i < n_models; ++i) {
|
||||
significanceModels.push_back(alpha_t);
|
||||
significanceModels[i] = alpha_t;
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "SelectFeatures. alpha_t: %f n_models: %d", alpha_t, n_models);
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
@@ -81,8 +77,10 @@ namespace bayesnet {
|
||||
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
||||
}
|
||||
// Remove used features
|
||||
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x) { return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed); }),
|
||||
end(featureSelection));
|
||||
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
|
||||
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
|
||||
end(featureSelection)
|
||||
);
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
@@ -94,25 +92,7 @@ namespace bayesnet {
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
torch::Tensor ypred;
|
||||
if (alpha_block) {
|
||||
//
|
||||
// Compute the prediction with the current ensemble + model
|
||||
//
|
||||
// Add the model to the ensemble
|
||||
n_models++;
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1);
|
||||
// Compute the prediction
|
||||
ypred = predict(X_train);
|
||||
// Remove the model from the ensemble
|
||||
model = std::move(models.back());
|
||||
models.pop_back();
|
||||
significanceModels.pop_back();
|
||||
n_models--;
|
||||
} else {
|
||||
ypred = model->predict(X_train);
|
||||
}
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
}
|
||||
@@ -122,7 +102,7 @@ namespace bayesnet {
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
// VLOG_SCOPE_F(2, "finished: %d numItemsPack: %d n_models: %d featuresUsed: %zu", finished, numItemsPack, n_models, featuresUsed.size());
|
||||
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||
}
|
||||
if (block_update) {
|
||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
@@ -165,7 +145,7 @@ namespace bayesnet {
|
||||
}
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
|
@@ -8,6 +8,7 @@
|
||||
#define BOOSTAODE_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
#include "Boost.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
@@ -4,6 +4,7 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
#include "Ensemble.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
@@ -85,7 +86,6 @@ namespace bayesnet {
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
/*std::cout << "model " << i << " prediction: " << ypredict << " significance " << significanceModels[i] << std::endl;*/
|
||||
y_pred += ypredict * significanceModels[i];
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
|
@@ -33,15 +33,9 @@ namespace bayesnet {
|
||||
}
|
||||
std::string dump_cpt() const override
|
||||
{
|
||||
std::string output;
|
||||
for (auto& model : models) {
|
||||
output += model->dump_cpt();
|
||||
output += std::string(80, '-') + "\n";
|
||||
}
|
||||
return output;
|
||||
return "";
|
||||
}
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
torch::Tensor predict_average_voting(torch::Tensor& X);
|
||||
std::vector<std::vector<double>> predict_average_voting(std::vector<std::vector<int>>& X);
|
||||
torch::Tensor predict_average_proba(torch::Tensor& X);
|
||||
@@ -49,10 +43,10 @@ namespace bayesnet {
|
||||
torch::Tensor compute_arg_max(torch::Tensor& X);
|
||||
std::vector<int> compute_arg_max(std::vector<std::vector<double>>& X);
|
||||
torch::Tensor voting(torch::Tensor& votes);
|
||||
// Attributes
|
||||
unsigned n_models;
|
||||
std::vector<std::unique_ptr<Classifier>> models;
|
||||
std::vector<double> significanceModels;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
bool predict_voting;
|
||||
};
|
||||
}
|
||||
|
@@ -1,168 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <folding.hpp>
|
||||
#include <limits.h>
|
||||
#include "XBA2DE.h"
|
||||
#include "bayesnet/classifiers/XSP2DE.h"
|
||||
#include "bayesnet/utils/TensorUtils.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
XBA2DE::XBA2DE(bool predict_voting) : Boost(predict_voting) {}
|
||||
std::vector<int> XBA2DE::initializeModels(const Smoothing_t smoothing) {
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
if (featuresSelected.size() < 2) {
|
||||
notes.push_back("No features selected in initialization");
|
||||
status = ERROR;
|
||||
return std::vector<int>();
|
||||
}
|
||||
for (int i = 0; i < featuresSelected.size() - 1; i++) {
|
||||
for (int j = i + 1; j < featuresSelected.size(); j++) {
|
||||
std::unique_ptr<Classifier> model = std::make_unique<XSp2de>(featuresSelected[i], featuresSelected[j]);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
add_model(std::move(model), 1.0);
|
||||
}
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " +
|
||||
std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void XBA2DE::trainModel(const torch::Tensor &weights, const Smoothing_t smoothing) {
|
||||
//
|
||||
// Logging setup
|
||||
//
|
||||
// loguru::set_thread_name("XBA2DE");
|
||||
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
// loguru::add_file("boostA2DE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
X_train_ = TensorUtils::to_matrix(X_train);
|
||||
y_train_ = TensorUtils::to_vector<int>(y_train);
|
||||
if (convergence) {
|
||||
X_test_ = TensorUtils::to_matrix(X_test);
|
||||
y_test_ = TensorUtils::to_vector<int>(y_test);
|
||||
}
|
||||
fitted = true;
|
||||
double alpha_t = 0;
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
if (featuresUsed.size() == 0) {
|
||||
return;
|
||||
}
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
for (int i = 0; i < n_models; ++i) {
|
||||
significanceModels[i] = alpha_t;
|
||||
}
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double improvement = 1.0;
|
||||
double convergence_threshold = 1e-4;
|
||||
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||
// Step 0: Set the finish condition
|
||||
// epsilon sub t > 0.5 => inverse the weights policy
|
||||
// validation error is not decreasing
|
||||
// run out of features
|
||||
bool ascending = order_algorithm == Orders.ASC;
|
||||
std::mt19937 g{173};
|
||||
std::vector<std::pair<int, int>> pairSelection;
|
||||
while (!finished) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
pairSelection = metrics.SelectKPairs(weights_, featuresUsed, ascending, 0); // Get all the pairs sorted
|
||||
if (order_algorithm == Orders.RAND) {
|
||||
std::shuffle(pairSelection.begin(), pairSelection.end(), g);
|
||||
}
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
while (counter++ < k && pairSelection.size() > 0) {
|
||||
auto feature_pair = pairSelection[0];
|
||||
pairSelection.erase(pairSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<XSp2de>(feature_pair.first, feature_pair.second);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
}
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
numItemsPack++;
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models,
|
||||
// featuresUsed.size());
|
||||
}
|
||||
if (block_update) {
|
||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
}
|
||||
if (convergence && !finished) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f
|
||||
// current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f
|
||||
// prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
if (convergence_best) {
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
} else {
|
||||
// Keep the last accuray obtained as the prior accuracy
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(),
|
||||
// features.size());
|
||||
finished = finished || tolerance > maxTolerance || pairSelection.size() == 0;
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
for (int i = 0; i < numItemsPack; ++i) {
|
||||
significanceModels.pop_back();
|
||||
models.pop_back();
|
||||
n_models--;
|
||||
}
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d",
|
||||
// n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (pairSelection.size() > 0) {
|
||||
notes.push_back("Pairs not used in train: " + std::to_string(pairSelection.size()));
|
||||
status = WARNING;
|
||||
}
|
||||
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||
}
|
||||
std::vector<std::string> XBA2DE::graph(const std::string &title) const { return Ensemble::graph(title); }
|
||||
} // namespace bayesnet
|
@@ -1,28 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XBA2DE_H
|
||||
#define XBA2DE_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "Boost.h"
|
||||
namespace bayesnet {
|
||||
class XBA2DE : public Boost {
|
||||
public:
|
||||
explicit XBA2DE(bool predict_voting = false);
|
||||
virtual ~XBA2DE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "XBA2DE") const override;
|
||||
std::string getVersion() override { return version; };
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
std::vector<std::vector<int>> X_train_, X_test_;
|
||||
std::vector<int> y_train_, y_test_;
|
||||
std::string version = "0.9.7";
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,184 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
#include "XBAODE.h"
|
||||
#include "bayesnet/classifiers/XSPODE.h"
|
||||
#include "bayesnet/utils/TensorUtils.h"
|
||||
#include <limits.h>
|
||||
#include <random>
|
||||
#include <tuple>
|
||||
|
||||
namespace bayesnet
|
||||
{
|
||||
XBAODE::XBAODE() : Boost(false) {}
|
||||
std::vector<int> XBAODE::initializeModels(const Smoothing_t smoothing)
|
||||
{
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
for (const int &feature : featuresSelected) {
|
||||
std::unique_ptr<Classifier> model = std::make_unique<XSpode>(feature);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
add_model(std::move(model), 1.0);
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " +
|
||||
std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void XBAODE::trainModel(const torch::Tensor &weights, const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
X_train_ = TensorUtils::to_matrix(X_train);
|
||||
y_train_ = TensorUtils::to_vector<int>(y_train);
|
||||
if (convergence) {
|
||||
X_test_ = TensorUtils::to_matrix(X_test);
|
||||
y_test_ = TensorUtils::to_vector<int>(y_test);
|
||||
}
|
||||
fitted = true;
|
||||
double alpha_t;
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
n_models = 0;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
auto ypred = predict(X_train_);
|
||||
auto ypred_t = torch::tensor(ypred);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_);
|
||||
// Update significance of the models
|
||||
for (const int &feature : featuresUsed) {
|
||||
significanceModels.pop_back();
|
||||
}
|
||||
for (const int &feature : featuresUsed) {
|
||||
significanceModels.push_back(alpha_t);
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "SelectFeatures. alpha_t: %f n_models: %d", alpha_t,
|
||||
// n_models);
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double improvement = 1.0;
|
||||
double convergence_threshold = 1e-4;
|
||||
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||
// Step 0: Set the finish condition
|
||||
// epsilon sub t > 0.5 => inverse the weights_ policy
|
||||
// validation error is not decreasing
|
||||
// run out of features
|
||||
bool ascending = order_algorithm == bayesnet::Orders.ASC;
|
||||
std::mt19937 g{173};
|
||||
while (!finished) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||
if (order_algorithm == bayesnet::Orders.RAND) {
|
||||
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
||||
}
|
||||
// Remove used features
|
||||
featureSelection.erase(remove_if(featureSelection.begin(), featureSelection.end(),
|
||||
[&](auto x) {
|
||||
return std::find(featuresUsed.begin(), featuresUsed.end(), x) !=
|
||||
featuresUsed.end();
|
||||
}),
|
||||
featureSelection.end());
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k,
|
||||
// featureSelection.size());
|
||||
while (counter++ < k && featureSelection.size() > 0) {
|
||||
auto feature = featureSelection[0];
|
||||
featureSelection.erase(featureSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<XSpode>(feature);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
/*dynamic_cast<XSpode*>(model.get())->fitx(X_train, y_train, weights_,
|
||||
* smoothing); // using exclusive XSpode fit method*/
|
||||
// DEBUG
|
||||
/*std::cout << dynamic_cast<XSpode*>(model.get())->to_string() <<
|
||||
* std::endl;*/
|
||||
// DEBUG
|
||||
std::vector<int> ypred;
|
||||
if (alpha_block) {
|
||||
//
|
||||
// Compute the prediction with the current ensemble + model
|
||||
//
|
||||
// Add the model to the ensemble
|
||||
add_model(std::move(model), 1.0);
|
||||
// Compute the prediction
|
||||
ypred = predict(X_train_);
|
||||
model = std::move(models.back());
|
||||
// Remove the model from the ensemble
|
||||
remove_last_model();
|
||||
} else {
|
||||
ypred = model->predict(X_train_);
|
||||
}
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto ypred_t = torch::tensor(ypred);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_);
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
numItemsPack++;
|
||||
featuresUsed.push_back(feature);
|
||||
add_model(std::move(model), alpha_t);
|
||||
// VLOG_SCOPE_F(2, "finished: %d numItemsPack: %d n_models: %d
|
||||
// featuresUsed: %zu", finished, numItemsPack, n_models,
|
||||
// featuresUsed.size());
|
||||
} // End of the pack
|
||||
if (convergence && !finished) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d
|
||||
// numItemsPack: %d improvement: %f prior: %f current: %f", tolerance,
|
||||
// numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d
|
||||
// numItemsPack: %d improvement: %f prior: %f current: %f", tolerance,
|
||||
// numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
if (convergence_best) {
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
} else {
|
||||
// Keep the last accuray obtained as the prior accuracy
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size:
|
||||
// %zu", tolerance, featuresUsed.size(), features.size());
|
||||
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated
|
||||
// of %d", numItemsPack, n_models);
|
||||
for (int i = featuresUsed.size() - 1; i >= featuresUsed.size() - numItemsPack; --i) {
|
||||
remove_last_model();
|
||||
}
|
||||
// VLOG_SCOPE_F(4, "*Convergence threshold %d models left & %d features
|
||||
// used.", n_models, featuresUsed.size());
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated
|
||||
// n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " +
|
||||
std::to_string(features.size()));
|
||||
status = bayesnet::WARNING;
|
||||
}
|
||||
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||
return;
|
||||
}
|
||||
} // namespace bayesnet
|
@@ -1,27 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XBAODE_H
|
||||
#define XBAODE_H
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
#include "Boost.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class XBAODE : public Boost {
|
||||
public:
|
||||
XBAODE();
|
||||
std::string getVersion() override { return version; };
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
std::vector<std::vector<int>> X_train_, X_test_;
|
||||
std::vector<int> y_train_, y_test_;
|
||||
std::string version = "0.9.7";
|
||||
};
|
||||
}
|
||||
#endif // XBAODE_H
|
@@ -1,141 +1,84 @@
|
||||
// **
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// **
|
||||
// ***************************************************************
|
||||
|
||||
#include <limits>
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
#include "FeatureSelect.h"
|
||||
|
||||
namespace bayesnet {
|
||||
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
|
||||
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
|
||||
|
||||
using namespace torch::indexing; // for Ellipsis constant
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
// ctor
|
||||
//---------------------------------------------------------------------
|
||||
FeatureSelect::FeatureSelect(const torch::Tensor& samples,
|
||||
const std::vector<std::string>& features,
|
||||
const std::string& className,
|
||||
int maxFeatures,
|
||||
int classNumStates,
|
||||
const torch::Tensor& weights)
|
||||
: Metrics(samples, features, className, classNumStates),
|
||||
maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures),
|
||||
weights(weights)
|
||||
{
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
// public helpers
|
||||
//---------------------------------------------------------------------
|
||||
void FeatureSelect::initialize()
|
||||
{
|
||||
selectedFeatures.clear();
|
||||
selectedScores.clear();
|
||||
suLabels.clear();
|
||||
suFeatures.clear();
|
||||
|
||||
fitted = false;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
// Symmetrical Uncertainty (SU)
|
||||
//---------------------------------------------------------------------
|
||||
double FeatureSelect::symmetricalUncertainty(int a, int b)
|
||||
{
|
||||
/*
|
||||
* Compute symmetrical uncertainty. Normalises the information gain
|
||||
* (mutual information) with the entropies of the variables to compensate
|
||||
* the bias due to high‑cardinality features. Range: [0, 1]
|
||||
* See: https://www.sciencedirect.com/science/article/pii/S0020025519303603
|
||||
Compute symmetrical uncertainty. Normalize* information gain (mutual
|
||||
information) with the entropies of the features in order to compensate
|
||||
the bias due to high cardinality features. *Range [0, 1]
|
||||
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
|
||||
*/
|
||||
|
||||
auto x = samples.index({ a, Ellipsis }); // row a => feature a
|
||||
auto y = (b >= 0) ? samples.index({ b, Ellipsis }) // row b (>=0) => feature b
|
||||
: samples.index({ -1, Ellipsis }); // ‑1 treated as last row = labels
|
||||
|
||||
double mu = mutualInformation(x, y, weights);
|
||||
double hx = entropy(x, weights);
|
||||
double hy = entropy(y, weights);
|
||||
|
||||
const double denom = hx + hy;
|
||||
if (denom == 0.0) return 0.0; // perfectly pure variables
|
||||
|
||||
return 2.0 * mu / denom;
|
||||
auto x = samples.index({ a, "..." });
|
||||
auto y = samples.index({ b, "..." });
|
||||
auto mu = mutualInformation(x, y, weights);
|
||||
auto hx = entropy(x, weights);
|
||||
auto hy = entropy(y, weights);
|
||||
return 2.0 * mu / (hx + hy);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
// SU feature–class
|
||||
//---------------------------------------------------------------------
|
||||
void FeatureSelect::computeSuLabels()
|
||||
{
|
||||
// Compute Symmetrical Uncertainty between each feature and the class labels
|
||||
// Compute Simmetrical Uncertainty between features and labels
|
||||
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
|
||||
const int classIdx = static_cast<int>(samples.size(0)) - 1; // labels in last row
|
||||
suLabels.reserve(features.size());
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
suLabels.emplace_back(symmetricalUncertainty(i, classIdx));
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
suLabels.push_back(symmetricalUncertainty(i, -1));
|
||||
}
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
// SU feature–feature with cache
|
||||
//---------------------------------------------------------------------
|
||||
double FeatureSelect::computeSuFeatures(int firstFeature, int secondFeature)
|
||||
double FeatureSelect::computeSuFeatures(const int firstFeature, const int secondFeature)
|
||||
{
|
||||
// Order the pair to exploit symmetry => only one entry in the map
|
||||
auto ordered = std::minmax(firstFeature, secondFeature);
|
||||
const std::pair<int, int> key{ ordered.first, ordered.second };
|
||||
|
||||
auto it = suFeatures.find(key);
|
||||
if (it != suFeatures.end()) return it->second;
|
||||
|
||||
double result = symmetricalUncertainty(key.first, key.second);
|
||||
suFeatures[key] = result; // store once (symmetry handled by ordering)
|
||||
// Compute Simmetrical Uncertainty between features
|
||||
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
|
||||
try {
|
||||
return suFeatures.at({ firstFeature, secondFeature });
|
||||
}
|
||||
catch (const std::out_of_range& e) {
|
||||
double result = symmetricalUncertainty(firstFeature, secondFeature);
|
||||
suFeatures[{firstFeature, secondFeature}] = result;
|
||||
return result;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
// Correlation‑based Feature Selection (CFS) merit
|
||||
//---------------------------------------------------------------------
|
||||
}
|
||||
double FeatureSelect::computeMeritCFS()
|
||||
{
|
||||
const int n = static_cast<int>(selectedFeatures.size());
|
||||
if (n == 0) return 0.0;
|
||||
|
||||
// average r_cf (feature–class)
|
||||
double rcf_sum = 0.0;
|
||||
for (int f : selectedFeatures) rcf_sum += suLabels[f];
|
||||
const double rcf_avg = rcf_sum / n;
|
||||
|
||||
// average r_ff (feature–feature)
|
||||
double rff_sum = 0.0;
|
||||
const auto& pairs = doCombinations(selectedFeatures); // generates each unordered pair once
|
||||
for (const auto& p : pairs) rff_sum += computeSuFeatures(p.first, p.second);
|
||||
|
||||
const double numPairs = n * (n - 1) * 0.5;
|
||||
const double rff_avg = (numPairs > 0) ? rff_sum / numPairs : 0.0;
|
||||
|
||||
// Merit_S = k * r_cf / sqrt( k + k*(k‑1) * r_ff ) (Hall, 1999)
|
||||
const double k = static_cast<double>(n);
|
||||
return (k * rcf_avg) / std::sqrt(k + k * (k - 1) * rff_avg);
|
||||
double rcf = 0;
|
||||
for (auto feature : selectedFeatures) {
|
||||
rcf += suLabels[feature];
|
||||
}
|
||||
double rff = 0;
|
||||
int n = selectedFeatures.size();
|
||||
for (const auto& item : doCombinations(selectedFeatures)) {
|
||||
rff += computeSuFeatures(item.first, item.second);
|
||||
}
|
||||
return rcf / sqrt(n + (n * n - n) * rff);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
// getters
|
||||
//---------------------------------------------------------------------
|
||||
std::vector<int> FeatureSelect::getFeatures() const
|
||||
{
|
||||
if (!fitted) throw std::runtime_error("FeatureSelect not fitted");
|
||||
if (!fitted) {
|
||||
throw std::runtime_error("FeatureSelect not fitted");
|
||||
}
|
||||
return selectedFeatures;
|
||||
}
|
||||
|
||||
std::vector<double> FeatureSelect::getScores() const
|
||||
{
|
||||
if (!fitted) throw std::runtime_error("FeatureSelect not fitted");
|
||||
if (!fitted) {
|
||||
throw std::runtime_error("FeatureSelect not fitted");
|
||||
}
|
||||
return selectedScores;
|
||||
}
|
||||
|
||||
} // namespace bayesnet
|
||||
|
||||
}
|
@@ -209,7 +209,7 @@ namespace bayesnet {
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
double numStates = static_cast<double>(node.second->getNumStates());
|
||||
double smoothing_factor;
|
||||
double smoothing_factor = 0.0;
|
||||
switch (smoothing) {
|
||||
case Smoothing_t::ORIGINAL:
|
||||
smoothing_factor = 1.0 / n_samples;
|
||||
@@ -221,7 +221,7 @@ namespace bayesnet {
|
||||
smoothing_factor = 1 / numStates;
|
||||
break;
|
||||
default:
|
||||
smoothing_factor = 0.0; // No smoothing
|
||||
throw std::invalid_argument("Smoothing method not recognized " + std::to_string(static_cast<int>(smoothing)));
|
||||
}
|
||||
node.second->computeCPT(samples, features, smoothing_factor, weights);
|
||||
semaphore.release();
|
||||
@@ -234,6 +234,16 @@ namespace bayesnet {
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
// std::fstream file;
|
||||
// file.open("cpt.txt", std::fstream::out | std::fstream::app);
|
||||
// file << std::string(80, '*') << std::endl;
|
||||
// for (const auto& item : graph("Test")) {
|
||||
// file << item << std::endl;
|
||||
// }
|
||||
// file << std::string(80, '-') << std::endl;
|
||||
// file << dump_cpt() << std::endl;
|
||||
// file << std::string(80, '=') << std::endl;
|
||||
// file.close();
|
||||
fitted = true;
|
||||
}
|
||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||
|
@@ -10,10 +10,14 @@
|
||||
#include <vector>
|
||||
#include "bayesnet/config.h"
|
||||
#include "Node.h"
|
||||
#include "Smoothing.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
enum class Smoothing_t {
|
||||
NONE = -1,
|
||||
ORIGINAL = 0,
|
||||
LAPLACE,
|
||||
CESTNIK
|
||||
};
|
||||
class Network {
|
||||
public:
|
||||
Network();
|
||||
|
@@ -5,7 +5,6 @@
|
||||
// ***************************************************************
|
||||
|
||||
#include "Node.h"
|
||||
#include <iterator>
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
@@ -94,54 +93,36 @@ namespace bayesnet {
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double smoothing, const torch::Tensor& weights)
|
||||
{
|
||||
dimensions.clear();
|
||||
dimensions.reserve(parents.size() + 1);
|
||||
// Get dimensions of the CPT
|
||||
dimensions.push_back(numStates);
|
||||
for (const auto& parent : parents) {
|
||||
dimensions.push_back(parent->getNumStates());
|
||||
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||
// Create a tensor of zeros with the dimensions of the CPT
|
||||
cpTable = torch::zeros(dimensions, torch::kDouble).to(device) + smoothing;
|
||||
// Fill table with counts
|
||||
auto pos = find(features.begin(), features.end(), name);
|
||||
if (pos == features.end()) {
|
||||
throw std::logic_error("Feature " + name + " not found in dataset");
|
||||
}
|
||||
cpTable = torch::full(dimensions, smoothing, torch::kDouble);
|
||||
|
||||
// Build feature index map
|
||||
std::unordered_map<std::string, int> featureIndexMap;
|
||||
for (size_t i = 0; i < features.size(); ++i) {
|
||||
featureIndexMap[features[i]] = i;
|
||||
int name_index = pos - features.begin();
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||
coordinates.clear();
|
||||
auto sample = dataset.index({ "...", n_sample });
|
||||
coordinates.push_back(sample[name_index]);
|
||||
for (auto parent : parents) {
|
||||
pos = find(features.begin(), features.end(), parent->getName());
|
||||
if (pos == features.end()) {
|
||||
throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
||||
}
|
||||
|
||||
// Gather indices for node and parents
|
||||
std::vector<int64_t> all_indices;
|
||||
all_indices.push_back(featureIndexMap[name]);
|
||||
for (const auto& parent : parents) {
|
||||
all_indices.push_back(featureIndexMap[parent->getName()]);
|
||||
int parent_index = pos - features.begin();
|
||||
coordinates.push_back(sample[parent_index]);
|
||||
}
|
||||
|
||||
// Extract relevant columns: shape (num_features, num_samples)
|
||||
auto indices_tensor = dataset.index_select(0, torch::tensor(all_indices, torch::kLong));
|
||||
indices_tensor = indices_tensor.transpose(0, 1).to(torch::kLong); // (num_samples, num_features)
|
||||
|
||||
// Manual flattening of indices
|
||||
std::vector<int64_t> strides(all_indices.size(), 1);
|
||||
for (int i = strides.size() - 2; i >= 0; --i) {
|
||||
strides[i] = strides[i + 1] * cpTable.size(i + 1);
|
||||
// Increment the count of the corresponding coordinate
|
||||
cpTable.index_put_({ coordinates }, weights.index({ n_sample }), true);
|
||||
}
|
||||
auto indices_tensor_cpu = indices_tensor.cpu();
|
||||
auto indices_accessor = indices_tensor_cpu.accessor<int64_t, 2>();
|
||||
std::vector<int64_t> flat_indices(indices_tensor.size(0));
|
||||
for (int64_t i = 0; i < indices_tensor.size(0); ++i) {
|
||||
int64_t idx = 0;
|
||||
for (size_t j = 0; j < strides.size(); ++j) {
|
||||
idx += indices_accessor[i][j] * strides[j];
|
||||
}
|
||||
flat_indices[i] = idx;
|
||||
}
|
||||
|
||||
// Accumulate weights into flat CPT
|
||||
auto flat_cpt = cpTable.flatten();
|
||||
auto flat_indices_tensor = torch::from_blob(flat_indices.data(), { (int64_t)flat_indices.size() }, torch::kLong).clone();
|
||||
flat_cpt.index_add_(0, flat_indices_tensor, weights.cpu());
|
||||
cpTable = flat_cpt.view(cpTable.sizes());
|
||||
|
||||
// Normalize the counts (dividing each row by the sum of the row)
|
||||
cpTable /= cpTable.sum(0, true);
|
||||
// Normalize the counts
|
||||
// Divide each row by the sum of the row
|
||||
cpTable = cpTable / cpTable.sum(0);
|
||||
}
|
||||
double Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||
{
|
||||
|
@@ -1,17 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef SMOOTHING_H
|
||||
#define SMOOTHING_H
|
||||
namespace bayesnet {
|
||||
enum class Smoothing_t {
|
||||
NONE = -1,
|
||||
ORIGINAL = 0,
|
||||
LAPLACE,
|
||||
CESTNIK
|
||||
};
|
||||
}
|
||||
#endif // SMOOTHING_H
|
@@ -32,14 +32,6 @@ public:
|
||||
cv_.notify_one();
|
||||
}
|
||||
}
|
||||
uint getCount() const
|
||||
{
|
||||
return count_;
|
||||
}
|
||||
uint getMaxCount() const
|
||||
{
|
||||
return max_count_;
|
||||
}
|
||||
private:
|
||||
CountingSemaphore()
|
||||
: max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))),
|
||||
|
@@ -53,14 +53,14 @@ namespace bayesnet {
|
||||
}
|
||||
}
|
||||
|
||||
void MST::insertElement(std::list<int>& variables, int variable)
|
||||
void insertElement(std::list<int>& variables, int variable)
|
||||
{
|
||||
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
|
||||
variables.push_front(variable);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<int, int>> MST::reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
||||
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
||||
{
|
||||
// Create the edges of a DAG from the MST
|
||||
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
|
||||
|
@@ -14,8 +14,6 @@ namespace bayesnet {
|
||||
public:
|
||||
MST() = default;
|
||||
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||
void insertElement(std::list<int>& variables, int variable);
|
||||
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original);
|
||||
std::vector<std::pair<int, int>> maximumSpanningTree();
|
||||
private:
|
||||
torch::Tensor weights;
|
||||
|
@@ -1,51 +0,0 @@
|
||||
#ifndef TENSORUTILS_H
|
||||
#define TENSORUTILS_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
class TensorUtils {
|
||||
public:
|
||||
static std::vector<std::vector<int>> to_matrix(const torch::Tensor& X)
|
||||
{
|
||||
// Ensure tensor is contiguous in memory
|
||||
auto X_contig = X.contiguous();
|
||||
|
||||
// Access tensor data pointer directly
|
||||
auto data_ptr = X_contig.data_ptr<int>();
|
||||
|
||||
// IF you are using int64_t as the data type, use the following line
|
||||
//auto data_ptr = X_contig.data_ptr<int64_t>();
|
||||
//std::vector<std::vector<int64_t>> data(X.size(0), std::vector<int64_t>(X.size(1)));
|
||||
|
||||
// Prepare output container
|
||||
std::vector<std::vector<int>> data(X.size(0), std::vector<int>(X.size(1)));
|
||||
|
||||
// Fill the 2D vector in a single loop using pointer arithmetic
|
||||
int rows = X.size(0);
|
||||
int cols = X.size(1);
|
||||
for (int i = 0; i < rows; ++i) {
|
||||
std::copy(data_ptr + i * cols, data_ptr + (i + 1) * cols, data[i].begin());
|
||||
}
|
||||
return data;
|
||||
}
|
||||
template <typename T>
|
||||
static std::vector<T> to_vector(const torch::Tensor& y)
|
||||
{
|
||||
// Ensure the tensor is contiguous in memory
|
||||
auto y_contig = y.contiguous();
|
||||
|
||||
// Access data pointer
|
||||
auto data_ptr = y_contig.data_ptr<T>();
|
||||
|
||||
// Prepare output container
|
||||
std::vector<T> data(y.size(0));
|
||||
|
||||
// Copy data efficiently
|
||||
std::copy(data_ptr, data_ptr + y.size(0), data.begin());
|
||||
|
||||
return data;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#endif // TENSORUTILS_H
|
@@ -1,4 +0,0 @@
|
||||
@PACKAGE_INIT@
|
||||
|
||||
include("${CMAKE_CURRENT_LIST_DIR}/bayesnetTargets.cmake")
|
||||
|
@@ -137,7 +137,7 @@
|
||||
|
||||
include(CMakeParseArguments)
|
||||
|
||||
option(CODE_COVERAGE_VERBOSE "Verbose information" TRUE)
|
||||
option(CODE_COVERAGE_VERBOSE "Verbose information" FALSE)
|
||||
|
||||
# Check prereqs
|
||||
find_program( GCOV_PATH gcov )
|
||||
@@ -160,12 +160,8 @@ foreach(LANG ${LANGUAGES})
|
||||
endif()
|
||||
elseif(NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "GNU"
|
||||
AND NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "(LLVM)?[Ff]lang")
|
||||
if ("${LANG}" MATCHES "CUDA")
|
||||
message(STATUS "Ignoring CUDA")
|
||||
else()
|
||||
message(FATAL_ERROR "Compiler is not GNU or Flang! Aborting...")
|
||||
endif()
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
set(COVERAGE_COMPILER_FLAGS "-g --coverage"
|
||||
|
@@ -11,4 +11,4 @@ static constexpr std::string_view project_name = "@PROJECT_NAME@";
|
||||
static constexpr std::string_view project_version = "@PROJECT_VERSION@";
|
||||
static constexpr std::string_view project_description = "@PROJECT_DESCRIPTION@";
|
||||
static constexpr std::string_view git_sha = "@GIT_SHA@";
|
||||
static constexpr std::string_view data_path = "@bayesnet_SOURCE_DIR@/tests/data/";
|
||||
static constexpr std::string_view data_path = "@BayesNet_SOURCE_DIR@/tests/data/";
|
@@ -1,16 +1,36 @@
|
||||
@startuml
|
||||
title clang-uml class diagram model
|
||||
class "bayesnet::Node" as C_0010428199432536647474
|
||||
class C_0010428199432536647474 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::Metrics" as C_0000736965376885623323
|
||||
class C_0000736965376885623323 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Metrics() = default : void
|
||||
+Metrics(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||
+Metrics(const std::vector<std::vector<int>> & vsamples, const std::vector<int> & labels, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||
..
|
||||
+SelectKBestWeighted(const torch::Tensor & weights, bool ascending = false, unsigned int k = 0) : std::vector<int>
|
||||
+conditionalEdge(const torch::Tensor & weights) : torch::Tensor
|
||||
+conditionalEdgeWeights(std::vector<float> & weights) : std::vector<float>
|
||||
#doCombinations<T>(const std::vector<T> & source) : std::vector<std::pair<T, T> >
|
||||
#entropy(const torch::Tensor & feature, const torch::Tensor & weights) : double
|
||||
+getScoresKBest() const : std::vector<double>
|
||||
+maximumSpanningTree(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : std::vector<std::pair<int,int>>
|
||||
+mutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & weights) : double
|
||||
#pop_first<T>(std::vector<T> & v) : T
|
||||
__
|
||||
#className : std::string
|
||||
#features : std::vector<std::string>
|
||||
#samples : torch::Tensor
|
||||
}
|
||||
class "bayesnet::Node" as C_0001303524929067080934
|
||||
class C_0001303524929067080934 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Node(const std::string &) : void
|
||||
..
|
||||
+addChild(Node *) : void
|
||||
+addParent(Node *) : void
|
||||
+clear() : void
|
||||
+computeCPT(const torch::Tensor & dataset, const std::vector<std::string> & features, const double smoothing, const torch::Tensor & weights) : void
|
||||
+computeCPT(const torch::Tensor & dataset, const std::vector<std::string> & features, const double laplaceSmoothing, const torch::Tensor & weights) : void
|
||||
+getCPT() : torch::Tensor &
|
||||
+getChildren() : std::vector<Node *> &
|
||||
+getFactorValue(std::map<std::string,int> &) : double
|
||||
+getFactorValue(std::map<std::string,int> &) : float
|
||||
+getName() const : std::string
|
||||
+getNumStates() const : int
|
||||
+getParents() : std::vector<Node *> &
|
||||
@@ -21,29 +41,24 @@ class C_0010428199432536647474 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+setNumStates(int) : void
|
||||
__
|
||||
}
|
||||
enum "bayesnet::Smoothing_t" as C_0013393078277439680282
|
||||
enum C_0013393078277439680282 {
|
||||
NONE
|
||||
ORIGINAL
|
||||
LAPLACE
|
||||
CESTNIK
|
||||
}
|
||||
class "bayesnet::Network" as C_0009493661199123436603
|
||||
class C_0009493661199123436603 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::Network" as C_0001186707649890429575
|
||||
class C_0001186707649890429575 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Network() : void
|
||||
+Network(float) : void
|
||||
+Network(const Network &) : void
|
||||
+~Network() = default : void
|
||||
..
|
||||
+addEdge(const std::string &, const std::string &) : void
|
||||
+addNode(const std::string &) : void
|
||||
+dump_cpt() const : std::string
|
||||
+fit(const torch::Tensor & samples, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||
+fit(const torch::Tensor & X, const torch::Tensor & y, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||
+fit(const std::vector<std::vector<int>> & input_data, const std::vector<int> & labels, const std::vector<double> & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||
+fit(const torch::Tensor & samples, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
||||
+fit(const torch::Tensor & X, const torch::Tensor & y, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
||||
+fit(const std::vector<std::vector<int>> & input_data, const std::vector<int> & labels, const std::vector<double> & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
||||
+getClassName() const : std::string
|
||||
+getClassNumStates() const : int
|
||||
+getEdges() const : std::vector<std::pair<std::string,std::string>>
|
||||
+getFeatures() const : std::vector<std::string>
|
||||
+getMaxThreads() const : float
|
||||
+getNodes() : std::map<std::string,std::unique_ptr<Node>> &
|
||||
+getNumEdges() const : int
|
||||
+getSamples() : torch::Tensor &
|
||||
@@ -61,21 +76,21 @@ class C_0009493661199123436603 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+version() : std::string
|
||||
__
|
||||
}
|
||||
enum "bayesnet::status_t" as C_0005907365846270811004
|
||||
enum C_0005907365846270811004 {
|
||||
enum "bayesnet::status_t" as C_0000738420730783851375
|
||||
enum C_0000738420730783851375 {
|
||||
NORMAL
|
||||
WARNING
|
||||
ERROR
|
||||
}
|
||||
abstract "bayesnet::BaseClassifier" as C_0002617087915615796317
|
||||
abstract C_0002617087915615796317 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
abstract "bayesnet::BaseClassifier" as C_0000327135989451974539
|
||||
abstract C_0000327135989451974539 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+~BaseClassifier() = default : void
|
||||
..
|
||||
{abstract} +dump_cpt() const = 0 : std::string
|
||||
{abstract} +fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||
{abstract} +fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights) = 0 : BaseClassifier &
|
||||
{abstract} +fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
||||
{abstract} +getClassNumStates() const = 0 : int
|
||||
{abstract} +getNotes() const = 0 : std::vector<std::string>
|
||||
{abstract} +getNumberOfEdges() const = 0 : int
|
||||
@@ -94,37 +109,12 @@ abstract C_0002617087915615796317 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
{abstract} +setHyperparameters(const nlohmann::json & hyperparameters) = 0 : void
|
||||
{abstract} +show() const = 0 : std::vector<std::string>
|
||||
{abstract} +topological_order() = 0 : std::vector<std::string>
|
||||
{abstract} #trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) = 0 : void
|
||||
{abstract} #trainModel(const torch::Tensor & weights) = 0 : void
|
||||
__
|
||||
#notes : std::vector<std::string>
|
||||
#status : status_t
|
||||
#validHyperparameters : std::vector<std::string>
|
||||
}
|
||||
class "bayesnet::Metrics" as C_0005895723015084986588
|
||||
class C_0005895723015084986588 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Metrics() = default : void
|
||||
+Metrics(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||
+Metrics(const std::vector<std::vector<int>> & vsamples, const std::vector<int> & labels, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||
..
|
||||
+SelectKBestWeighted(const torch::Tensor & weights, bool ascending = false, unsigned int k = 0) : std::vector<int>
|
||||
+SelectKPairs(const torch::Tensor & weights, std::vector<int> & featuresExcluded, bool ascending = false, unsigned int k = 0) : std::vector<std::pair<int,int>>
|
||||
+conditionalEdge(const torch::Tensor & weights) : torch::Tensor
|
||||
+conditionalEntropy(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & labels, const torch::Tensor & weights) : double
|
||||
+conditionalMutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & labels, const torch::Tensor & weights) : double
|
||||
#doCombinations<T>(const std::vector<T> & source) : std::vector<std::pair<T, T> >
|
||||
+entropy(const torch::Tensor & feature, const torch::Tensor & weights) : double
|
||||
+getScoresKBest() const : std::vector<double>
|
||||
+getScoresKPairs() const : std::vector<std::pair<std::pair<int,int>,double>>
|
||||
+maximumSpanningTree(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : std::vector<std::pair<int,int>>
|
||||
+mutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & weights) : double
|
||||
#pop_first<T>(std::vector<T> & v) : T
|
||||
__
|
||||
#className : std::string
|
||||
#features : std::vector<std::string>
|
||||
#samples : torch::Tensor
|
||||
}
|
||||
abstract "bayesnet::Classifier" as C_0016351972983202413152
|
||||
abstract C_0016351972983202413152 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
abstract "bayesnet::Classifier" as C_0002043996622900301644
|
||||
abstract C_0002043996622900301644 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Classifier(Network model) : void
|
||||
+~Classifier() = default : void
|
||||
..
|
||||
@@ -133,10 +123,10 @@ abstract C_0016351972983202413152 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
{abstract} #buildModel(const torch::Tensor & weights) = 0 : void
|
||||
#checkFitParameters() : void
|
||||
+dump_cpt() const : std::string
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||
+fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights, const Smoothing_t smoothing) : Classifier &
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
||||
+fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights) : Classifier &
|
||||
+getClassNumStates() const : int
|
||||
+getNotes() const : std::vector<std::string>
|
||||
+getNumberOfEdges() const : int
|
||||
@@ -153,9 +143,8 @@ abstract C_0016351972983202413152 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||
+show() const : std::vector<std::string>
|
||||
+topological_order() : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
__
|
||||
#CLASSIFIER_NOT_FITTED : const std::string
|
||||
#className : std::string
|
||||
#dataset : torch::Tensor
|
||||
#features : std::vector<std::string>
|
||||
@@ -164,10 +153,31 @@ __
|
||||
#metrics : Metrics
|
||||
#model : Network
|
||||
#n : unsigned int
|
||||
#notes : std::vector<std::string>
|
||||
#states : std::map<std::string,std::vector<int>>
|
||||
#status : status_t
|
||||
}
|
||||
class "bayesnet::Proposal" as C_0017759964713298103839
|
||||
class C_0017759964713298103839 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::KDB" as C_0001112865019015250005
|
||||
class C_0001112865019015250005 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+KDB(int k, float theta = 0.03) : void
|
||||
+~KDB() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::TAN" as C_0001760994424884323017
|
||||
class C_0001760994424884323017 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+TAN() : void
|
||||
+~TAN() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
||||
__
|
||||
}
|
||||
class "bayesnet::Proposal" as C_0002219995589162262979
|
||||
class C_0002219995589162262979 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Proposal(torch::Tensor & pDataset, std::vector<std::string> & features_, std::string & className_) : void
|
||||
+~Proposal() : void
|
||||
..
|
||||
@@ -180,140 +190,74 @@ __
|
||||
#discretizers : map<std::string,mdlp::CPPFImdlp *>
|
||||
#y : torch::Tensor
|
||||
}
|
||||
class "bayesnet::KDB" as C_0008902920152122000044
|
||||
class C_0008902920152122000044 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+KDB(int k, float theta = 0.03) : void
|
||||
+~KDB() = default : void
|
||||
class "bayesnet::TANLd" as C_0001668829096702037834
|
||||
class C_0001668829096702037834 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+TANLd() : void
|
||||
+~TANLd() = default : void
|
||||
..
|
||||
#add_m_edges(int idx, std::vector<int> & S, torch::Tensor & weights) : void
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::KDBLd" as C_0002756018222998454702
|
||||
class C_0002756018222998454702 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+KDBLd(int k) : void
|
||||
+~KDBLd() = default : void
|
||||
..
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : KDBLd &
|
||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : TANLd &
|
||||
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
class "bayesnet::SPODE" as C_0004096182510460307610
|
||||
class C_0004096182510460307610 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
abstract "bayesnet::FeatureSelect" as C_0001695326193250580823
|
||||
abstract C_0001695326193250580823 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+FeatureSelect(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||
+~FeatureSelect() : void
|
||||
..
|
||||
#computeMeritCFS() : double
|
||||
#computeSuFeatures(const int a, const int b) : double
|
||||
#computeSuLabels() : void
|
||||
{abstract} +fit() = 0 : void
|
||||
+getFeatures() const : std::vector<int>
|
||||
+getScores() const : std::vector<double>
|
||||
#initialize() : void
|
||||
#symmetricalUncertainty(int a, int b) : double
|
||||
__
|
||||
#fitted : bool
|
||||
#maxFeatures : int
|
||||
#selectedFeatures : std::vector<int>
|
||||
#selectedScores : std::vector<double>
|
||||
#suFeatures : std::map<std::pair<int,int>,double>
|
||||
#suLabels : std::vector<double>
|
||||
#weights : const torch::Tensor &
|
||||
}
|
||||
class "bayesnet::CFS" as C_0000011627355691342494
|
||||
class C_0000011627355691342494 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+CFS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||
+~CFS() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::FCBF" as C_0000144682015341746929
|
||||
class C_0000144682015341746929 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+FCBF(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||
+~FCBF() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::IWSS" as C_0000008268514674428553
|
||||
class C_0000008268514674428553 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+IWSS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||
+~IWSS() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::SPODE" as C_0000512022813807538451
|
||||
class C_0000512022813807538451 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+SPODE(int root) : void
|
||||
+~SPODE() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::SPODELd" as C_0010957245114062042836
|
||||
class C_0010957245114062042836 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+SPODELd(int root) : void
|
||||
+~SPODELd() = default : void
|
||||
..
|
||||
+commonFit(const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||
+graph(const std::string & name = "SPODELd") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
class "bayesnet::SPnDE" as C_0016268916386101512883
|
||||
class C_0016268916386101512883 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+SPnDE(std::vector<int> parents) : void
|
||||
+~SPnDE() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "SPnDE") const : std::vector<std::string>
|
||||
__
|
||||
}
|
||||
class "bayesnet::TAN" as C_0014087955399074584137
|
||||
class C_0014087955399074584137 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+TAN() : void
|
||||
+~TAN() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::TANLd" as C_0013350632773616302678
|
||||
class C_0013350632773616302678 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+TANLd() : void
|
||||
+~TANLd() = default : void
|
||||
..
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : TANLd &
|
||||
+graph(const std::string & name = "TANLd") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
__
|
||||
}
|
||||
class "bayesnet::XSp2de" as C_0007640742442325463418
|
||||
class C_0007640742442325463418 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+XSp2de(int spIndex1, int spIndex2) : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+fitx(torch::Tensor & X, torch::Tensor & y, torch::Tensor & weights_, const Smoothing_t smoothing) : void
|
||||
+getClassNumStates() const : int
|
||||
+getNFeatures() const : int
|
||||
+getNumberOfEdges() const : int
|
||||
+getNumberOfNodes() const : int
|
||||
+getNumberOfStates() const : int
|
||||
+graph(const std::string & title) const : std::vector<std::string>
|
||||
+predict(const std::vector<int> & instance) const : int
|
||||
+predict(std::vector<std::vector<int>> & test_data) : std::vector<int>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
+predict_proba(const std::vector<int> & instance) const : std::vector<double>
|
||||
+predict_proba(std::vector<std::vector<int>> & test_data) : std::vector<std::vector<double>>
|
||||
+predict_proba(torch::Tensor & X) : torch::Tensor
|
||||
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
|
||||
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
+to_string() const : std::string
|
||||
#trainModel(const torch::Tensor & weights, const bayesnet::Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::XSpode" as C_0015654113248178830206
|
||||
class C_0015654113248178830206 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+XSpode(int spIndex) : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+fitx(torch::Tensor & X, torch::Tensor & y, torch::Tensor & weights_, const Smoothing_t smoothing) : void
|
||||
+getClassNumStates() const : int
|
||||
+getNFeatures() const : int
|
||||
+getNumberOfEdges() const : int
|
||||
+getNumberOfNodes() const : int
|
||||
+getNumberOfStates() const : int
|
||||
+getStates() : std::vector<int> &
|
||||
+graph(const std::string & title) const : std::vector<std::string>
|
||||
+normalize(std::vector<double> & v) const : void
|
||||
+predict(const std::vector<int> & instance) const : int
|
||||
+predict(std::vector<std::vector<int>> & X) : std::vector<int>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
+predict_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
||||
+predict_proba(torch::Tensor & X) : torch::Tensor
|
||||
+predict_proba(const std::vector<int> & instance) const : std::vector<double>
|
||||
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
+to_string() const : std::string
|
||||
#trainModel(const torch::Tensor & weights, const bayesnet::Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::TensorUtils" as C_0010304804115474100819
|
||||
class C_0010304804115474100819 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
{static} +to_matrix(const torch::Tensor & X) : std::vector<std::vector<int>>
|
||||
{static} +to_vector<T>(const torch::Tensor & y) : std::vector<T>
|
||||
__
|
||||
}
|
||||
class "bayesnet::Ensemble" as C_0015881931090842884611
|
||||
class C_0015881931090842884611 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::Ensemble" as C_0001985241386355360576
|
||||
class C_0001985241386355360576 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Ensemble(bool predict_voting = true) : void
|
||||
+~Ensemble() = default : void
|
||||
..
|
||||
@@ -336,7 +280,7 @@ class C_0015881931090842884611 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||
+show() const : std::vector<std::string>
|
||||
+topological_order() : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
#voting(torch::Tensor & votes) : torch::Tensor
|
||||
__
|
||||
#models : std::vector<std::unique_ptr<Classifier>>
|
||||
@@ -344,244 +288,41 @@ __
|
||||
#predict_voting : bool
|
||||
#significanceModels : std::vector<double>
|
||||
}
|
||||
class "bayesnet::A2DE" as C_0001410789567057647859
|
||||
class C_0001410789567057647859 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+A2DE(bool predict_voting = false) : void
|
||||
+~A2DE() : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & title = "A2DE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::AODE" as C_0006288892608974306258
|
||||
class C_0006288892608974306258 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+AODE(bool predict_voting = false) : void
|
||||
+~AODE() : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & title = "AODE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::AODELd" as C_0003898187834670349177
|
||||
class C_0003898187834670349177 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+AODELd(bool predict_voting = true) : void
|
||||
+~AODELd() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+fit(torch::Tensor & X_, torch::Tensor & y_, const std::vector<std::string> & features_, const std::string & className_, std::map<std::string,std::vector<int>> & states_, const Smoothing_t smoothing) : AODELd &
|
||||
+graph(const std::string & name = "AODELd") const : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
abstract "bayesnet::FeatureSelect" as C_0013562609546004646591
|
||||
abstract C_0013562609546004646591 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+FeatureSelect(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||
+~FeatureSelect() : void
|
||||
..
|
||||
#computeMeritCFS() : double
|
||||
#computeSuFeatures(const int a, const int b) : double
|
||||
#computeSuLabels() : void
|
||||
{abstract} +fit() = 0 : void
|
||||
+getFeatures() const : std::vector<int>
|
||||
+getScores() const : std::vector<double>
|
||||
#initialize() : void
|
||||
#symmetricalUncertainty(int a, int b) : double
|
||||
__
|
||||
#fitted : bool
|
||||
#maxFeatures : int
|
||||
#selectedFeatures : std::vector<int>
|
||||
#selectedScores : std::vector<double>
|
||||
#suFeatures : std::map<std::pair<int,int>,double>
|
||||
#suLabels : std::vector<double>
|
||||
#weights : const torch::Tensor &
|
||||
}
|
||||
class "bayesnet::(anonymous_60357672)" as C_0006397015156479549697
|
||||
class C_0006397015156479549697 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::(anonymous_45089536)" as C_0001186398587753535158
|
||||
class C_0001186398587753535158 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60358326)" as C_0013066254331852347304
|
||||
class C_0013066254331852347304 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::(anonymous_45090163)" as C_0000602764946063116717
|
||||
class C_0000602764946063116717 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::Boost" as C_0009819322948617116148
|
||||
class C_0009819322948617116148 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Boost(bool predict_voting = false) : void
|
||||
+~Boost() = default : void
|
||||
..
|
||||
#add_model(std::unique_ptr<Classifier> model, double significance) : void
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
#featureSelection(torch::Tensor & weights_) : std::vector<int>
|
||||
#remove_last_model() : void
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
#update_weights(torch::Tensor & ytrain, torch::Tensor & ypred, torch::Tensor & weights) : std::tuple<torch::Tensor &,double,bool>
|
||||
#update_weights_block(int k, torch::Tensor & ytrain, torch::Tensor & weights) : std::tuple<torch::Tensor &,double,bool>
|
||||
__
|
||||
#X_test : torch::Tensor
|
||||
#X_train : torch::Tensor
|
||||
#alpha_block : bool
|
||||
#bisection : bool
|
||||
#block_update : bool
|
||||
#convergence : bool
|
||||
#convergence_best : bool
|
||||
#featureSelector : FeatureSelect *
|
||||
#maxTolerance : int
|
||||
#order_algorithm : std::string
|
||||
#selectFeatures : bool
|
||||
#select_features_algorithm : std::string
|
||||
#threshold : double
|
||||
#y_test : torch::Tensor
|
||||
#y_train : torch::Tensor
|
||||
}
|
||||
class "bayesnet::BoostA2DE" as C_0000272055465257861326
|
||||
class C_0000272055465257861326 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+BoostA2DE(bool predict_voting = false) : void
|
||||
+~BoostA2DE() = default : void
|
||||
..
|
||||
+graph(const std::string & title = "BoostA2DE") const : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::(anonymous_60425028)" as C_0000461144706913711531
|
||||
class C_0000461144706913711531 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60425682)" as C_0014849589915262463453
|
||||
class C_0014849589915262463453 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::BoostAODE" as C_0002867772739198819061
|
||||
class C_0002867772739198819061 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::BoostAODE" as C_0000358471592399852382
|
||||
class C_0000358471592399852382 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+BoostAODE(bool predict_voting = false) : void
|
||||
+~BoostAODE() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & title = "BoostAODE") const : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::XBA2DE" as C_0008480973840710001141
|
||||
class C_0008480973840710001141 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+XBA2DE(bool predict_voting = false) : void
|
||||
+~XBA2DE() = default : void
|
||||
..
|
||||
+getVersion() : std::string
|
||||
+graph(const std::string & title = "XBA2DE") const : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::(anonymous_60414016)" as C_0008746994658440620779
|
||||
class C_0008746994658440620779 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60414670)" as C_0008030559132212449356
|
||||
class C_0008030559132212449356 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::XBAODE" as C_0005198482342493966768
|
||||
class C_0005198482342493966768 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+XBAODE() : void
|
||||
..
|
||||
+getVersion() : std::string
|
||||
#trainModel(const torch::Tensor & weights, const bayesnet::Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::CFS" as C_0000093018845530739957
|
||||
class C_0000093018845530739957 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+CFS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||
+~CFS() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::FCBF" as C_0001157456122733975432
|
||||
class C_0001157456122733975432 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+FCBF(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||
+~FCBF() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::IWSS" as C_0000066148117395428429
|
||||
class C_0000066148117395428429 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+IWSS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||
+~IWSS() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::(anonymous_60810808)" as C_0012002108046995621535
|
||||
class C_0012002108046995621535 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60811462)" as C_0004735044229422764240
|
||||
class C_0004735044229422764240 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60804220)" as C_0007082100550474633839
|
||||
class C_0007082100550474633839 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60804874)" as C_0003669430095936529648
|
||||
class C_0003669430095936529648 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60809706)" as C_0012336951062058157227
|
||||
class C_0012336951062058157227 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60810360)" as C_0002435892998884329673
|
||||
class C_0002435892998884329673 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::MST" as C_0001054867409378333602
|
||||
class C_0001054867409378333602 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::MST" as C_0000131858426172291700
|
||||
class C_0000131858426172291700 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+MST() = default : void
|
||||
+MST(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : void
|
||||
..
|
||||
+insertElement(std::list<int> & variables, int variable) : void
|
||||
+maximumSpanningTree() : std::vector<std::pair<int,int>>
|
||||
+reorder(std::vector<std::pair<float,std::pair<int,int>>> T, int root_original) : std::vector<std::pair<int,int>>
|
||||
__
|
||||
}
|
||||
class "bayesnet::Graph" as C_0009576333456015187741
|
||||
class C_0009576333456015187741 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::Graph" as C_0001197041682001898467
|
||||
class C_0001197041682001898467 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Graph(int V) : void
|
||||
..
|
||||
+addEdge(int u, int v, float wt) : void
|
||||
@@ -591,86 +332,81 @@ class C_0009576333456015187741 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+union_set(int u, int v) : void
|
||||
__
|
||||
}
|
||||
C_0010428199432536647474 --> C_0010428199432536647474 : -parents
|
||||
C_0010428199432536647474 --> C_0010428199432536647474 : -children
|
||||
C_0009493661199123436603 ..> C_0013393078277439680282
|
||||
C_0009493661199123436603 o-- C_0010428199432536647474 : -nodes
|
||||
C_0002617087915615796317 ..> C_0013393078277439680282
|
||||
C_0002617087915615796317 o-- C_0005907365846270811004 : #status
|
||||
C_0016351972983202413152 ..> C_0013393078277439680282
|
||||
C_0016351972983202413152 ..> C_0005907365846270811004
|
||||
C_0016351972983202413152 o-- C_0009493661199123436603 : #model
|
||||
C_0016351972983202413152 o-- C_0005895723015084986588 : #metrics
|
||||
C_0002617087915615796317 <|-- C_0016351972983202413152
|
||||
class "bayesnet::KDBLd" as C_0000344502277874806837
|
||||
class C_0000344502277874806837 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+KDBLd(int k) : void
|
||||
+~KDBLd() = default : void
|
||||
..
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : KDBLd &
|
||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
class "bayesnet::AODE" as C_0000786111576121788282
|
||||
class C_0000786111576121788282 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+AODE(bool predict_voting = false) : void
|
||||
+~AODE() : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & title = "AODE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::SPODELd" as C_0001369655639257755354
|
||||
class C_0001369655639257755354 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+SPODELd(int root) : void
|
||||
+~SPODELd() = default : void
|
||||
..
|
||||
+commonFit(const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
||||
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
class "bayesnet::AODELd" as C_0000487273479333793647
|
||||
class C_0000487273479333793647 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+AODELd(bool predict_voting = true) : void
|
||||
+~AODELd() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+fit(torch::Tensor & X_, torch::Tensor & y_, const std::vector<std::string> & features_, const std::string & className_, std::map<std::string,std::vector<int>> & states_) : AODELd &
|
||||
+graph(const std::string & name = "AODELd") const : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
__
|
||||
}
|
||||
C_0001303524929067080934 --> C_0001303524929067080934 : -parents
|
||||
C_0001303524929067080934 --> C_0001303524929067080934 : -children
|
||||
C_0001186707649890429575 o-- C_0001303524929067080934 : -nodes
|
||||
C_0000327135989451974539 ..> C_0000738420730783851375
|
||||
C_0002043996622900301644 o-- C_0001186707649890429575 : #model
|
||||
C_0002043996622900301644 o-- C_0000736965376885623323 : #metrics
|
||||
C_0002043996622900301644 o-- C_0000738420730783851375 : #status
|
||||
C_0000327135989451974539 <|-- C_0002043996622900301644
|
||||
C_0002043996622900301644 <|-- C_0001112865019015250005
|
||||
C_0002043996622900301644 <|-- C_0001760994424884323017
|
||||
C_0002219995589162262979 ..> C_0001186707649890429575
|
||||
C_0001760994424884323017 <|-- C_0001668829096702037834
|
||||
C_0002219995589162262979 <|-- C_0001668829096702037834
|
||||
C_0000736965376885623323 <|-- C_0001695326193250580823
|
||||
C_0001695326193250580823 <|-- C_0000011627355691342494
|
||||
C_0001695326193250580823 <|-- C_0000144682015341746929
|
||||
C_0001695326193250580823 <|-- C_0000008268514674428553
|
||||
C_0002043996622900301644 <|-- C_0000512022813807538451
|
||||
C_0001985241386355360576 o-- C_0002043996622900301644 : #models
|
||||
C_0002043996622900301644 <|-- C_0001985241386355360576
|
||||
C_0000358471592399852382 --> C_0001695326193250580823 : -featureSelector
|
||||
C_0001985241386355360576 <|-- C_0000358471592399852382
|
||||
C_0001112865019015250005 <|-- C_0000344502277874806837
|
||||
C_0002219995589162262979 <|-- C_0000344502277874806837
|
||||
C_0001985241386355360576 <|-- C_0000786111576121788282
|
||||
C_0000512022813807538451 <|-- C_0001369655639257755354
|
||||
C_0002219995589162262979 <|-- C_0001369655639257755354
|
||||
C_0001985241386355360576 <|-- C_0000487273479333793647
|
||||
C_0002219995589162262979 <|-- C_0000487273479333793647
|
||||
|
||||
C_0017759964713298103839 ..> C_0009493661199123436603
|
||||
C_0016351972983202413152 <|-- C_0008902920152122000044
|
||||
|
||||
C_0002756018222998454702 ..> C_0013393078277439680282
|
||||
C_0008902920152122000044 <|-- C_0002756018222998454702
|
||||
|
||||
C_0017759964713298103839 <|-- C_0002756018222998454702
|
||||
|
||||
C_0016351972983202413152 <|-- C_0004096182510460307610
|
||||
|
||||
C_0010957245114062042836 ..> C_0013393078277439680282
|
||||
C_0004096182510460307610 <|-- C_0010957245114062042836
|
||||
|
||||
C_0017759964713298103839 <|-- C_0010957245114062042836
|
||||
|
||||
C_0016351972983202413152 <|-- C_0016268916386101512883
|
||||
|
||||
C_0016351972983202413152 <|-- C_0014087955399074584137
|
||||
|
||||
C_0013350632773616302678 ..> C_0013393078277439680282
|
||||
C_0014087955399074584137 <|-- C_0013350632773616302678
|
||||
|
||||
C_0017759964713298103839 <|-- C_0013350632773616302678
|
||||
|
||||
C_0007640742442325463418 ..> C_0013393078277439680282
|
||||
C_0016351972983202413152 <|-- C_0007640742442325463418
|
||||
|
||||
C_0015654113248178830206 ..> C_0013393078277439680282
|
||||
C_0016351972983202413152 <|-- C_0015654113248178830206
|
||||
|
||||
C_0015881931090842884611 ..> C_0013393078277439680282
|
||||
C_0015881931090842884611 o-- C_0016351972983202413152 : #models
|
||||
C_0016351972983202413152 <|-- C_0015881931090842884611
|
||||
|
||||
C_0015881931090842884611 <|-- C_0001410789567057647859
|
||||
|
||||
C_0015881931090842884611 <|-- C_0006288892608974306258
|
||||
|
||||
C_0003898187834670349177 ..> C_0013393078277439680282
|
||||
C_0015881931090842884611 <|-- C_0003898187834670349177
|
||||
|
||||
C_0017759964713298103839 <|-- C_0003898187834670349177
|
||||
|
||||
C_0005895723015084986588 <|-- C_0013562609546004646591
|
||||
|
||||
C_0009819322948617116148 ..> C_0016351972983202413152
|
||||
C_0009819322948617116148 --> C_0013562609546004646591 : #featureSelector
|
||||
C_0015881931090842884611 <|-- C_0009819322948617116148
|
||||
|
||||
C_0000272055465257861326 ..> C_0013393078277439680282
|
||||
C_0009819322948617116148 <|-- C_0000272055465257861326
|
||||
|
||||
C_0002867772739198819061 ..> C_0013393078277439680282
|
||||
C_0009819322948617116148 <|-- C_0002867772739198819061
|
||||
|
||||
C_0008480973840710001141 ..> C_0013393078277439680282
|
||||
C_0009819322948617116148 <|-- C_0008480973840710001141
|
||||
|
||||
C_0005198482342493966768 ..> C_0013393078277439680282
|
||||
C_0009819322948617116148 <|-- C_0005198482342493966768
|
||||
|
||||
C_0013562609546004646591 <|-- C_0000093018845530739957
|
||||
|
||||
C_0013562609546004646591 <|-- C_0001157456122733975432
|
||||
|
||||
C_0013562609546004646591 <|-- C_0000066148117395428429
|
||||
|
||||
|
||||
'Generated with clang-uml, version 0.5.5
|
||||
'LLVM version clang version 18.1.8 (Fedora 18.1.8-5.fc41)
|
||||
'Generated with clang-uml, version 0.5.1
|
||||
'LLVM version clang version 17.0.6 (Fedora 17.0.6-2.fc39)
|
||||
@enduml
|
||||
|
File diff suppressed because one or more lines are too long
Before Width: | Height: | Size: 229 KiB After Width: | Height: | Size: 139 KiB |
@@ -1,314 +1,128 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<!-- Generated by graphviz version 12.1.0 (20240811.2233)
|
||||
<!-- Generated by graphviz version 8.1.0 (20230707.0739)
|
||||
-->
|
||||
<!-- Title: BayesNet Pages: 1 -->
|
||||
<svg width="3725pt" height="432pt"
|
||||
viewBox="0.00 0.00 3724.84 431.80" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 427.8)">
|
||||
<svg width="1632pt" height="288pt"
|
||||
viewBox="0.00 0.00 1631.95 287.80" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 283.8)">
|
||||
<title>BayesNet</title>
|
||||
<polygon fill="white" stroke="none" points="-4,4 -4,-427.8 3720.84,-427.8 3720.84,4 -4,4"/>
|
||||
<!-- node0 -->
|
||||
<g id="node1" class="node">
|
||||
<title>node0</title>
|
||||
<polygon fill="none" stroke="black" points="1655.43,-398.35 1655.43,-413.26 1625.69,-423.8 1583.63,-423.8 1553.89,-413.26 1553.89,-398.35 1583.63,-387.8 1625.69,-387.8 1655.43,-398.35"/>
|
||||
<text text-anchor="middle" x="1604.66" y="-401.53" font-family="Times,serif" font-size="12.00">BayesNet</text>
|
||||
</g>
|
||||
<polygon fill="white" stroke="none" points="-4,4 -4,-283.8 1627.95,-283.8 1627.95,4 -4,4"/>
|
||||
<!-- node1 -->
|
||||
<g id="node2" class="node">
|
||||
<g id="node1" class="node">
|
||||
<title>node1</title>
|
||||
<polygon fill="none" stroke="black" points="413.32,-257.8 372.39,-273.03 206.66,-279.8 40.93,-273.03 0,-257.8 114.69,-245.59 298.64,-245.59 413.32,-257.8"/>
|
||||
<text text-anchor="middle" x="206.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10.so</text>
|
||||
</g>
|
||||
<!-- node0->node1 -->
|
||||
<g id="edge1" class="edge">
|
||||
<title>node0->node1</title>
|
||||
<path fill="none" stroke="black" d="M1553.59,-400.53C1451.65,-391.91 1215.69,-371.61 1017.66,-351.8 773.36,-327.37 488.07,-295.22 329.31,-277.01"/>
|
||||
<polygon fill="black" stroke="black" points="329.93,-273.56 319.6,-275.89 329.14,-280.51 329.93,-273.56"/>
|
||||
<polygon fill="none" stroke="black" points="826.43,-254.35 826.43,-269.26 796.69,-279.8 754.63,-279.8 724.89,-269.26 724.89,-254.35 754.63,-243.8 796.69,-243.8 826.43,-254.35"/>
|
||||
<text text-anchor="middle" x="775.66" y="-257.53" font-family="Times,serif" font-size="12.00">BayesNet</text>
|
||||
</g>
|
||||
<!-- node2 -->
|
||||
<g id="node3" class="node">
|
||||
<g id="node2" class="node">
|
||||
<title>node2</title>
|
||||
<polygon fill="none" stroke="black" points="894.21,-257.8 848.35,-273.03 662.66,-279.8 476.98,-273.03 431.12,-257.8 559.61,-245.59 765.71,-245.59 894.21,-257.8"/>
|
||||
<text text-anchor="middle" x="662.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10_cuda.so</text>
|
||||
<polygon fill="none" stroke="black" points="413.32,-185.8 372.39,-201.03 206.66,-207.8 40.93,-201.03 0,-185.8 114.69,-173.59 298.64,-173.59 413.32,-185.8"/>
|
||||
<text text-anchor="middle" x="206.66" y="-185.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10.so</text>
|
||||
</g>
|
||||
<!-- node0->node2 -->
|
||||
<g id="edge2" class="edge">
|
||||
<title>node0->node2</title>
|
||||
<path fill="none" stroke="black" d="M1555.34,-397.37C1408.12,-375.18 969.52,-309.06 767.13,-278.55"/>
|
||||
<polygon fill="black" stroke="black" points="767.81,-275.12 757.4,-277.09 766.77,-282.04 767.81,-275.12"/>
|
||||
<!-- node1->node2 -->
|
||||
<g id="edge1" class="edge">
|
||||
<title>node1->node2</title>
|
||||
<path fill="none" stroke="black" d="M724.41,-254.5C634.7,-243.46 447.04,-220.38 324.01,-205.24"/>
|
||||
<polygon fill="black" stroke="black" points="324.77,-201.69 314.42,-203.94 323.92,-208.63 324.77,-201.69"/>
|
||||
</g>
|
||||
<!-- node3 -->
|
||||
<g id="node4" class="node">
|
||||
<g id="node3" class="node">
|
||||
<title>node3</title>
|
||||
<polygon fill="none" stroke="black" points="1338.68,-257.8 1296.49,-273.03 1125.66,-279.8 954.84,-273.03 912.65,-257.8 1030.86,-245.59 1220.46,-245.59 1338.68,-257.8"/>
|
||||
<text text-anchor="middle" x="1125.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libkineto.a</text>
|
||||
<polygon fill="none" stroke="black" points="857.68,-185.8 815.49,-201.03 644.66,-207.8 473.84,-201.03 431.65,-185.8 549.86,-173.59 739.46,-173.59 857.68,-185.8"/>
|
||||
<text text-anchor="middle" x="644.66" y="-185.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libkineto.a</text>
|
||||
</g>
|
||||
<!-- node0->node3 -->
|
||||
<g id="edge3" class="edge">
|
||||
<title>node0->node3</title>
|
||||
<path fill="none" stroke="black" d="M1566.68,-393.54C1484.46,-369.17 1289.3,-311.32 1188.44,-281.41"/>
|
||||
<polygon fill="black" stroke="black" points="1189.53,-278.09 1178.95,-278.6 1187.54,-284.8 1189.53,-278.09"/>
|
||||
<!-- node1->node3 -->
|
||||
<g id="edge2" class="edge">
|
||||
<title>node1->node3</title>
|
||||
<path fill="none" stroke="black" d="M747.56,-245.79C729.21,-235.98 704.97,-223.03 684.63,-212.16"/>
|
||||
<polygon fill="black" stroke="black" points="686.47,-208.64 676,-207.02 683.17,-214.82 686.47,-208.64"/>
|
||||
</g>
|
||||
<!-- node4 -->
|
||||
<g id="node5" class="node">
|
||||
<g id="node4" class="node">
|
||||
<title>node4</title>
|
||||
<polygon fill="none" stroke="black" points="1552.26,-257.8 1532.93,-273.03 1454.66,-279.8 1376.4,-273.03 1357.07,-257.8 1411.23,-245.59 1498.1,-245.59 1552.26,-257.8"/>
|
||||
<text text-anchor="middle" x="1454.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/lib64/libcuda.so</text>
|
||||
<polygon fill="none" stroke="black" points="939.33,-182.35 939.33,-197.26 920.78,-207.8 894.54,-207.8 875.99,-197.26 875.99,-182.35 894.54,-171.8 920.78,-171.8 939.33,-182.35"/>
|
||||
<text text-anchor="middle" x="907.66" y="-185.53" font-family="Times,serif" font-size="12.00">mdlp</text>
|
||||
</g>
|
||||
<!-- node0->node4 -->
|
||||
<g id="edge4" class="edge">
|
||||
<title>node0->node4</title>
|
||||
<path fill="none" stroke="black" d="M1586.27,-387.39C1559.5,-362.05 1509.72,-314.92 1479.65,-286.46"/>
|
||||
<polygon fill="black" stroke="black" points="1482.13,-283.99 1472.46,-279.65 1477.31,-289.07 1482.13,-283.99"/>
|
||||
</g>
|
||||
<!-- node5 -->
|
||||
<g id="node6" class="node">
|
||||
<title>node5</title>
|
||||
<polygon fill="none" stroke="black" points="1873.26,-257.8 1843.23,-273.03 1721.66,-279.8 1600.09,-273.03 1570.06,-257.8 1654.19,-245.59 1789.13,-245.59 1873.26,-257.8"/>
|
||||
<text text-anchor="middle" x="1721.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libcudart.so</text>
|
||||
</g>
|
||||
<!-- node0->node5 -->
|
||||
<g id="edge5" class="edge">
|
||||
<title>node0->node5</title>
|
||||
<path fill="none" stroke="black" d="M1619.76,-387.77C1628.83,-377.46 1640.53,-363.98 1650.66,-351.8 1668.32,-330.59 1687.84,-306.03 1701.94,-288.1"/>
|
||||
<polygon fill="black" stroke="black" points="1704.43,-290.59 1707.84,-280.56 1698.92,-286.27 1704.43,-290.59"/>
|
||||
</g>
|
||||
<!-- node6 -->
|
||||
<g id="node7" class="node">
|
||||
<title>node6</title>
|
||||
<polygon fill="none" stroke="black" points="2231.79,-257.8 2198.1,-273.03 2061.66,-279.8 1925.23,-273.03 1891.53,-257.8 1985.95,-245.59 2137.38,-245.59 2231.79,-257.8"/>
|
||||
<text text-anchor="middle" x="2061.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libnvToolsExt.so</text>
|
||||
</g>
|
||||
<!-- node0->node6 -->
|
||||
<g id="edge6" class="edge">
|
||||
<title>node0->node6</title>
|
||||
<path fill="none" stroke="black" d="M1642.06,-393.18C1721.31,-368.56 1906.71,-310.95 2002.32,-281.24"/>
|
||||
<polygon fill="black" stroke="black" points="2003.28,-284.61 2011.79,-278.3 2001.21,-277.92 2003.28,-284.61"/>
|
||||
</g>
|
||||
<!-- node7 -->
|
||||
<g id="node8" class="node">
|
||||
<title>node7</title>
|
||||
<polygon fill="none" stroke="black" points="2541.44,-257.8 2512.56,-273.03 2395.66,-279.8 2278.76,-273.03 2249.89,-257.8 2330.79,-245.59 2460.54,-245.59 2541.44,-257.8"/>
|
||||
<text text-anchor="middle" x="2395.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libnvrtc.so</text>
|
||||
</g>
|
||||
<!-- node0->node7 -->
|
||||
<g id="edge7" class="edge">
|
||||
<title>node0->node7</title>
|
||||
<path fill="none" stroke="black" d="M1651.19,-396.45C1780.36,-373.26 2144.76,-307.85 2311.05,-277.99"/>
|
||||
<polygon fill="black" stroke="black" points="2311.47,-281.47 2320.7,-276.26 2310.24,-274.58 2311.47,-281.47"/>
|
||||
</g>
|
||||
<!-- node8 -->
|
||||
<g id="node9" class="node">
|
||||
<title>node8</title>
|
||||
<polygon fill="none" stroke="black" points="1642.01,-326.35 1642.01,-341.26 1620.13,-351.8 1589.19,-351.8 1567.31,-341.26 1567.31,-326.35 1589.19,-315.8 1620.13,-315.8 1642.01,-326.35"/>
|
||||
<text text-anchor="middle" x="1604.66" y="-329.53" font-family="Times,serif" font-size="12.00">fimdlp</text>
|
||||
</g>
|
||||
<!-- node0->node8 -->
|
||||
<g id="edge8" class="edge">
|
||||
<title>node0->node8</title>
|
||||
<path fill="none" stroke="black" d="M1604.66,-387.5C1604.66,-380.21 1604.66,-371.53 1604.66,-363.34"/>
|
||||
<polygon fill="black" stroke="black" points="1608.16,-363.42 1604.66,-353.42 1601.16,-363.42 1608.16,-363.42"/>
|
||||
</g>
|
||||
<!-- node19 -->
|
||||
<g id="node10" class="node">
|
||||
<title>node19</title>
|
||||
<polygon fill="none" stroke="black" points="2709.74,-267.37 2634.66,-279.8 2559.58,-267.37 2588.26,-247.24 2681.06,-247.24 2709.74,-267.37"/>
|
||||
<text text-anchor="middle" x="2634.66" y="-257.53" font-family="Times,serif" font-size="12.00">torch_library</text>
|
||||
</g>
|
||||
<!-- node0->node19 -->
|
||||
<g id="edge29" class="edge">
|
||||
<title>node0->node19</title>
|
||||
<path fill="none" stroke="black" d="M1655.87,-399.32C1798.23,-383.79 2210.64,-336.94 2550.66,-279.8 2559.43,-278.33 2568.68,-276.62 2577.72,-274.86"/>
|
||||
<polygon fill="black" stroke="black" points="2578.38,-278.3 2587.5,-272.92 2577.01,-271.43 2578.38,-278.3"/>
|
||||
</g>
|
||||
<!-- node8->node1 -->
|
||||
<g id="edge9" class="edge">
|
||||
<title>node8->node1</title>
|
||||
<path fill="none" stroke="black" d="M1566.84,-331.58C1419.81,-326.72 872.06,-307.69 421.66,-279.8 401.07,-278.53 379.38,-277.02 358.03,-275.43"/>
|
||||
<polygon fill="black" stroke="black" points="358.3,-271.94 348.06,-274.67 357.77,-278.92 358.3,-271.94"/>
|
||||
</g>
|
||||
<!-- node8->node2 -->
|
||||
<g id="edge10" class="edge">
|
||||
<title>node8->node2</title>
|
||||
<path fill="none" stroke="black" d="M1566.86,-330C1445.11,-320.95 1057.97,-292.18 831.67,-275.36"/>
|
||||
<polygon fill="black" stroke="black" points="832.09,-271.89 821.86,-274.63 831.57,-278.87 832.09,-271.89"/>
|
||||
</g>
|
||||
<!-- node8->node3 -->
|
||||
<g id="edge11" class="edge">
|
||||
<title>node8->node3</title>
|
||||
<path fill="none" stroke="black" d="M1567.08,-327.31C1495.4,-316.84 1336.86,-293.67 1230.62,-278.14"/>
|
||||
<polygon fill="black" stroke="black" points="1231.44,-274.72 1221.04,-276.74 1230.42,-281.65 1231.44,-274.72"/>
|
||||
</g>
|
||||
<!-- node8->node4 -->
|
||||
<g id="edge12" class="edge">
|
||||
<title>node8->node4</title>
|
||||
<path fill="none" stroke="black" d="M1578.53,-320.61C1555.96,-310.08 1522.92,-294.66 1496.64,-282.4"/>
|
||||
<polygon fill="black" stroke="black" points="1498.12,-279.22 1487.58,-278.17 1495.16,-285.57 1498.12,-279.22"/>
|
||||
</g>
|
||||
<!-- node8->node5 -->
|
||||
<g id="edge13" class="edge">
|
||||
<title>node8->node5</title>
|
||||
<path fill="none" stroke="black" d="M1627.78,-318.97C1644.15,-309.18 1666.44,-295.84 1685.2,-284.62"/>
|
||||
<polygon fill="black" stroke="black" points="1686.83,-287.73 1693.61,-279.59 1683.23,-281.72 1686.83,-287.73"/>
|
||||
</g>
|
||||
<!-- node8->node6 -->
|
||||
<g id="edge14" class="edge">
|
||||
<title>node8->node6</title>
|
||||
<path fill="none" stroke="black" d="M1642.45,-327.02C1712.36,-316.31 1863.89,-293.1 1964.32,-277.71"/>
|
||||
<polygon fill="black" stroke="black" points="1964.84,-281.18 1974.2,-276.2 1963.78,-274.26 1964.84,-281.18"/>
|
||||
</g>
|
||||
<!-- node8->node7 -->
|
||||
<g id="edge15" class="edge">
|
||||
<title>node8->node7</title>
|
||||
<path fill="none" stroke="black" d="M1642.33,-330.01C1740.75,-322.64 2013.75,-301.7 2240.66,-279.8 2254.16,-278.5 2268.32,-277.06 2282.35,-275.58"/>
|
||||
<polygon fill="black" stroke="black" points="2282.49,-279.08 2292.06,-274.54 2281.75,-272.12 2282.49,-279.08"/>
|
||||
</g>
|
||||
<!-- node8->node19 -->
|
||||
<g id="edge16" class="edge">
|
||||
<title>node8->node19</title>
|
||||
<path fill="none" stroke="black" d="M1642.25,-332.63C1770.06,-331.64 2199.48,-324.94 2550.66,-279.8 2560.1,-278.59 2570.07,-276.92 2579.71,-275.1"/>
|
||||
<polygon fill="black" stroke="black" points="2580.21,-278.57 2589.34,-273.21 2578.86,-271.7 2580.21,-278.57"/>
|
||||
</g>
|
||||
<!-- node20 -->
|
||||
<g id="node11" class="node">
|
||||
<title>node20</title>
|
||||
<polygon fill="none" stroke="black" points="2606.81,-185.8 2533.89,-201.03 2238.66,-207.8 1943.43,-201.03 1870.52,-185.8 2074.82,-173.59 2402.5,-173.59 2606.81,-185.8"/>
|
||||
<text text-anchor="middle" x="2238.66" y="-185.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch.so" -Wl,--as-needed</text>
|
||||
</g>
|
||||
<!-- node19->node20 -->
|
||||
<g id="edge17" class="edge">
|
||||
<title>node19->node20</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2583.63,-250.21C2572.76,-248.03 2561.34,-245.79 2550.66,-243.8 2482.14,-231.05 2404.92,-217.93 2344.44,-207.93"/>
|
||||
<polygon fill="black" stroke="black" points="2345.28,-204.52 2334.84,-206.34 2344.14,-211.42 2345.28,-204.52"/>
|
||||
<!-- node1->node4 -->
|
||||
<g id="edge3" class="edge">
|
||||
<title>node1->node4</title>
|
||||
<path fill="none" stroke="black" d="M803.66,-245.96C824.66,-234.82 853.45,-219.56 875.41,-207.91"/>
|
||||
<polygon fill="black" stroke="black" points="876.78,-210.61 883.97,-202.84 873.5,-204.43 876.78,-210.61"/>
|
||||
</g>
|
||||
<!-- node9 -->
|
||||
<g id="node12" class="node">
|
||||
<g id="node5" class="node">
|
||||
<title>node9</title>
|
||||
<polygon fill="none" stroke="black" points="2542.56,-123.37 2445.66,-135.8 2348.77,-123.37 2385.78,-103.24 2505.55,-103.24 2542.56,-123.37"/>
|
||||
<text text-anchor="middle" x="2445.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch_cpu_library</text>
|
||||
<polygon fill="none" stroke="black" points="1107.74,-195.37 1032.66,-207.8 957.58,-195.37 986.26,-175.24 1079.06,-175.24 1107.74,-195.37"/>
|
||||
<text text-anchor="middle" x="1032.66" y="-185.53" font-family="Times,serif" font-size="12.00">torch_library</text>
|
||||
</g>
|
||||
<!-- node19->node9 -->
|
||||
<g id="edge18" class="edge">
|
||||
<title>node19->node9</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2635.72,-246.84C2636.4,-227.49 2634.61,-192.58 2615.66,-171.8 2601.13,-155.87 2551.93,-141.56 2510.18,-131.84"/>
|
||||
<polygon fill="black" stroke="black" points="2511.2,-128.48 2500.67,-129.68 2509.65,-135.31 2511.2,-128.48"/>
|
||||
</g>
|
||||
<!-- node13 -->
|
||||
<g id="node16" class="node">
|
||||
<title>node13</title>
|
||||
<polygon fill="none" stroke="black" points="3056.45,-195.37 2953.66,-207.8 2850.87,-195.37 2890.13,-175.24 3017.19,-175.24 3056.45,-195.37"/>
|
||||
<text text-anchor="middle" x="2953.66" y="-185.53" font-family="Times,serif" font-size="12.00">torch_cuda_library</text>
|
||||
</g>
|
||||
<!-- node19->node13 -->
|
||||
<g id="edge22" class="edge">
|
||||
<title>node19->node13</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2685.21,-249.71C2741.11,-237.45 2831.21,-217.67 2891.42,-204.46"/>
|
||||
<polygon fill="black" stroke="black" points="2891.8,-207.96 2900.82,-202.4 2890.3,-201.13 2891.8,-207.96"/>
|
||||
<!-- node1->node9 -->
|
||||
<g id="edge4" class="edge">
|
||||
<title>node1->node9</title>
|
||||
<path fill="none" stroke="black" d="M815.25,-250.02C860.25,-237.77 933.77,-217.74 982.68,-204.42"/>
|
||||
<polygon fill="black" stroke="black" points="983.3,-207.61 992.02,-201.6 981.46,-200.85 983.3,-207.61"/>
|
||||
</g>
|
||||
<!-- node10 -->
|
||||
<g id="node13" class="node">
|
||||
<g id="node6" class="node">
|
||||
<title>node10</title>
|
||||
<polygon fill="none" stroke="black" points="2362.4,-27.9 2285.6,-43.12 1974.66,-49.9 1663.72,-43.12 1586.93,-27.9 1802.1,-15.68 2147.22,-15.68 2362.4,-27.9"/>
|
||||
<text text-anchor="middle" x="1974.66" y="-27.63" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cpu.so" -Wl,--as-needed</text>
|
||||
<polygon fill="none" stroke="black" points="1159.81,-113.8 1086.89,-129.03 791.66,-135.8 496.43,-129.03 423.52,-113.8 627.82,-101.59 955.5,-101.59 1159.81,-113.8"/>
|
||||
<text text-anchor="middle" x="791.66" y="-113.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch.so" -Wl,--as-needed</text>
|
||||
</g>
|
||||
<!-- node9->node10 -->
|
||||
<g id="edge19" class="edge">
|
||||
<g id="edge5" class="edge">
|
||||
<title>node9->node10</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2381.16,-105.31C2301.63,-91.15 2165.65,-66.92 2073.05,-50.43"/>
|
||||
<polygon fill="black" stroke="black" points="2073.93,-47.03 2063.48,-48.72 2072.71,-53.92 2073.93,-47.03"/>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M985.62,-175.14C949.2,-164.56 898.31,-149.78 857.79,-138.01"/>
|
||||
<polygon fill="black" stroke="black" points="859.04,-134.44 848.46,-135.01 857.09,-141.16 859.04,-134.44"/>
|
||||
</g>
|
||||
<!-- node11 -->
|
||||
<g id="node14" class="node">
|
||||
<title>node11</title>
|
||||
<polygon fill="none" stroke="black" points="2510.72,-37.46 2445.66,-49.9 2380.61,-37.46 2405.46,-17.34 2485.87,-17.34 2510.72,-37.46"/>
|
||||
<text text-anchor="middle" x="2445.66" y="-27.63" font-family="Times,serif" font-size="12.00">caffe2::mkl</text>
|
||||
<!-- node5 -->
|
||||
<g id="node7" class="node">
|
||||
<title>node5</title>
|
||||
<polygon fill="none" stroke="black" points="1371.56,-123.37 1274.66,-135.8 1177.77,-123.37 1214.78,-103.24 1334.55,-103.24 1371.56,-123.37"/>
|
||||
<text text-anchor="middle" x="1274.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch_cpu_library</text>
|
||||
</g>
|
||||
<!-- node9->node11 -->
|
||||
<g id="edge20" class="edge">
|
||||
<title>node9->node11</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2445.66,-102.95C2445.66,-91.68 2445.66,-75.4 2445.66,-61.37"/>
|
||||
<polygon fill="black" stroke="black" points="2449.16,-61.78 2445.66,-51.78 2442.16,-61.78 2449.16,-61.78"/>
|
||||
<!-- node9->node5 -->
|
||||
<g id="edge6" class="edge">
|
||||
<title>node9->node5</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1079.61,-175.22C1120.66,-163.35 1180.2,-146.13 1222.68,-133.84"/>
|
||||
<polygon fill="black" stroke="black" points="1223.46,-136.97 1232.09,-130.83 1221.51,-130.24 1223.46,-136.97"/>
|
||||
</g>
|
||||
<!-- node12 -->
|
||||
<g id="node15" class="node">
|
||||
<title>node12</title>
|
||||
<polygon fill="none" stroke="black" points="2794.95,-41.76 2661.66,-63.8 2528.37,-41.76 2579.28,-6.09 2744.04,-6.09 2794.95,-41.76"/>
|
||||
<text text-anchor="middle" x="2661.66" y="-34.75" font-family="Times,serif" font-size="12.00">dummy</text>
|
||||
<text text-anchor="middle" x="2661.66" y="-20.5" font-family="Times,serif" font-size="12.00">(protobuf::libprotobuf)</text>
|
||||
<!-- node6 -->
|
||||
<g id="node8" class="node">
|
||||
<title>node6</title>
|
||||
<polygon fill="none" stroke="black" points="1191.4,-27.9 1114.6,-43.12 803.66,-49.9 492.72,-43.12 415.93,-27.9 631.1,-15.68 976.22,-15.68 1191.4,-27.9"/>
|
||||
<text text-anchor="middle" x="803.66" y="-27.63" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cpu.so" -Wl,--as-needed</text>
|
||||
</g>
|
||||
<!-- node9->node12 -->
|
||||
<g id="edge21" class="edge">
|
||||
<title>node9->node12</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2481.82,-102.76C2512.55,-90.82 2557.5,-73.36 2594.77,-58.89"/>
|
||||
<polygon fill="black" stroke="black" points="2595.6,-62.32 2603.65,-55.44 2593.06,-55.79 2595.6,-62.32"/>
|
||||
<!-- node5->node6 -->
|
||||
<g id="edge7" class="edge">
|
||||
<title>node5->node6</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1210.16,-105.31C1130.55,-91.13 994.37,-66.87 901.77,-50.38"/>
|
||||
<polygon fill="black" stroke="black" points="902.44,-46.77 891.98,-48.46 901.22,-53.66 902.44,-46.77"/>
|
||||
</g>
|
||||
<!-- node13->node9 -->
|
||||
<g id="edge28" class="edge">
|
||||
<title>node13->node9</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2880.59,-179.79C2799.97,-169.71 2666.42,-152.57 2551.66,-135.8 2540.2,-134.13 2528.06,-132.27 2516.24,-130.41"/>
|
||||
<polygon fill="black" stroke="black" points="2516.96,-126.98 2506.54,-128.86 2515.87,-133.89 2516.96,-126.98"/>
|
||||
<!-- node7 -->
|
||||
<g id="node9" class="node">
|
||||
<title>node7</title>
|
||||
<polygon fill="none" stroke="black" points="1339.72,-37.46 1274.66,-49.9 1209.61,-37.46 1234.46,-17.34 1314.87,-17.34 1339.72,-37.46"/>
|
||||
<text text-anchor="middle" x="1274.66" y="-27.63" font-family="Times,serif" font-size="12.00">caffe2::mkl</text>
|
||||
</g>
|
||||
<!-- node14 -->
|
||||
<g id="node17" class="node">
|
||||
<title>node14</title>
|
||||
<polygon fill="none" stroke="black" points="3346.69,-113.8 3268.85,-129.03 2953.66,-135.8 2638.48,-129.03 2560.63,-113.8 2778.75,-101.59 3128.58,-101.59 3346.69,-113.8"/>
|
||||
<text text-anchor="middle" x="2953.66" y="-113.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cuda.so" -Wl,--as-needed</text>
|
||||
<!-- node5->node7 -->
|
||||
<g id="edge8" class="edge">
|
||||
<title>node5->node7</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1274.66,-102.95C1274.66,-91.56 1274.66,-75.07 1274.66,-60.95"/>
|
||||
<polygon fill="black" stroke="black" points="1278.16,-61.27 1274.66,-51.27 1271.16,-61.27 1278.16,-61.27"/>
|
||||
</g>
|
||||
<!-- node13->node14 -->
|
||||
<g id="edge23" class="edge">
|
||||
<title>node13->node14</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2953.66,-174.97C2953.66,-167.13 2953.66,-157.01 2953.66,-147.53"/>
|
||||
<polygon fill="black" stroke="black" points="2957.16,-147.59 2953.66,-137.59 2950.16,-147.59 2957.16,-147.59"/>
|
||||
<!-- node8 -->
|
||||
<g id="node10" class="node">
|
||||
<title>node8</title>
|
||||
<polygon fill="none" stroke="black" points="1623.95,-41.76 1490.66,-63.8 1357.37,-41.76 1408.28,-6.09 1573.04,-6.09 1623.95,-41.76"/>
|
||||
<text text-anchor="middle" x="1490.66" y="-34.75" font-family="Times,serif" font-size="12.00">dummy</text>
|
||||
<text text-anchor="middle" x="1490.66" y="-20.5" font-family="Times,serif" font-size="12.00">(protobuf::libprotobuf)</text>
|
||||
</g>
|
||||
<!-- node15 -->
|
||||
<g id="node18" class="node">
|
||||
<title>node15</title>
|
||||
<polygon fill="none" stroke="black" points="3514.74,-123.37 3439.66,-135.8 3364.58,-123.37 3393.26,-103.24 3486.06,-103.24 3514.74,-123.37"/>
|
||||
<text text-anchor="middle" x="3439.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch::cudart</text>
|
||||
</g>
|
||||
<!-- node13->node15 -->
|
||||
<g id="edge24" class="edge">
|
||||
<title>node13->node15</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3028.35,-180.51C3109.24,-171.17 3241.96,-154.78 3355.66,-135.8 3364.43,-134.34 3373.69,-132.63 3382.72,-130.88"/>
|
||||
<polygon fill="black" stroke="black" points="3383.38,-134.31 3392.51,-128.93 3382.02,-127.45 3383.38,-134.31"/>
|
||||
</g>
|
||||
<!-- node17 -->
|
||||
<g id="node20" class="node">
|
||||
<title>node17</title>
|
||||
<polygon fill="none" stroke="black" points="3716.84,-123.37 3624.66,-135.8 3532.48,-123.37 3567.69,-103.24 3681.63,-103.24 3716.84,-123.37"/>
|
||||
<text text-anchor="middle" x="3624.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch::nvtoolsext</text>
|
||||
</g>
|
||||
<!-- node13->node17 -->
|
||||
<g id="edge26" class="edge">
|
||||
<title>node13->node17</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3033.64,-183.25C3144.1,-175.14 3349.47,-158.53 3523.66,-135.8 3534.84,-134.35 3546.67,-132.57 3558.15,-130.72"/>
|
||||
<polygon fill="black" stroke="black" points="3558.68,-134.18 3567.98,-129.1 3557.54,-127.27 3558.68,-134.18"/>
|
||||
</g>
|
||||
<!-- node16 -->
|
||||
<g id="node19" class="node">
|
||||
<title>node16</title>
|
||||
<polygon fill="none" stroke="black" points="3510.78,-27.9 3496.7,-43.12 3439.66,-49.9 3382.63,-43.12 3368.54,-27.9 3408.01,-15.68 3471.31,-15.68 3510.78,-27.9"/>
|
||||
<text text-anchor="middle" x="3439.66" y="-27.63" font-family="Times,serif" font-size="12.00">CUDA::cudart</text>
|
||||
</g>
|
||||
<!-- node15->node16 -->
|
||||
<g id="edge25" class="edge">
|
||||
<title>node15->node16</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3439.66,-102.95C3439.66,-91.68 3439.66,-75.4 3439.66,-61.37"/>
|
||||
<polygon fill="black" stroke="black" points="3443.16,-61.78 3439.66,-51.78 3436.16,-61.78 3443.16,-61.78"/>
|
||||
</g>
|
||||
<!-- node18 -->
|
||||
<g id="node21" class="node">
|
||||
<title>node18</title>
|
||||
<polygon fill="none" stroke="black" points="3714.32,-27.9 3696.56,-43.12 3624.66,-49.9 3552.77,-43.12 3535.01,-27.9 3584.76,-15.68 3664.56,-15.68 3714.32,-27.9"/>
|
||||
<text text-anchor="middle" x="3624.66" y="-27.63" font-family="Times,serif" font-size="12.00">CUDA::nvToolsExt</text>
|
||||
</g>
|
||||
<!-- node17->node18 -->
|
||||
<g id="edge27" class="edge">
|
||||
<title>node17->node18</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3624.66,-102.95C3624.66,-91.68 3624.66,-75.4 3624.66,-61.37"/>
|
||||
<polygon fill="black" stroke="black" points="3628.16,-61.78 3624.66,-51.78 3621.16,-61.78 3628.16,-61.78"/>
|
||||
<!-- node5->node8 -->
|
||||
<g id="edge9" class="edge">
|
||||
<title>node5->node8</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1310.82,-102.76C1341.68,-90.77 1386.88,-73.21 1424.25,-58.7"/>
|
||||
<polygon fill="black" stroke="black" points="1425.01,-61.77 1433.06,-54.89 1422.47,-55.25 1425.01,-61.77"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 7.1 KiB |
1
lib/catch2
Submodule
1
lib/catch2
Submodule
Submodule lib/catch2 added at 029fe3b460
1
lib/folding
Submodule
1
lib/folding
Submodule
Submodule lib/folding added at 2ac43e32ac
1
lib/json
Submodule
1
lib/json
Submodule
Submodule lib/json added at 960b763ecd
2009
lib/log/loguru.cpp
Normal file
2009
lib/log/loguru.cpp
Normal file
File diff suppressed because it is too large
Load Diff
1475
lib/log/loguru.hpp
Normal file
1475
lib/log/loguru.hpp
Normal file
File diff suppressed because it is too large
Load Diff
1
lib/mdlp
Submodule
1
lib/mdlp
Submodule
Submodule lib/mdlp added at 2db60e007d
@@ -1,40 +1,19 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(bayesnet_sample VERSION 0.1.0 LANGUAGES CXX)
|
||||
project(bayesnet_sample)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
set(CMAKE_BUILD_TYPE Release)
|
||||
find_package(Torch REQUIRED)
|
||||
find_library(BayesNet NAMES BayesNet.a libBayesNet.a REQUIRED)
|
||||
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
find_package(fimdlp CONFIG REQUIRED)
|
||||
find_package(folding CONFIG REQUIRED)
|
||||
find_package(arff-files CONFIG REQUIRED)
|
||||
find_package(nlohmann_json CONFIG REQUIRED)
|
||||
|
||||
option(BAYESNET_VCPKG_CONFIG "Use vcpkg config for BayesNet" ON)
|
||||
|
||||
if (BAYESNET_VCPKG_CONFIG)
|
||||
message(STATUS "Using BayesNet vcpkg config")
|
||||
find_package(bayesnet CONFIG REQUIRED)
|
||||
set(BayesNet_LIBRARIES bayesnet::bayesnet)
|
||||
else(BAYESNET_VCPKG_CONFIG)
|
||||
message(STATUS "Using BayesNet local library config")
|
||||
find_library(bayesnet NAMES libbayesnet bayesnet libbayesnet.a PATHS ${Platform_SOURCE_DIR}/../lib/lib REQUIRED)
|
||||
find_path(Bayesnet_INCLUDE_DIRS REQUIRED NAMES bayesnet PATHS ${Platform_SOURCE_DIR}/../lib/include)
|
||||
add_library(bayesnet::bayesnet UNKNOWN IMPORTED)
|
||||
set_target_properties(bayesnet::bayesnet PROPERTIES
|
||||
IMPORTED_LOCATION ${bayesnet}
|
||||
INTERFACE_INCLUDE_DIRECTORIES ${Bayesnet_INCLUDE_DIRS}
|
||||
include_directories(
|
||||
../tests/lib/Files
|
||||
lib/mdlp
|
||||
lib/json/include
|
||||
/usr/local/include
|
||||
)
|
||||
endif(BAYESNET_VCPKG_CONFIG)
|
||||
message(STATUS "BayesNet: ${bayesnet}")
|
||||
|
||||
add_subdirectory(lib/mdlp)
|
||||
add_executable(bayesnet_sample sample.cc)
|
||||
target_link_libraries(bayesnet_sample PRIVATE
|
||||
fimdlp::fimdlp
|
||||
arff-files::arff-files
|
||||
"${TORCH_LIBRARIES}"
|
||||
bayesnet::bayesnet
|
||||
folding::folding
|
||||
)
|
||||
target_link_libraries(bayesnet_sample mdlp "${TORCH_LIBRARIES}" "${BayesNet}")
|
55
sample/lib/json/include/nlohmann/adl_serializer.hpp
Normal file
55
sample/lib/json/include/nlohmann/adl_serializer.hpp
Normal file
@@ -0,0 +1,55 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <utility>
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
#include <nlohmann/detail/conversions/from_json.hpp>
|
||||
#include <nlohmann/detail/conversions/to_json.hpp>
|
||||
#include <nlohmann/detail/meta/identity_tag.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/adl_serializer/
|
||||
template<typename ValueType, typename>
|
||||
struct adl_serializer
|
||||
{
|
||||
/// @brief convert a JSON value to any value type
|
||||
/// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
|
||||
template<typename BasicJsonType, typename TargetType = ValueType>
|
||||
static auto from_json(BasicJsonType && j, TargetType& val) noexcept(
|
||||
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
|
||||
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
|
||||
{
|
||||
::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
|
||||
}
|
||||
|
||||
/// @brief convert a JSON value to any value type
|
||||
/// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
|
||||
template<typename BasicJsonType, typename TargetType = ValueType>
|
||||
static auto from_json(BasicJsonType && j) noexcept(
|
||||
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {})))
|
||||
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {}))
|
||||
{
|
||||
return ::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {});
|
||||
}
|
||||
|
||||
/// @brief convert any value type to a JSON value
|
||||
/// @sa https://json.nlohmann.me/api/adl_serializer/to_json/
|
||||
template<typename BasicJsonType, typename TargetType = ValueType>
|
||||
static auto to_json(BasicJsonType& j, TargetType && val) noexcept(
|
||||
noexcept(::nlohmann::to_json(j, std::forward<TargetType>(val))))
|
||||
-> decltype(::nlohmann::to_json(j, std::forward<TargetType>(val)), void())
|
||||
{
|
||||
::nlohmann::to_json(j, std::forward<TargetType>(val));
|
||||
}
|
||||
};
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
103
sample/lib/json/include/nlohmann/byte_container_with_subtype.hpp
Normal file
103
sample/lib/json/include/nlohmann/byte_container_with_subtype.hpp
Normal file
@@ -0,0 +1,103 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint> // uint8_t, uint64_t
|
||||
#include <tuple> // tie
|
||||
#include <utility> // move
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
|
||||
/// @brief an internal type for a backed binary type
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/
|
||||
template<typename BinaryType>
|
||||
class byte_container_with_subtype : public BinaryType
|
||||
{
|
||||
public:
|
||||
using container_type = BinaryType;
|
||||
using subtype_type = std::uint64_t;
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||
byte_container_with_subtype() noexcept(noexcept(container_type()))
|
||||
: container_type()
|
||||
{}
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||
byte_container_with_subtype(const container_type& b) noexcept(noexcept(container_type(b)))
|
||||
: container_type(b)
|
||||
{}
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||
byte_container_with_subtype(container_type&& b) noexcept(noexcept(container_type(std::move(b))))
|
||||
: container_type(std::move(b))
|
||||
{}
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||
byte_container_with_subtype(const container_type& b, subtype_type subtype_) noexcept(noexcept(container_type(b)))
|
||||
: container_type(b)
|
||||
, m_subtype(subtype_)
|
||||
, m_has_subtype(true)
|
||||
{}
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||
byte_container_with_subtype(container_type&& b, subtype_type subtype_) noexcept(noexcept(container_type(std::move(b))))
|
||||
: container_type(std::move(b))
|
||||
, m_subtype(subtype_)
|
||||
, m_has_subtype(true)
|
||||
{}
|
||||
|
||||
bool operator==(const byte_container_with_subtype& rhs) const
|
||||
{
|
||||
return std::tie(static_cast<const BinaryType&>(*this), m_subtype, m_has_subtype) ==
|
||||
std::tie(static_cast<const BinaryType&>(rhs), rhs.m_subtype, rhs.m_has_subtype);
|
||||
}
|
||||
|
||||
bool operator!=(const byte_container_with_subtype& rhs) const
|
||||
{
|
||||
return !(rhs == *this);
|
||||
}
|
||||
|
||||
/// @brief sets the binary subtype
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/set_subtype/
|
||||
void set_subtype(subtype_type subtype_) noexcept
|
||||
{
|
||||
m_subtype = subtype_;
|
||||
m_has_subtype = true;
|
||||
}
|
||||
|
||||
/// @brief return the binary subtype
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/subtype/
|
||||
constexpr subtype_type subtype() const noexcept
|
||||
{
|
||||
return m_has_subtype ? m_subtype : static_cast<subtype_type>(-1);
|
||||
}
|
||||
|
||||
/// @brief return whether the value has a subtype
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/has_subtype/
|
||||
constexpr bool has_subtype() const noexcept
|
||||
{
|
||||
return m_has_subtype;
|
||||
}
|
||||
|
||||
/// @brief clears the binary subtype
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/clear_subtype/
|
||||
void clear_subtype() noexcept
|
||||
{
|
||||
m_subtype = 0;
|
||||
m_has_subtype = false;
|
||||
}
|
||||
|
||||
private:
|
||||
subtype_type m_subtype = 0;
|
||||
bool m_has_subtype = false;
|
||||
};
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
100
sample/lib/json/include/nlohmann/detail/abi_macros.hpp
Normal file
100
sample/lib/json/include/nlohmann/detail/abi_macros.hpp
Normal file
@@ -0,0 +1,100 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
// This file contains all macro definitions affecting or depending on the ABI
|
||||
|
||||
#ifndef JSON_SKIP_LIBRARY_VERSION_CHECK
|
||||
#if defined(NLOHMANN_JSON_VERSION_MAJOR) && defined(NLOHMANN_JSON_VERSION_MINOR) && defined(NLOHMANN_JSON_VERSION_PATCH)
|
||||
#if NLOHMANN_JSON_VERSION_MAJOR != 3 || NLOHMANN_JSON_VERSION_MINOR != 11 || NLOHMANN_JSON_VERSION_PATCH != 3
|
||||
#warning "Already included a different version of the library!"
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define NLOHMANN_JSON_VERSION_MAJOR 3 // NOLINT(modernize-macro-to-enum)
|
||||
#define NLOHMANN_JSON_VERSION_MINOR 11 // NOLINT(modernize-macro-to-enum)
|
||||
#define NLOHMANN_JSON_VERSION_PATCH 3 // NOLINT(modernize-macro-to-enum)
|
||||
|
||||
#ifndef JSON_DIAGNOSTICS
|
||||
#define JSON_DIAGNOSTICS 0
|
||||
#endif
|
||||
|
||||
#ifndef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
|
||||
#define JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON 0
|
||||
#endif
|
||||
|
||||
#if JSON_DIAGNOSTICS
|
||||
#define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS _diag
|
||||
#else
|
||||
#define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS
|
||||
#endif
|
||||
|
||||
#if JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
|
||||
#define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON _ldvcmp
|
||||
#else
|
||||
#define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON
|
||||
#endif
|
||||
|
||||
#ifndef NLOHMANN_JSON_NAMESPACE_NO_VERSION
|
||||
#define NLOHMANN_JSON_NAMESPACE_NO_VERSION 0
|
||||
#endif
|
||||
|
||||
// Construct the namespace ABI tags component
|
||||
#define NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b) json_abi ## a ## b
|
||||
#define NLOHMANN_JSON_ABI_TAGS_CONCAT(a, b) \
|
||||
NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b)
|
||||
|
||||
#define NLOHMANN_JSON_ABI_TAGS \
|
||||
NLOHMANN_JSON_ABI_TAGS_CONCAT( \
|
||||
NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS, \
|
||||
NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON)
|
||||
|
||||
// Construct the namespace version component
|
||||
#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch) \
|
||||
_v ## major ## _ ## minor ## _ ## patch
|
||||
#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(major, minor, patch) \
|
||||
NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch)
|
||||
|
||||
#if NLOHMANN_JSON_NAMESPACE_NO_VERSION
|
||||
#define NLOHMANN_JSON_NAMESPACE_VERSION
|
||||
#else
|
||||
#define NLOHMANN_JSON_NAMESPACE_VERSION \
|
||||
NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(NLOHMANN_JSON_VERSION_MAJOR, \
|
||||
NLOHMANN_JSON_VERSION_MINOR, \
|
||||
NLOHMANN_JSON_VERSION_PATCH)
|
||||
#endif
|
||||
|
||||
// Combine namespace components
|
||||
#define NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b) a ## b
|
||||
#define NLOHMANN_JSON_NAMESPACE_CONCAT(a, b) \
|
||||
NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b)
|
||||
|
||||
#ifndef NLOHMANN_JSON_NAMESPACE
|
||||
#define NLOHMANN_JSON_NAMESPACE \
|
||||
nlohmann::NLOHMANN_JSON_NAMESPACE_CONCAT( \
|
||||
NLOHMANN_JSON_ABI_TAGS, \
|
||||
NLOHMANN_JSON_NAMESPACE_VERSION)
|
||||
#endif
|
||||
|
||||
#ifndef NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
#define NLOHMANN_JSON_NAMESPACE_BEGIN \
|
||||
namespace nlohmann \
|
||||
{ \
|
||||
inline namespace NLOHMANN_JSON_NAMESPACE_CONCAT( \
|
||||
NLOHMANN_JSON_ABI_TAGS, \
|
||||
NLOHMANN_JSON_NAMESPACE_VERSION) \
|
||||
{
|
||||
#endif
|
||||
|
||||
#ifndef NLOHMANN_JSON_NAMESPACE_END
|
||||
#define NLOHMANN_JSON_NAMESPACE_END \
|
||||
} /* namespace (inline namespace) NOLINT(readability/namespace) */ \
|
||||
} // namespace nlohmann
|
||||
#endif
|
@@ -0,0 +1,497 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm> // transform
|
||||
#include <array> // array
|
||||
#include <forward_list> // forward_list
|
||||
#include <iterator> // inserter, front_inserter, end
|
||||
#include <map> // map
|
||||
#include <string> // string
|
||||
#include <tuple> // tuple, make_tuple
|
||||
#include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
|
||||
#include <unordered_map> // unordered_map
|
||||
#include <utility> // pair, declval
|
||||
#include <valarray> // valarray
|
||||
|
||||
#include <nlohmann/detail/exceptions.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/cpp_future.hpp>
|
||||
#include <nlohmann/detail/meta/identity_tag.hpp>
|
||||
#include <nlohmann/detail/meta/std_fs.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
#include <nlohmann/detail/string_concat.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_null()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be null, but is ", j.type_name()), &j));
|
||||
}
|
||||
n = nullptr;
|
||||
}
|
||||
|
||||
// overloads for basic_json template parameters
|
||||
template < typename BasicJsonType, typename ArithmeticType,
|
||||
enable_if_t < std::is_arithmetic<ArithmeticType>::value&&
|
||||
!std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
|
||||
int > = 0 >
|
||||
void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
|
||||
{
|
||||
switch (static_cast<value_t>(j))
|
||||
{
|
||||
case value_t::number_unsigned:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
|
||||
break;
|
||||
}
|
||||
case value_t::number_integer:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
|
||||
break;
|
||||
}
|
||||
case value_t::number_float:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
case value_t::object:
|
||||
case value_t::array:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_boolean()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be boolean, but is ", j.type_name()), &j));
|
||||
}
|
||||
b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
|
||||
}
|
||||
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
|
||||
}
|
||||
|
||||
template <
|
||||
typename BasicJsonType, typename StringType,
|
||||
enable_if_t <
|
||||
std::is_assignable<StringType&, const typename BasicJsonType::string_t>::value
|
||||
&& is_detected_exact<typename BasicJsonType::string_t::value_type, value_type_t, StringType>::value
|
||||
&& !std::is_same<typename BasicJsonType::string_t, StringType>::value
|
||||
&& !is_json_ref<StringType>::value, int > = 0 >
|
||||
inline void from_json(const BasicJsonType& j, StringType& s)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
|
||||
{
|
||||
get_arithmetic_value(j, val);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
|
||||
{
|
||||
get_arithmetic_value(j, val);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
|
||||
{
|
||||
get_arithmetic_value(j, val);
|
||||
}
|
||||
|
||||
#if !JSON_DISABLE_ENUM_SERIALIZATION
|
||||
template<typename BasicJsonType, typename EnumType,
|
||||
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
|
||||
inline void from_json(const BasicJsonType& j, EnumType& e)
|
||||
{
|
||||
typename std::underlying_type<EnumType>::type val;
|
||||
get_arithmetic_value(j, val);
|
||||
e = static_cast<EnumType>(val);
|
||||
}
|
||||
#endif // JSON_DISABLE_ENUM_SERIALIZATION
|
||||
|
||||
// forward_list doesn't have an insert method
|
||||
template<typename BasicJsonType, typename T, typename Allocator,
|
||||
enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
|
||||
inline void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
l.clear();
|
||||
std::transform(j.rbegin(), j.rend(),
|
||||
std::front_inserter(l), [](const BasicJsonType & i)
|
||||
{
|
||||
return i.template get<T>();
|
||||
});
|
||||
}
|
||||
|
||||
// valarray doesn't have an insert method
|
||||
template<typename BasicJsonType, typename T,
|
||||
enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
|
||||
inline void from_json(const BasicJsonType& j, std::valarray<T>& l)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
l.resize(j.size());
|
||||
std::transform(j.begin(), j.end(), std::begin(l),
|
||||
[](const BasicJsonType & elem)
|
||||
{
|
||||
return elem.template get<T>();
|
||||
});
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename T, std::size_t N>
|
||||
auto from_json(const BasicJsonType& j, T (&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||
-> decltype(j.template get<T>(), void())
|
||||
{
|
||||
for (std::size_t i = 0; i < N; ++i)
|
||||
{
|
||||
arr[i] = j.at(i).template get<T>();
|
||||
}
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
|
||||
{
|
||||
arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename T, std::size_t N>
|
||||
auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
|
||||
priority_tag<2> /*unused*/)
|
||||
-> decltype(j.template get<T>(), void())
|
||||
{
|
||||
for (std::size_t i = 0; i < N; ++i)
|
||||
{
|
||||
arr[i] = j.at(i).template get<T>();
|
||||
}
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleArrayType,
|
||||
enable_if_t<
|
||||
std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
|
||||
int> = 0>
|
||||
auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
|
||||
-> decltype(
|
||||
arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
|
||||
j.template get<typename ConstructibleArrayType::value_type>(),
|
||||
void())
|
||||
{
|
||||
using std::end;
|
||||
|
||||
ConstructibleArrayType ret;
|
||||
ret.reserve(j.size());
|
||||
std::transform(j.begin(), j.end(),
|
||||
std::inserter(ret, end(ret)), [](const BasicJsonType & i)
|
||||
{
|
||||
// get<BasicJsonType>() returns *this, this won't call a from_json
|
||||
// method when value_type is BasicJsonType
|
||||
return i.template get<typename ConstructibleArrayType::value_type>();
|
||||
});
|
||||
arr = std::move(ret);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleArrayType,
|
||||
enable_if_t<
|
||||
std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
|
||||
int> = 0>
|
||||
inline void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
|
||||
priority_tag<0> /*unused*/)
|
||||
{
|
||||
using std::end;
|
||||
|
||||
ConstructibleArrayType ret;
|
||||
std::transform(
|
||||
j.begin(), j.end(), std::inserter(ret, end(ret)),
|
||||
[](const BasicJsonType & i)
|
||||
{
|
||||
// get<BasicJsonType>() returns *this, this won't call a from_json
|
||||
// method when value_type is BasicJsonType
|
||||
return i.template get<typename ConstructibleArrayType::value_type>();
|
||||
});
|
||||
arr = std::move(ret);
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename ConstructibleArrayType,
|
||||
enable_if_t <
|
||||
is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value&&
|
||||
!is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value&&
|
||||
!is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value&&
|
||||
!std::is_same<ConstructibleArrayType, typename BasicJsonType::binary_t>::value&&
|
||||
!is_basic_json<ConstructibleArrayType>::value,
|
||||
int > = 0 >
|
||||
auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
|
||||
-> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
|
||||
j.template get<typename ConstructibleArrayType::value_type>(),
|
||||
void())
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
from_json_array_impl(j, arr, priority_tag<3> {});
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename T, std::size_t... Idx >
|
||||
std::array<T, sizeof...(Idx)> from_json_inplace_array_impl(BasicJsonType&& j,
|
||||
identity_tag<std::array<T, sizeof...(Idx)>> /*unused*/, index_sequence<Idx...> /*unused*/)
|
||||
{
|
||||
return { { std::forward<BasicJsonType>(j).at(Idx).template get<T>()... } };
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename T, std::size_t N >
|
||||
auto from_json(BasicJsonType&& j, identity_tag<std::array<T, N>> tag)
|
||||
-> decltype(from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {}))
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
return from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {});
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::binary_t& bin)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_binary()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be binary, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
bin = *j.template get_ptr<const typename BasicJsonType::binary_t*>();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleObjectType,
|
||||
enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0>
|
||||
inline void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_object()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be object, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
ConstructibleObjectType ret;
|
||||
const auto* inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
|
||||
using value_type = typename ConstructibleObjectType::value_type;
|
||||
std::transform(
|
||||
inner_object->begin(), inner_object->end(),
|
||||
std::inserter(ret, ret.begin()),
|
||||
[](typename BasicJsonType::object_t::value_type const & p)
|
||||
{
|
||||
return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
|
||||
});
|
||||
obj = std::move(ret);
|
||||
}
|
||||
|
||||
// overload for arithmetic types, not chosen for basic_json template arguments
|
||||
// (BooleanType, etc..); note: Is it really necessary to provide explicit
|
||||
// overloads for boolean_t etc. in case of a custom BooleanType which is not
|
||||
// an arithmetic type?
|
||||
template < typename BasicJsonType, typename ArithmeticType,
|
||||
enable_if_t <
|
||||
std::is_arithmetic<ArithmeticType>::value&&
|
||||
!std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value&&
|
||||
!std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value&&
|
||||
!std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value&&
|
||||
!std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
|
||||
int > = 0 >
|
||||
inline void from_json(const BasicJsonType& j, ArithmeticType& val)
|
||||
{
|
||||
switch (static_cast<value_t>(j))
|
||||
{
|
||||
case value_t::number_unsigned:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
|
||||
break;
|
||||
}
|
||||
case value_t::number_integer:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
|
||||
break;
|
||||
}
|
||||
case value_t::number_float:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
|
||||
break;
|
||||
}
|
||||
case value_t::boolean:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
case value_t::object:
|
||||
case value_t::array:
|
||||
case value_t::string:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename... Args, std::size_t... Idx>
|
||||
std::tuple<Args...> from_json_tuple_impl_base(BasicJsonType&& j, index_sequence<Idx...> /*unused*/)
|
||||
{
|
||||
return std::make_tuple(std::forward<BasicJsonType>(j).at(Idx).template get<Args>()...);
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, class A1, class A2 >
|
||||
std::pair<A1, A2> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::pair<A1, A2>> /*unused*/, priority_tag<0> /*unused*/)
|
||||
{
|
||||
return {std::forward<BasicJsonType>(j).at(0).template get<A1>(),
|
||||
std::forward<BasicJsonType>(j).at(1).template get<A2>()};
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename A1, typename A2>
|
||||
inline void from_json_tuple_impl(BasicJsonType&& j, std::pair<A1, A2>& p, priority_tag<1> /*unused*/)
|
||||
{
|
||||
p = from_json_tuple_impl(std::forward<BasicJsonType>(j), identity_tag<std::pair<A1, A2>> {}, priority_tag<0> {});
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename... Args>
|
||||
std::tuple<Args...> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::tuple<Args...>> /*unused*/, priority_tag<2> /*unused*/)
|
||||
{
|
||||
return from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename... Args>
|
||||
inline void from_json_tuple_impl(BasicJsonType&& j, std::tuple<Args...>& t, priority_tag<3> /*unused*/)
|
||||
{
|
||||
t = from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename TupleRelated>
|
||||
auto from_json(BasicJsonType&& j, TupleRelated&& t)
|
||||
-> decltype(from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {}))
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
return from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {});
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
|
||||
typename = enable_if_t < !std::is_constructible <
|
||||
typename BasicJsonType::string_t, Key >::value >>
|
||||
inline void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
m.clear();
|
||||
for (const auto& p : j)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
|
||||
}
|
||||
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
|
||||
}
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
|
||||
typename = enable_if_t < !std::is_constructible <
|
||||
typename BasicJsonType::string_t, Key >::value >>
|
||||
inline void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
m.clear();
|
||||
for (const auto& p : j)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
|
||||
}
|
||||
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
|
||||
}
|
||||
}
|
||||
|
||||
#if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, std_fs::path& p)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
|
||||
}
|
||||
p = *j.template get_ptr<const typename BasicJsonType::string_t*>();
|
||||
}
|
||||
#endif
|
||||
|
||||
struct from_json_fn
|
||||
{
|
||||
template<typename BasicJsonType, typename T>
|
||||
auto operator()(const BasicJsonType& j, T&& val) const
|
||||
noexcept(noexcept(from_json(j, std::forward<T>(val))))
|
||||
-> decltype(from_json(j, std::forward<T>(val)))
|
||||
{
|
||||
return from_json(j, std::forward<T>(val));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
#ifndef JSON_HAS_CPP_17
|
||||
/// namespace to hold default `from_json` function
|
||||
/// to see why this is required:
|
||||
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
|
||||
namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
|
||||
{
|
||||
#endif
|
||||
JSON_INLINE_VARIABLE constexpr const auto& from_json = // NOLINT(misc-definitions-in-headers)
|
||||
detail::static_const<detail::from_json_fn>::value;
|
||||
#ifndef JSON_HAS_CPP_17
|
||||
} // namespace
|
||||
#endif
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
1118
sample/lib/json/include/nlohmann/detail/conversions/to_chars.hpp
Normal file
1118
sample/lib/json/include/nlohmann/detail/conversions/to_chars.hpp
Normal file
File diff suppressed because it is too large
Load Diff
447
sample/lib/json/include/nlohmann/detail/conversions/to_json.hpp
Normal file
447
sample/lib/json/include/nlohmann/detail/conversions/to_json.hpp
Normal file
@@ -0,0 +1,447 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm> // copy
|
||||
#include <iterator> // begin, end
|
||||
#include <string> // string
|
||||
#include <tuple> // tuple, get
|
||||
#include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type
|
||||
#include <utility> // move, forward, declval, pair
|
||||
#include <valarray> // valarray
|
||||
#include <vector> // vector
|
||||
|
||||
#include <nlohmann/detail/iterators/iteration_proxy.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/cpp_future.hpp>
|
||||
#include <nlohmann/detail/meta/std_fs.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
//////////////////
|
||||
// constructors //
|
||||
//////////////////
|
||||
|
||||
/*
|
||||
* Note all external_constructor<>::construct functions need to call
|
||||
* j.m_data.m_value.destroy(j.m_data.m_type) to avoid a memory leak in case j contains an
|
||||
* allocated value (e.g., a string). See bug issue
|
||||
* https://github.com/nlohmann/json/issues/2865 for more information.
|
||||
*/
|
||||
|
||||
template<value_t> struct external_constructor;
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::boolean>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::boolean;
|
||||
j.m_data.m_value = b;
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::string>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::string;
|
||||
j.m_data.m_value = s;
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::string;
|
||||
j.m_data.m_value = std::move(s);
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename CompatibleStringType,
|
||||
enable_if_t < !std::is_same<CompatibleStringType, typename BasicJsonType::string_t>::value,
|
||||
int > = 0 >
|
||||
static void construct(BasicJsonType& j, const CompatibleStringType& str)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::string;
|
||||
j.m_data.m_value.string = j.template create<typename BasicJsonType::string_t>(str);
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::binary>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, const typename BasicJsonType::binary_t& b)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::binary;
|
||||
j.m_data.m_value = typename BasicJsonType::binary_t(b);
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::binary_t&& b)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::binary;
|
||||
j.m_data.m_value = typename BasicJsonType::binary_t(std::move(b));
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::number_float>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::number_float;
|
||||
j.m_data.m_value = val;
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::number_unsigned>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::number_unsigned;
|
||||
j.m_data.m_value = val;
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::number_integer>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::number_integer;
|
||||
j.m_data.m_value = val;
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::array>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::array;
|
||||
j.m_data.m_value = arr;
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::array;
|
||||
j.m_data.m_value = std::move(arr);
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename CompatibleArrayType,
|
||||
enable_if_t < !std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value,
|
||||
int > = 0 >
|
||||
static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
|
||||
{
|
||||
using std::begin;
|
||||
using std::end;
|
||||
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::array;
|
||||
j.m_data.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, const std::vector<bool>& arr)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::array;
|
||||
j.m_data.m_value = value_t::array;
|
||||
j.m_data.m_value.array->reserve(arr.size());
|
||||
for (const bool x : arr)
|
||||
{
|
||||
j.m_data.m_value.array->push_back(x);
|
||||
j.set_parent(j.m_data.m_value.array->back());
|
||||
}
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename T,
|
||||
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
|
||||
static void construct(BasicJsonType& j, const std::valarray<T>& arr)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::array;
|
||||
j.m_data.m_value = value_t::array;
|
||||
j.m_data.m_value.array->resize(arr.size());
|
||||
if (arr.size() > 0)
|
||||
{
|
||||
std::copy(std::begin(arr), std::end(arr), j.m_data.m_value.array->begin());
|
||||
}
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::object>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::object;
|
||||
j.m_data.m_value = obj;
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::object;
|
||||
j.m_data.m_value = std::move(obj);
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename CompatibleObjectType,
|
||||
enable_if_t < !std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int > = 0 >
|
||||
static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
|
||||
{
|
||||
using std::begin;
|
||||
using std::end;
|
||||
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::object;
|
||||
j.m_data.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
/////////////
|
||||
// to_json //
|
||||
/////////////
|
||||
|
||||
template<typename BasicJsonType, typename T,
|
||||
enable_if_t<std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, T b) noexcept
|
||||
{
|
||||
external_constructor<value_t::boolean>::construct(j, b);
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename BoolRef,
|
||||
enable_if_t <
|
||||
((std::is_same<std::vector<bool>::reference, BoolRef>::value
|
||||
&& !std::is_same <std::vector<bool>::reference, typename BasicJsonType::boolean_t&>::value)
|
||||
|| (std::is_same<std::vector<bool>::const_reference, BoolRef>::value
|
||||
&& !std::is_same <detail::uncvref_t<std::vector<bool>::const_reference>,
|
||||
typename BasicJsonType::boolean_t >::value))
|
||||
&& std::is_convertible<const BoolRef&, typename BasicJsonType::boolean_t>::value, int > = 0 >
|
||||
inline void to_json(BasicJsonType& j, const BoolRef& b) noexcept
|
||||
{
|
||||
external_constructor<value_t::boolean>::construct(j, static_cast<typename BasicJsonType::boolean_t>(b));
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleString,
|
||||
enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, const CompatibleString& s)
|
||||
{
|
||||
external_constructor<value_t::string>::construct(j, s);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
|
||||
{
|
||||
external_constructor<value_t::string>::construct(j, std::move(s));
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename FloatType,
|
||||
enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, FloatType val) noexcept
|
||||
{
|
||||
external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleNumberUnsignedType,
|
||||
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
|
||||
{
|
||||
external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleNumberIntegerType,
|
||||
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
|
||||
{
|
||||
external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
|
||||
}
|
||||
|
||||
#if !JSON_DISABLE_ENUM_SERIALIZATION
|
||||
template<typename BasicJsonType, typename EnumType,
|
||||
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, EnumType e) noexcept
|
||||
{
|
||||
using underlying_type = typename std::underlying_type<EnumType>::type;
|
||||
static constexpr value_t integral_value_t = std::is_unsigned<underlying_type>::value ? value_t::number_unsigned : value_t::number_integer;
|
||||
external_constructor<integral_value_t>::construct(j, static_cast<underlying_type>(e));
|
||||
}
|
||||
#endif // JSON_DISABLE_ENUM_SERIALIZATION
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, const std::vector<bool>& e)
|
||||
{
|
||||
external_constructor<value_t::array>::construct(j, e);
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename CompatibleArrayType,
|
||||
enable_if_t < is_compatible_array_type<BasicJsonType,
|
||||
CompatibleArrayType>::value&&
|
||||
!is_compatible_object_type<BasicJsonType, CompatibleArrayType>::value&&
|
||||
!is_compatible_string_type<BasicJsonType, CompatibleArrayType>::value&&
|
||||
!std::is_same<typename BasicJsonType::binary_t, CompatibleArrayType>::value&&
|
||||
!is_basic_json<CompatibleArrayType>::value,
|
||||
int > = 0 >
|
||||
inline void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
|
||||
{
|
||||
external_constructor<value_t::array>::construct(j, arr);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, const typename BasicJsonType::binary_t& bin)
|
||||
{
|
||||
external_constructor<value_t::binary>::construct(j, bin);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename T,
|
||||
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, const std::valarray<T>& arr)
|
||||
{
|
||||
external_constructor<value_t::array>::construct(j, std::move(arr));
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
|
||||
{
|
||||
external_constructor<value_t::array>::construct(j, std::move(arr));
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename CompatibleObjectType,
|
||||
enable_if_t < is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value&& !is_basic_json<CompatibleObjectType>::value, int > = 0 >
|
||||
inline void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
|
||||
{
|
||||
external_constructor<value_t::object>::construct(j, obj);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
|
||||
{
|
||||
external_constructor<value_t::object>::construct(j, std::move(obj));
|
||||
}
|
||||
|
||||
template <
|
||||
typename BasicJsonType, typename T, std::size_t N,
|
||||
enable_if_t < !std::is_constructible<typename BasicJsonType::string_t,
|
||||
const T(&)[N]>::value, // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||
int > = 0 >
|
||||
inline void to_json(BasicJsonType& j, const T(&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||
{
|
||||
external_constructor<value_t::array>::construct(j, arr);
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename T1, typename T2, enable_if_t < std::is_constructible<BasicJsonType, T1>::value&& std::is_constructible<BasicJsonType, T2>::value, int > = 0 >
|
||||
inline void to_json(BasicJsonType& j, const std::pair<T1, T2>& p)
|
||||
{
|
||||
j = { p.first, p.second };
|
||||
}
|
||||
|
||||
// for https://github.com/nlohmann/json/pull/1134
|
||||
template<typename BasicJsonType, typename T,
|
||||
enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, const T& b)
|
||||
{
|
||||
j = { {b.key(), b.value()} };
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
|
||||
inline void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/)
|
||||
{
|
||||
j = { std::get<Idx>(t)... };
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename T, enable_if_t<is_constructible_tuple<BasicJsonType, T>::value, int > = 0>
|
||||
inline void to_json(BasicJsonType& j, const T& t)
|
||||
{
|
||||
to_json_tuple_impl(j, t, make_index_sequence<std::tuple_size<T>::value> {});
|
||||
}
|
||||
|
||||
#if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, const std_fs::path& p)
|
||||
{
|
||||
j = p.string();
|
||||
}
|
||||
#endif
|
||||
|
||||
struct to_json_fn
|
||||
{
|
||||
template<typename BasicJsonType, typename T>
|
||||
auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
|
||||
-> decltype(to_json(j, std::forward<T>(val)), void())
|
||||
{
|
||||
return to_json(j, std::forward<T>(val));
|
||||
}
|
||||
};
|
||||
} // namespace detail
|
||||
|
||||
#ifndef JSON_HAS_CPP_17
|
||||
/// namespace to hold default `to_json` function
|
||||
/// to see why this is required:
|
||||
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
|
||||
namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
|
||||
{
|
||||
#endif
|
||||
JSON_INLINE_VARIABLE constexpr const auto& to_json = // NOLINT(misc-definitions-in-headers)
|
||||
detail::static_const<detail::to_json_fn>::value;
|
||||
#ifndef JSON_HAS_CPP_17
|
||||
} // namespace
|
||||
#endif
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
257
sample/lib/json/include/nlohmann/detail/exceptions.hpp
Normal file
257
sample/lib/json/include/nlohmann/detail/exceptions.hpp
Normal file
@@ -0,0 +1,257 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef> // nullptr_t
|
||||
#include <exception> // exception
|
||||
#if JSON_DIAGNOSTICS
|
||||
#include <numeric> // accumulate
|
||||
#endif
|
||||
#include <stdexcept> // runtime_error
|
||||
#include <string> // to_string
|
||||
#include <vector> // vector
|
||||
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
#include <nlohmann/detail/string_escape.hpp>
|
||||
#include <nlohmann/detail/input/position_t.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/cpp_future.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
#include <nlohmann/detail/string_concat.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
////////////////
|
||||
// exceptions //
|
||||
////////////////
|
||||
|
||||
/// @brief general exception of the @ref basic_json class
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/exception/
|
||||
class exception : public std::exception
|
||||
{
|
||||
public:
|
||||
/// returns the explanatory string
|
||||
const char* what() const noexcept override
|
||||
{
|
||||
return m.what();
|
||||
}
|
||||
|
||||
/// the id of the exception
|
||||
const int id; // NOLINT(cppcoreguidelines-non-private-member-variables-in-classes)
|
||||
|
||||
protected:
|
||||
JSON_HEDLEY_NON_NULL(3)
|
||||
exception(int id_, const char* what_arg) : id(id_), m(what_arg) {} // NOLINT(bugprone-throw-keyword-missing)
|
||||
|
||||
static std::string name(const std::string& ename, int id_)
|
||||
{
|
||||
return concat("[json.exception.", ename, '.', std::to_string(id_), "] ");
|
||||
}
|
||||
|
||||
static std::string diagnostics(std::nullptr_t /*leaf_element*/)
|
||||
{
|
||||
return "";
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static std::string diagnostics(const BasicJsonType* leaf_element)
|
||||
{
|
||||
#if JSON_DIAGNOSTICS
|
||||
std::vector<std::string> tokens;
|
||||
for (const auto* current = leaf_element; current != nullptr && current->m_parent != nullptr; current = current->m_parent)
|
||||
{
|
||||
switch (current->m_parent->type())
|
||||
{
|
||||
case value_t::array:
|
||||
{
|
||||
for (std::size_t i = 0; i < current->m_parent->m_data.m_value.array->size(); ++i)
|
||||
{
|
||||
if (¤t->m_parent->m_data.m_value.array->operator[](i) == current)
|
||||
{
|
||||
tokens.emplace_back(std::to_string(i));
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::object:
|
||||
{
|
||||
for (const auto& element : *current->m_parent->m_data.m_value.object)
|
||||
{
|
||||
if (&element.second == current)
|
||||
{
|
||||
tokens.emplace_back(element.first.c_str());
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null: // LCOV_EXCL_LINE
|
||||
case value_t::string: // LCOV_EXCL_LINE
|
||||
case value_t::boolean: // LCOV_EXCL_LINE
|
||||
case value_t::number_integer: // LCOV_EXCL_LINE
|
||||
case value_t::number_unsigned: // LCOV_EXCL_LINE
|
||||
case value_t::number_float: // LCOV_EXCL_LINE
|
||||
case value_t::binary: // LCOV_EXCL_LINE
|
||||
case value_t::discarded: // LCOV_EXCL_LINE
|
||||
default: // LCOV_EXCL_LINE
|
||||
break; // LCOV_EXCL_LINE
|
||||
}
|
||||
}
|
||||
|
||||
if (tokens.empty())
|
||||
{
|
||||
return "";
|
||||
}
|
||||
|
||||
auto str = std::accumulate(tokens.rbegin(), tokens.rend(), std::string{},
|
||||
[](const std::string & a, const std::string & b)
|
||||
{
|
||||
return concat(a, '/', detail::escape(b));
|
||||
});
|
||||
return concat('(', str, ") ");
|
||||
#else
|
||||
static_cast<void>(leaf_element);
|
||||
return "";
|
||||
#endif
|
||||
}
|
||||
|
||||
private:
|
||||
/// an exception object as storage for error messages
|
||||
std::runtime_error m;
|
||||
};
|
||||
|
||||
/// @brief exception indicating a parse error
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/parse_error/
|
||||
class parse_error : public exception
|
||||
{
|
||||
public:
|
||||
/*!
|
||||
@brief create a parse error exception
|
||||
@param[in] id_ the id of the exception
|
||||
@param[in] pos the position where the error occurred (or with
|
||||
chars_read_total=0 if the position cannot be
|
||||
determined)
|
||||
@param[in] what_arg the explanatory string
|
||||
@return parse_error object
|
||||
*/
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static parse_error create(int id_, const position_t& pos, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("parse_error", id_), "parse error",
|
||||
position_string(pos), ": ", exception::diagnostics(context), what_arg);
|
||||
return {id_, pos.chars_read_total, w.c_str()};
|
||||
}
|
||||
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static parse_error create(int id_, std::size_t byte_, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("parse_error", id_), "parse error",
|
||||
(byte_ != 0 ? (concat(" at byte ", std::to_string(byte_))) : ""),
|
||||
": ", exception::diagnostics(context), what_arg);
|
||||
return {id_, byte_, w.c_str()};
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief byte index of the parse error
|
||||
|
||||
The byte index of the last read character in the input file.
|
||||
|
||||
@note For an input with n bytes, 1 is the index of the first character and
|
||||
n+1 is the index of the terminating null byte or the end of file.
|
||||
This also holds true when reading a byte vector (CBOR or MessagePack).
|
||||
*/
|
||||
const std::size_t byte;
|
||||
|
||||
private:
|
||||
parse_error(int id_, std::size_t byte_, const char* what_arg)
|
||||
: exception(id_, what_arg), byte(byte_) {}
|
||||
|
||||
static std::string position_string(const position_t& pos)
|
||||
{
|
||||
return concat(" at line ", std::to_string(pos.lines_read + 1),
|
||||
", column ", std::to_string(pos.chars_read_current_line));
|
||||
}
|
||||
};
|
||||
|
||||
/// @brief exception indicating errors with iterators
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/invalid_iterator/
|
||||
class invalid_iterator : public exception
|
||||
{
|
||||
public:
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static invalid_iterator create(int id_, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("invalid_iterator", id_), exception::diagnostics(context), what_arg);
|
||||
return {id_, w.c_str()};
|
||||
}
|
||||
|
||||
private:
|
||||
JSON_HEDLEY_NON_NULL(3)
|
||||
invalid_iterator(int id_, const char* what_arg)
|
||||
: exception(id_, what_arg) {}
|
||||
};
|
||||
|
||||
/// @brief exception indicating executing a member function with a wrong type
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/type_error/
|
||||
class type_error : public exception
|
||||
{
|
||||
public:
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static type_error create(int id_, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("type_error", id_), exception::diagnostics(context), what_arg);
|
||||
return {id_, w.c_str()};
|
||||
}
|
||||
|
||||
private:
|
||||
JSON_HEDLEY_NON_NULL(3)
|
||||
type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
|
||||
};
|
||||
|
||||
/// @brief exception indicating access out of the defined range
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/out_of_range/
|
||||
class out_of_range : public exception
|
||||
{
|
||||
public:
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static out_of_range create(int id_, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("out_of_range", id_), exception::diagnostics(context), what_arg);
|
||||
return {id_, w.c_str()};
|
||||
}
|
||||
|
||||
private:
|
||||
JSON_HEDLEY_NON_NULL(3)
|
||||
out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
|
||||
};
|
||||
|
||||
/// @brief exception indicating other library errors
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/other_error/
|
||||
class other_error : public exception
|
||||
{
|
||||
public:
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static other_error create(int id_, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("other_error", id_), exception::diagnostics(context), what_arg);
|
||||
return {id_, w.c_str()};
|
||||
}
|
||||
|
||||
private:
|
||||
JSON_HEDLEY_NON_NULL(3)
|
||||
other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
129
sample/lib/json/include/nlohmann/detail/hash.hpp
Normal file
129
sample/lib/json/include/nlohmann/detail/hash.hpp
Normal file
@@ -0,0 +1,129 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint> // uint8_t
|
||||
#include <cstddef> // size_t
|
||||
#include <functional> // hash
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
// boost::hash_combine
|
||||
inline std::size_t combine(std::size_t seed, std::size_t h) noexcept
|
||||
{
|
||||
seed ^= h + 0x9e3779b9 + (seed << 6U) + (seed >> 2U);
|
||||
return seed;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief hash a JSON value
|
||||
|
||||
The hash function tries to rely on std::hash where possible. Furthermore, the
|
||||
type of the JSON value is taken into account to have different hash values for
|
||||
null, 0, 0U, and false, etc.
|
||||
|
||||
@tparam BasicJsonType basic_json specialization
|
||||
@param j JSON value to hash
|
||||
@return hash value of j
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
std::size_t hash(const BasicJsonType& j)
|
||||
{
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
|
||||
const auto type = static_cast<std::size_t>(j.type());
|
||||
switch (j.type())
|
||||
{
|
||||
case BasicJsonType::value_t::null:
|
||||
case BasicJsonType::value_t::discarded:
|
||||
{
|
||||
return combine(type, 0);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::object:
|
||||
{
|
||||
auto seed = combine(type, j.size());
|
||||
for (const auto& element : j.items())
|
||||
{
|
||||
const auto h = std::hash<string_t> {}(element.key());
|
||||
seed = combine(seed, h);
|
||||
seed = combine(seed, hash(element.value()));
|
||||
}
|
||||
return seed;
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::array:
|
||||
{
|
||||
auto seed = combine(type, j.size());
|
||||
for (const auto& element : j)
|
||||
{
|
||||
seed = combine(seed, hash(element));
|
||||
}
|
||||
return seed;
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::string:
|
||||
{
|
||||
const auto h = std::hash<string_t> {}(j.template get_ref<const string_t&>());
|
||||
return combine(type, h);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::boolean:
|
||||
{
|
||||
const auto h = std::hash<bool> {}(j.template get<bool>());
|
||||
return combine(type, h);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::number_integer:
|
||||
{
|
||||
const auto h = std::hash<number_integer_t> {}(j.template get<number_integer_t>());
|
||||
return combine(type, h);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::number_unsigned:
|
||||
{
|
||||
const auto h = std::hash<number_unsigned_t> {}(j.template get<number_unsigned_t>());
|
||||
return combine(type, h);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::number_float:
|
||||
{
|
||||
const auto h = std::hash<number_float_t> {}(j.template get<number_float_t>());
|
||||
return combine(type, h);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::binary:
|
||||
{
|
||||
auto seed = combine(type, j.get_binary().size());
|
||||
const auto h = std::hash<bool> {}(j.get_binary().has_subtype());
|
||||
seed = combine(seed, h);
|
||||
seed = combine(seed, static_cast<std::size_t>(j.get_binary().subtype()));
|
||||
for (const auto byte : j.get_binary())
|
||||
{
|
||||
seed = combine(seed, std::hash<std::uint8_t> {}(byte));
|
||||
}
|
||||
return seed;
|
||||
}
|
||||
|
||||
default: // LCOV_EXCL_LINE
|
||||
JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
|
||||
return 0; // LCOV_EXCL_LINE
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
3009
sample/lib/json/include/nlohmann/detail/input/binary_reader.hpp
Normal file
3009
sample/lib/json/include/nlohmann/detail/input/binary_reader.hpp
Normal file
File diff suppressed because it is too large
Load Diff
492
sample/lib/json/include/nlohmann/detail/input/input_adapters.hpp
Normal file
492
sample/lib/json/include/nlohmann/detail/input/input_adapters.hpp
Normal file
@@ -0,0 +1,492 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array> // array
|
||||
#include <cstddef> // size_t
|
||||
#include <cstring> // strlen
|
||||
#include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next
|
||||
#include <memory> // shared_ptr, make_shared, addressof
|
||||
#include <numeric> // accumulate
|
||||
#include <string> // string, char_traits
|
||||
#include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer
|
||||
#include <utility> // pair, declval
|
||||
|
||||
#ifndef JSON_NO_IO
|
||||
#include <cstdio> // FILE *
|
||||
#include <istream> // istream
|
||||
#endif // JSON_NO_IO
|
||||
|
||||
#include <nlohmann/detail/iterators/iterator_traits.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
/// the supported input formats
|
||||
enum class input_format_t { json, cbor, msgpack, ubjson, bson, bjdata };
|
||||
|
||||
////////////////////
|
||||
// input adapters //
|
||||
////////////////////
|
||||
|
||||
#ifndef JSON_NO_IO
|
||||
/*!
|
||||
Input adapter for stdio file access. This adapter read only 1 byte and do not use any
|
||||
buffer. This adapter is a very low level adapter.
|
||||
*/
|
||||
class file_input_adapter
|
||||
{
|
||||
public:
|
||||
using char_type = char;
|
||||
|
||||
JSON_HEDLEY_NON_NULL(2)
|
||||
explicit file_input_adapter(std::FILE* f) noexcept
|
||||
: m_file(f)
|
||||
{
|
||||
JSON_ASSERT(m_file != nullptr);
|
||||
}
|
||||
|
||||
// make class move-only
|
||||
file_input_adapter(const file_input_adapter&) = delete;
|
||||
file_input_adapter(file_input_adapter&&) noexcept = default;
|
||||
file_input_adapter& operator=(const file_input_adapter&) = delete;
|
||||
file_input_adapter& operator=(file_input_adapter&&) = delete;
|
||||
~file_input_adapter() = default;
|
||||
|
||||
std::char_traits<char>::int_type get_character() noexcept
|
||||
{
|
||||
return std::fgetc(m_file);
|
||||
}
|
||||
|
||||
private:
|
||||
/// the file pointer to read from
|
||||
std::FILE* m_file;
|
||||
};
|
||||
|
||||
/*!
|
||||
Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
|
||||
beginning of input. Does not support changing the underlying std::streambuf
|
||||
in mid-input. Maintains underlying std::istream and std::streambuf to support
|
||||
subsequent use of standard std::istream operations to process any input
|
||||
characters following those used in parsing the JSON input. Clears the
|
||||
std::istream flags; any input errors (e.g., EOF) will be detected by the first
|
||||
subsequent call for input from the std::istream.
|
||||
*/
|
||||
class input_stream_adapter
|
||||
{
|
||||
public:
|
||||
using char_type = char;
|
||||
|
||||
~input_stream_adapter()
|
||||
{
|
||||
// clear stream flags; we use underlying streambuf I/O, do not
|
||||
// maintain ifstream flags, except eof
|
||||
if (is != nullptr)
|
||||
{
|
||||
is->clear(is->rdstate() & std::ios::eofbit);
|
||||
}
|
||||
}
|
||||
|
||||
explicit input_stream_adapter(std::istream& i)
|
||||
: is(&i), sb(i.rdbuf())
|
||||
{}
|
||||
|
||||
// delete because of pointer members
|
||||
input_stream_adapter(const input_stream_adapter&) = delete;
|
||||
input_stream_adapter& operator=(input_stream_adapter&) = delete;
|
||||
input_stream_adapter& operator=(input_stream_adapter&&) = delete;
|
||||
|
||||
input_stream_adapter(input_stream_adapter&& rhs) noexcept
|
||||
: is(rhs.is), sb(rhs.sb)
|
||||
{
|
||||
rhs.is = nullptr;
|
||||
rhs.sb = nullptr;
|
||||
}
|
||||
|
||||
// std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
|
||||
// ensure that std::char_traits<char>::eof() and the character 0xFF do not
|
||||
// end up as the same value, e.g. 0xFFFFFFFF.
|
||||
std::char_traits<char>::int_type get_character()
|
||||
{
|
||||
auto res = sb->sbumpc();
|
||||
// set eof manually, as we don't use the istream interface.
|
||||
if (JSON_HEDLEY_UNLIKELY(res == std::char_traits<char>::eof()))
|
||||
{
|
||||
is->clear(is->rdstate() | std::ios::eofbit);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
private:
|
||||
/// the associated input stream
|
||||
std::istream* is = nullptr;
|
||||
std::streambuf* sb = nullptr;
|
||||
};
|
||||
#endif // JSON_NO_IO
|
||||
|
||||
// General-purpose iterator-based adapter. It might not be as fast as
|
||||
// theoretically possible for some containers, but it is extremely versatile.
|
||||
template<typename IteratorType>
|
||||
class iterator_input_adapter
|
||||
{
|
||||
public:
|
||||
using char_type = typename std::iterator_traits<IteratorType>::value_type;
|
||||
|
||||
iterator_input_adapter(IteratorType first, IteratorType last)
|
||||
: current(std::move(first)), end(std::move(last))
|
||||
{}
|
||||
|
||||
typename char_traits<char_type>::int_type get_character()
|
||||
{
|
||||
if (JSON_HEDLEY_LIKELY(current != end))
|
||||
{
|
||||
auto result = char_traits<char_type>::to_int_type(*current);
|
||||
std::advance(current, 1);
|
||||
return result;
|
||||
}
|
||||
|
||||
return char_traits<char_type>::eof();
|
||||
}
|
||||
|
||||
private:
|
||||
IteratorType current;
|
||||
IteratorType end;
|
||||
|
||||
template<typename BaseInputAdapter, size_t T>
|
||||
friend struct wide_string_input_helper;
|
||||
|
||||
bool empty() const
|
||||
{
|
||||
return current == end;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename BaseInputAdapter, size_t T>
|
||||
struct wide_string_input_helper;
|
||||
|
||||
template<typename BaseInputAdapter>
|
||||
struct wide_string_input_helper<BaseInputAdapter, 4>
|
||||
{
|
||||
// UTF-32
|
||||
static void fill_buffer(BaseInputAdapter& input,
|
||||
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
|
||||
size_t& utf8_bytes_index,
|
||||
size_t& utf8_bytes_filled)
|
||||
{
|
||||
utf8_bytes_index = 0;
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(input.empty()))
|
||||
{
|
||||
utf8_bytes[0] = std::char_traits<char>::eof();
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
// get the current character
|
||||
const auto wc = input.get_character();
|
||||
|
||||
// UTF-32 to UTF-8 encoding
|
||||
if (wc < 0x80)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
else if (wc <= 0x7FF)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((static_cast<unsigned int>(wc) >> 6u) & 0x1Fu));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
|
||||
utf8_bytes_filled = 2;
|
||||
}
|
||||
else if (wc <= 0xFFFF)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((static_cast<unsigned int>(wc) >> 12u) & 0x0Fu));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
|
||||
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
|
||||
utf8_bytes_filled = 3;
|
||||
}
|
||||
else if (wc <= 0x10FFFF)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | ((static_cast<unsigned int>(wc) >> 18u) & 0x07u));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 12u) & 0x3Fu));
|
||||
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
|
||||
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
|
||||
utf8_bytes_filled = 4;
|
||||
}
|
||||
else
|
||||
{
|
||||
// unknown character
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename BaseInputAdapter>
|
||||
struct wide_string_input_helper<BaseInputAdapter, 2>
|
||||
{
|
||||
// UTF-16
|
||||
static void fill_buffer(BaseInputAdapter& input,
|
||||
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
|
||||
size_t& utf8_bytes_index,
|
||||
size_t& utf8_bytes_filled)
|
||||
{
|
||||
utf8_bytes_index = 0;
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(input.empty()))
|
||||
{
|
||||
utf8_bytes[0] = std::char_traits<char>::eof();
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
// get the current character
|
||||
const auto wc = input.get_character();
|
||||
|
||||
// UTF-16 to UTF-8 encoding
|
||||
if (wc < 0x80)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
else if (wc <= 0x7FF)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((static_cast<unsigned int>(wc) >> 6u)));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
|
||||
utf8_bytes_filled = 2;
|
||||
}
|
||||
else if (0xD800 > wc || wc >= 0xE000)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((static_cast<unsigned int>(wc) >> 12u)));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
|
||||
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
|
||||
utf8_bytes_filled = 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!input.empty()))
|
||||
{
|
||||
const auto wc2 = static_cast<unsigned int>(input.get_character());
|
||||
const auto charcode = 0x10000u + (((static_cast<unsigned int>(wc) & 0x3FFu) << 10u) | (wc2 & 0x3FFu));
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | (charcode >> 18u));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 12u) & 0x3Fu));
|
||||
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 6u) & 0x3Fu));
|
||||
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (charcode & 0x3Fu));
|
||||
utf8_bytes_filled = 4;
|
||||
}
|
||||
else
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Wraps another input adapter to convert wide character types into individual bytes.
|
||||
template<typename BaseInputAdapter, typename WideCharType>
|
||||
class wide_string_input_adapter
|
||||
{
|
||||
public:
|
||||
using char_type = char;
|
||||
|
||||
wide_string_input_adapter(BaseInputAdapter base)
|
||||
: base_adapter(base) {}
|
||||
|
||||
typename std::char_traits<char>::int_type get_character() noexcept
|
||||
{
|
||||
// check if buffer needs to be filled
|
||||
if (utf8_bytes_index == utf8_bytes_filled)
|
||||
{
|
||||
fill_buffer<sizeof(WideCharType)>();
|
||||
|
||||
JSON_ASSERT(utf8_bytes_filled > 0);
|
||||
JSON_ASSERT(utf8_bytes_index == 0);
|
||||
}
|
||||
|
||||
// use buffer
|
||||
JSON_ASSERT(utf8_bytes_filled > 0);
|
||||
JSON_ASSERT(utf8_bytes_index < utf8_bytes_filled);
|
||||
return utf8_bytes[utf8_bytes_index++];
|
||||
}
|
||||
|
||||
private:
|
||||
BaseInputAdapter base_adapter;
|
||||
|
||||
template<size_t T>
|
||||
void fill_buffer()
|
||||
{
|
||||
wide_string_input_helper<BaseInputAdapter, T>::fill_buffer(base_adapter, utf8_bytes, utf8_bytes_index, utf8_bytes_filled);
|
||||
}
|
||||
|
||||
/// a buffer for UTF-8 bytes
|
||||
std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
|
||||
|
||||
/// index to the utf8_codes array for the next valid byte
|
||||
std::size_t utf8_bytes_index = 0;
|
||||
/// number of valid bytes in the utf8_codes array
|
||||
std::size_t utf8_bytes_filled = 0;
|
||||
};
|
||||
|
||||
template<typename IteratorType, typename Enable = void>
|
||||
struct iterator_input_adapter_factory
|
||||
{
|
||||
using iterator_type = IteratorType;
|
||||
using char_type = typename std::iterator_traits<iterator_type>::value_type;
|
||||
using adapter_type = iterator_input_adapter<iterator_type>;
|
||||
|
||||
static adapter_type create(IteratorType first, IteratorType last)
|
||||
{
|
||||
return adapter_type(std::move(first), std::move(last));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct is_iterator_of_multibyte
|
||||
{
|
||||
using value_type = typename std::iterator_traits<T>::value_type;
|
||||
enum
|
||||
{
|
||||
value = sizeof(value_type) > 1
|
||||
};
|
||||
};
|
||||
|
||||
template<typename IteratorType>
|
||||
struct iterator_input_adapter_factory<IteratorType, enable_if_t<is_iterator_of_multibyte<IteratorType>::value>>
|
||||
{
|
||||
using iterator_type = IteratorType;
|
||||
using char_type = typename std::iterator_traits<iterator_type>::value_type;
|
||||
using base_adapter_type = iterator_input_adapter<iterator_type>;
|
||||
using adapter_type = wide_string_input_adapter<base_adapter_type, char_type>;
|
||||
|
||||
static adapter_type create(IteratorType first, IteratorType last)
|
||||
{
|
||||
return adapter_type(base_adapter_type(std::move(first), std::move(last)));
|
||||
}
|
||||
};
|
||||
|
||||
// General purpose iterator-based input
|
||||
template<typename IteratorType>
|
||||
typename iterator_input_adapter_factory<IteratorType>::adapter_type input_adapter(IteratorType first, IteratorType last)
|
||||
{
|
||||
using factory_type = iterator_input_adapter_factory<IteratorType>;
|
||||
return factory_type::create(first, last);
|
||||
}
|
||||
|
||||
// Convenience shorthand from container to iterator
|
||||
// Enables ADL on begin(container) and end(container)
|
||||
// Encloses the using declarations in namespace for not to leak them to outside scope
|
||||
|
||||
namespace container_input_adapter_factory_impl
|
||||
{
|
||||
|
||||
using std::begin;
|
||||
using std::end;
|
||||
|
||||
template<typename ContainerType, typename Enable = void>
|
||||
struct container_input_adapter_factory {};
|
||||
|
||||
template<typename ContainerType>
|
||||
struct container_input_adapter_factory< ContainerType,
|
||||
void_t<decltype(begin(std::declval<ContainerType>()), end(std::declval<ContainerType>()))>>
|
||||
{
|
||||
using adapter_type = decltype(input_adapter(begin(std::declval<ContainerType>()), end(std::declval<ContainerType>())));
|
||||
|
||||
static adapter_type create(const ContainerType& container)
|
||||
{
|
||||
return input_adapter(begin(container), end(container));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace container_input_adapter_factory_impl
|
||||
|
||||
template<typename ContainerType>
|
||||
typename container_input_adapter_factory_impl::container_input_adapter_factory<ContainerType>::adapter_type input_adapter(const ContainerType& container)
|
||||
{
|
||||
return container_input_adapter_factory_impl::container_input_adapter_factory<ContainerType>::create(container);
|
||||
}
|
||||
|
||||
#ifndef JSON_NO_IO
|
||||
// Special cases with fast paths
|
||||
inline file_input_adapter input_adapter(std::FILE* file)
|
||||
{
|
||||
return file_input_adapter(file);
|
||||
}
|
||||
|
||||
inline input_stream_adapter input_adapter(std::istream& stream)
|
||||
{
|
||||
return input_stream_adapter(stream);
|
||||
}
|
||||
|
||||
inline input_stream_adapter input_adapter(std::istream&& stream)
|
||||
{
|
||||
return input_stream_adapter(stream);
|
||||
}
|
||||
#endif // JSON_NO_IO
|
||||
|
||||
using contiguous_bytes_input_adapter = decltype(input_adapter(std::declval<const char*>(), std::declval<const char*>()));
|
||||
|
||||
// Null-delimited strings, and the like.
|
||||
template < typename CharT,
|
||||
typename std::enable_if <
|
||||
std::is_pointer<CharT>::value&&
|
||||
!std::is_array<CharT>::value&&
|
||||
std::is_integral<typename std::remove_pointer<CharT>::type>::value&&
|
||||
sizeof(typename std::remove_pointer<CharT>::type) == 1,
|
||||
int >::type = 0 >
|
||||
contiguous_bytes_input_adapter input_adapter(CharT b)
|
||||
{
|
||||
auto length = std::strlen(reinterpret_cast<const char*>(b));
|
||||
const auto* ptr = reinterpret_cast<const char*>(b);
|
||||
return input_adapter(ptr, ptr + length);
|
||||
}
|
||||
|
||||
template<typename T, std::size_t N>
|
||||
auto input_adapter(T (&array)[N]) -> decltype(input_adapter(array, array + N)) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||
{
|
||||
return input_adapter(array, array + N);
|
||||
}
|
||||
|
||||
// This class only handles inputs of input_buffer_adapter type.
|
||||
// It's required so that expressions like {ptr, len} can be implicitly cast
|
||||
// to the correct adapter.
|
||||
class span_input_adapter
|
||||
{
|
||||
public:
|
||||
template < typename CharT,
|
||||
typename std::enable_if <
|
||||
std::is_pointer<CharT>::value&&
|
||||
std::is_integral<typename std::remove_pointer<CharT>::type>::value&&
|
||||
sizeof(typename std::remove_pointer<CharT>::type) == 1,
|
||||
int >::type = 0 >
|
||||
span_input_adapter(CharT b, std::size_t l)
|
||||
: ia(reinterpret_cast<const char*>(b), reinterpret_cast<const char*>(b) + l) {}
|
||||
|
||||
template<class IteratorType,
|
||||
typename std::enable_if<
|
||||
std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
|
||||
int>::type = 0>
|
||||
span_input_adapter(IteratorType first, IteratorType last)
|
||||
: ia(input_adapter(first, last)) {}
|
||||
|
||||
contiguous_bytes_input_adapter&& get()
|
||||
{
|
||||
return std::move(ia); // NOLINT(hicpp-move-const-arg,performance-move-const-arg)
|
||||
}
|
||||
|
||||
private:
|
||||
contiguous_bytes_input_adapter ia;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
727
sample/lib/json/include/nlohmann/detail/input/json_sax.hpp
Normal file
727
sample/lib/json/include/nlohmann/detail/input/json_sax.hpp
Normal file
@@ -0,0 +1,727 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
#include <string> // string
|
||||
#include <utility> // move
|
||||
#include <vector> // vector
|
||||
|
||||
#include <nlohmann/detail/exceptions.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/string_concat.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
|
||||
/*!
|
||||
@brief SAX interface
|
||||
|
||||
This class describes the SAX interface used by @ref nlohmann::json::sax_parse.
|
||||
Each function is called in different situations while the input is parsed. The
|
||||
boolean return value informs the parser whether to continue processing the
|
||||
input.
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
struct json_sax
|
||||
{
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using binary_t = typename BasicJsonType::binary_t;
|
||||
|
||||
/*!
|
||||
@brief a null value was read
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool null() = 0;
|
||||
|
||||
/*!
|
||||
@brief a boolean value was read
|
||||
@param[in] val boolean value
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool boolean(bool val) = 0;
|
||||
|
||||
/*!
|
||||
@brief an integer number was read
|
||||
@param[in] val integer value
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool number_integer(number_integer_t val) = 0;
|
||||
|
||||
/*!
|
||||
@brief an unsigned integer number was read
|
||||
@param[in] val unsigned integer value
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool number_unsigned(number_unsigned_t val) = 0;
|
||||
|
||||
/*!
|
||||
@brief a floating-point number was read
|
||||
@param[in] val floating-point value
|
||||
@param[in] s raw token value
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool number_float(number_float_t val, const string_t& s) = 0;
|
||||
|
||||
/*!
|
||||
@brief a string value was read
|
||||
@param[in] val string value
|
||||
@return whether parsing should proceed
|
||||
@note It is safe to move the passed string value.
|
||||
*/
|
||||
virtual bool string(string_t& val) = 0;
|
||||
|
||||
/*!
|
||||
@brief a binary value was read
|
||||
@param[in] val binary value
|
||||
@return whether parsing should proceed
|
||||
@note It is safe to move the passed binary value.
|
||||
*/
|
||||
virtual bool binary(binary_t& val) = 0;
|
||||
|
||||
/*!
|
||||
@brief the beginning of an object was read
|
||||
@param[in] elements number of object elements or -1 if unknown
|
||||
@return whether parsing should proceed
|
||||
@note binary formats may report the number of elements
|
||||
*/
|
||||
virtual bool start_object(std::size_t elements) = 0;
|
||||
|
||||
/*!
|
||||
@brief an object key was read
|
||||
@param[in] val object key
|
||||
@return whether parsing should proceed
|
||||
@note It is safe to move the passed string.
|
||||
*/
|
||||
virtual bool key(string_t& val) = 0;
|
||||
|
||||
/*!
|
||||
@brief the end of an object was read
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool end_object() = 0;
|
||||
|
||||
/*!
|
||||
@brief the beginning of an array was read
|
||||
@param[in] elements number of array elements or -1 if unknown
|
||||
@return whether parsing should proceed
|
||||
@note binary formats may report the number of elements
|
||||
*/
|
||||
virtual bool start_array(std::size_t elements) = 0;
|
||||
|
||||
/*!
|
||||
@brief the end of an array was read
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool end_array() = 0;
|
||||
|
||||
/*!
|
||||
@brief a parse error occurred
|
||||
@param[in] position the position in the input where the error occurs
|
||||
@param[in] last_token the last read token
|
||||
@param[in] ex an exception object describing the error
|
||||
@return whether parsing should proceed (must return false)
|
||||
*/
|
||||
virtual bool parse_error(std::size_t position,
|
||||
const std::string& last_token,
|
||||
const detail::exception& ex) = 0;
|
||||
|
||||
json_sax() = default;
|
||||
json_sax(const json_sax&) = default;
|
||||
json_sax(json_sax&&) noexcept = default;
|
||||
json_sax& operator=(const json_sax&) = default;
|
||||
json_sax& operator=(json_sax&&) noexcept = default;
|
||||
virtual ~json_sax() = default;
|
||||
};
|
||||
|
||||
namespace detail
|
||||
{
|
||||
/*!
|
||||
@brief SAX implementation to create a JSON value from SAX events
|
||||
|
||||
This class implements the @ref json_sax interface and processes the SAX events
|
||||
to create a JSON value which makes it basically a DOM parser. The structure or
|
||||
hierarchy of the JSON value is managed by the stack `ref_stack` which contains
|
||||
a pointer to the respective array or object for each recursion depth.
|
||||
|
||||
After successful parsing, the value that is passed by reference to the
|
||||
constructor contains the parsed value.
|
||||
|
||||
@tparam BasicJsonType the JSON type
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
class json_sax_dom_parser
|
||||
{
|
||||
public:
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using binary_t = typename BasicJsonType::binary_t;
|
||||
|
||||
/*!
|
||||
@param[in,out] r reference to a JSON value that is manipulated while
|
||||
parsing
|
||||
@param[in] allow_exceptions_ whether parse errors yield exceptions
|
||||
*/
|
||||
explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true)
|
||||
: root(r), allow_exceptions(allow_exceptions_)
|
||||
{}
|
||||
|
||||
// make class move-only
|
||||
json_sax_dom_parser(const json_sax_dom_parser&) = delete;
|
||||
json_sax_dom_parser(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
|
||||
json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete;
|
||||
json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
|
||||
~json_sax_dom_parser() = default;
|
||||
|
||||
bool null()
|
||||
{
|
||||
handle_value(nullptr);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool boolean(bool val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_integer(number_integer_t val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_unsigned(number_unsigned_t val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_float(number_float_t val, const string_t& /*unused*/)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool string(string_t& val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool binary(binary_t& val)
|
||||
{
|
||||
handle_value(std::move(val));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_object(std::size_t len)
|
||||
{
|
||||
ref_stack.push_back(handle_value(BasicJsonType::value_t::object));
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
|
||||
{
|
||||
JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back()));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool key(string_t& val)
|
||||
{
|
||||
JSON_ASSERT(!ref_stack.empty());
|
||||
JSON_ASSERT(ref_stack.back()->is_object());
|
||||
|
||||
// add null at given key and store the reference for later
|
||||
object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_object()
|
||||
{
|
||||
JSON_ASSERT(!ref_stack.empty());
|
||||
JSON_ASSERT(ref_stack.back()->is_object());
|
||||
|
||||
ref_stack.back()->set_parents();
|
||||
ref_stack.pop_back();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_array(std::size_t len)
|
||||
{
|
||||
ref_stack.push_back(handle_value(BasicJsonType::value_t::array));
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
|
||||
{
|
||||
JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back()));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_array()
|
||||
{
|
||||
JSON_ASSERT(!ref_stack.empty());
|
||||
JSON_ASSERT(ref_stack.back()->is_array());
|
||||
|
||||
ref_stack.back()->set_parents();
|
||||
ref_stack.pop_back();
|
||||
return true;
|
||||
}
|
||||
|
||||
template<class Exception>
|
||||
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
|
||||
const Exception& ex)
|
||||
{
|
||||
errored = true;
|
||||
static_cast<void>(ex);
|
||||
if (allow_exceptions)
|
||||
{
|
||||
JSON_THROW(ex);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
constexpr bool is_errored() const
|
||||
{
|
||||
return errored;
|
||||
}
|
||||
|
||||
private:
|
||||
/*!
|
||||
@invariant If the ref stack is empty, then the passed value will be the new
|
||||
root.
|
||||
@invariant If the ref stack contains a value, then it is an array or an
|
||||
object to which we can add elements
|
||||
*/
|
||||
template<typename Value>
|
||||
JSON_HEDLEY_RETURNS_NON_NULL
|
||||
BasicJsonType* handle_value(Value&& v)
|
||||
{
|
||||
if (ref_stack.empty())
|
||||
{
|
||||
root = BasicJsonType(std::forward<Value>(v));
|
||||
return &root;
|
||||
}
|
||||
|
||||
JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object());
|
||||
|
||||
if (ref_stack.back()->is_array())
|
||||
{
|
||||
ref_stack.back()->m_data.m_value.array->emplace_back(std::forward<Value>(v));
|
||||
return &(ref_stack.back()->m_data.m_value.array->back());
|
||||
}
|
||||
|
||||
JSON_ASSERT(ref_stack.back()->is_object());
|
||||
JSON_ASSERT(object_element);
|
||||
*object_element = BasicJsonType(std::forward<Value>(v));
|
||||
return object_element;
|
||||
}
|
||||
|
||||
/// the parsed JSON value
|
||||
BasicJsonType& root;
|
||||
/// stack to model hierarchy of values
|
||||
std::vector<BasicJsonType*> ref_stack {};
|
||||
/// helper to hold the reference for the next object element
|
||||
BasicJsonType* object_element = nullptr;
|
||||
/// whether a syntax error occurred
|
||||
bool errored = false;
|
||||
/// whether to throw exceptions in case of errors
|
||||
const bool allow_exceptions = true;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType>
|
||||
class json_sax_dom_callback_parser
|
||||
{
|
||||
public:
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using binary_t = typename BasicJsonType::binary_t;
|
||||
using parser_callback_t = typename BasicJsonType::parser_callback_t;
|
||||
using parse_event_t = typename BasicJsonType::parse_event_t;
|
||||
|
||||
json_sax_dom_callback_parser(BasicJsonType& r,
|
||||
const parser_callback_t cb,
|
||||
const bool allow_exceptions_ = true)
|
||||
: root(r), callback(cb), allow_exceptions(allow_exceptions_)
|
||||
{
|
||||
keep_stack.push_back(true);
|
||||
}
|
||||
|
||||
// make class move-only
|
||||
json_sax_dom_callback_parser(const json_sax_dom_callback_parser&) = delete;
|
||||
json_sax_dom_callback_parser(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
|
||||
json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete;
|
||||
json_sax_dom_callback_parser& operator=(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
|
||||
~json_sax_dom_callback_parser() = default;
|
||||
|
||||
bool null()
|
||||
{
|
||||
handle_value(nullptr);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool boolean(bool val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_integer(number_integer_t val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_unsigned(number_unsigned_t val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_float(number_float_t val, const string_t& /*unused*/)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool string(string_t& val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool binary(binary_t& val)
|
||||
{
|
||||
handle_value(std::move(val));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_object(std::size_t len)
|
||||
{
|
||||
// check callback for object start
|
||||
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::object_start, discarded);
|
||||
keep_stack.push_back(keep);
|
||||
|
||||
auto val = handle_value(BasicJsonType::value_t::object, true);
|
||||
ref_stack.push_back(val.second);
|
||||
|
||||
// check object limit
|
||||
if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
|
||||
{
|
||||
JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back()));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool key(string_t& val)
|
||||
{
|
||||
BasicJsonType k = BasicJsonType(val);
|
||||
|
||||
// check callback for key
|
||||
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::key, k);
|
||||
key_keep_stack.push_back(keep);
|
||||
|
||||
// add discarded value at given key and store the reference for later
|
||||
if (keep && ref_stack.back())
|
||||
{
|
||||
object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val) = discarded);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_object()
|
||||
{
|
||||
if (ref_stack.back())
|
||||
{
|
||||
if (!callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back()))
|
||||
{
|
||||
// discard object
|
||||
*ref_stack.back() = discarded;
|
||||
}
|
||||
else
|
||||
{
|
||||
ref_stack.back()->set_parents();
|
||||
}
|
||||
}
|
||||
|
||||
JSON_ASSERT(!ref_stack.empty());
|
||||
JSON_ASSERT(!keep_stack.empty());
|
||||
ref_stack.pop_back();
|
||||
keep_stack.pop_back();
|
||||
|
||||
if (!ref_stack.empty() && ref_stack.back() && ref_stack.back()->is_structured())
|
||||
{
|
||||
// remove discarded value
|
||||
for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it)
|
||||
{
|
||||
if (it->is_discarded())
|
||||
{
|
||||
ref_stack.back()->erase(it);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_array(std::size_t len)
|
||||
{
|
||||
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::array_start, discarded);
|
||||
keep_stack.push_back(keep);
|
||||
|
||||
auto val = handle_value(BasicJsonType::value_t::array, true);
|
||||
ref_stack.push_back(val.second);
|
||||
|
||||
// check array limit
|
||||
if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
|
||||
{
|
||||
JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back()));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_array()
|
||||
{
|
||||
bool keep = true;
|
||||
|
||||
if (ref_stack.back())
|
||||
{
|
||||
keep = callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back());
|
||||
if (keep)
|
||||
{
|
||||
ref_stack.back()->set_parents();
|
||||
}
|
||||
else
|
||||
{
|
||||
// discard array
|
||||
*ref_stack.back() = discarded;
|
||||
}
|
||||
}
|
||||
|
||||
JSON_ASSERT(!ref_stack.empty());
|
||||
JSON_ASSERT(!keep_stack.empty());
|
||||
ref_stack.pop_back();
|
||||
keep_stack.pop_back();
|
||||
|
||||
// remove discarded value
|
||||
if (!keep && !ref_stack.empty() && ref_stack.back()->is_array())
|
||||
{
|
||||
ref_stack.back()->m_data.m_value.array->pop_back();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template<class Exception>
|
||||
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
|
||||
const Exception& ex)
|
||||
{
|
||||
errored = true;
|
||||
static_cast<void>(ex);
|
||||
if (allow_exceptions)
|
||||
{
|
||||
JSON_THROW(ex);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
constexpr bool is_errored() const
|
||||
{
|
||||
return errored;
|
||||
}
|
||||
|
||||
private:
|
||||
/*!
|
||||
@param[in] v value to add to the JSON value we build during parsing
|
||||
@param[in] skip_callback whether we should skip calling the callback
|
||||
function; this is required after start_array() and
|
||||
start_object() SAX events, because otherwise we would call the
|
||||
callback function with an empty array or object, respectively.
|
||||
|
||||
@invariant If the ref stack is empty, then the passed value will be the new
|
||||
root.
|
||||
@invariant If the ref stack contains a value, then it is an array or an
|
||||
object to which we can add elements
|
||||
|
||||
@return pair of boolean (whether value should be kept) and pointer (to the
|
||||
passed value in the ref_stack hierarchy; nullptr if not kept)
|
||||
*/
|
||||
template<typename Value>
|
||||
std::pair<bool, BasicJsonType*> handle_value(Value&& v, const bool skip_callback = false)
|
||||
{
|
||||
JSON_ASSERT(!keep_stack.empty());
|
||||
|
||||
// do not handle this value if we know it would be added to a discarded
|
||||
// container
|
||||
if (!keep_stack.back())
|
||||
{
|
||||
return {false, nullptr};
|
||||
}
|
||||
|
||||
// create value
|
||||
auto value = BasicJsonType(std::forward<Value>(v));
|
||||
|
||||
// check callback
|
||||
const bool keep = skip_callback || callback(static_cast<int>(ref_stack.size()), parse_event_t::value, value);
|
||||
|
||||
// do not handle this value if we just learnt it shall be discarded
|
||||
if (!keep)
|
||||
{
|
||||
return {false, nullptr};
|
||||
}
|
||||
|
||||
if (ref_stack.empty())
|
||||
{
|
||||
root = std::move(value);
|
||||
return {true, & root};
|
||||
}
|
||||
|
||||
// skip this value if we already decided to skip the parent
|
||||
// (https://github.com/nlohmann/json/issues/971#issuecomment-413678360)
|
||||
if (!ref_stack.back())
|
||||
{
|
||||
return {false, nullptr};
|
||||
}
|
||||
|
||||
// we now only expect arrays and objects
|
||||
JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object());
|
||||
|
||||
// array
|
||||
if (ref_stack.back()->is_array())
|
||||
{
|
||||
ref_stack.back()->m_data.m_value.array->emplace_back(std::move(value));
|
||||
return {true, & (ref_stack.back()->m_data.m_value.array->back())};
|
||||
}
|
||||
|
||||
// object
|
||||
JSON_ASSERT(ref_stack.back()->is_object());
|
||||
// check if we should store an element for the current key
|
||||
JSON_ASSERT(!key_keep_stack.empty());
|
||||
const bool store_element = key_keep_stack.back();
|
||||
key_keep_stack.pop_back();
|
||||
|
||||
if (!store_element)
|
||||
{
|
||||
return {false, nullptr};
|
||||
}
|
||||
|
||||
JSON_ASSERT(object_element);
|
||||
*object_element = std::move(value);
|
||||
return {true, object_element};
|
||||
}
|
||||
|
||||
/// the parsed JSON value
|
||||
BasicJsonType& root;
|
||||
/// stack to model hierarchy of values
|
||||
std::vector<BasicJsonType*> ref_stack {};
|
||||
/// stack to manage which values to keep
|
||||
std::vector<bool> keep_stack {}; // NOLINT(readability-redundant-member-init)
|
||||
/// stack to manage which object keys to keep
|
||||
std::vector<bool> key_keep_stack {}; // NOLINT(readability-redundant-member-init)
|
||||
/// helper to hold the reference for the next object element
|
||||
BasicJsonType* object_element = nullptr;
|
||||
/// whether a syntax error occurred
|
||||
bool errored = false;
|
||||
/// callback function
|
||||
const parser_callback_t callback = nullptr;
|
||||
/// whether to throw exceptions in case of errors
|
||||
const bool allow_exceptions = true;
|
||||
/// a discarded value for the callback
|
||||
BasicJsonType discarded = BasicJsonType::value_t::discarded;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType>
|
||||
class json_sax_acceptor
|
||||
{
|
||||
public:
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using binary_t = typename BasicJsonType::binary_t;
|
||||
|
||||
bool null()
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool boolean(bool /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_integer(number_integer_t /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_unsigned(number_unsigned_t /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_float(number_float_t /*unused*/, const string_t& /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool string(string_t& /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool binary(binary_t& /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_object(std::size_t /*unused*/ = static_cast<std::size_t>(-1))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool key(string_t& /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_object()
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_array(std::size_t /*unused*/ = static_cast<std::size_t>(-1))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_array()
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
1633
sample/lib/json/include/nlohmann/detail/input/lexer.hpp
Normal file
1633
sample/lib/json/include/nlohmann/detail/input/lexer.hpp
Normal file
File diff suppressed because it is too large
Load Diff
519
sample/lib/json/include/nlohmann/detail/input/parser.hpp
Normal file
519
sample/lib/json/include/nlohmann/detail/input/parser.hpp
Normal file
@@ -0,0 +1,519 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cmath> // isfinite
|
||||
#include <cstdint> // uint8_t
|
||||
#include <functional> // function
|
||||
#include <string> // string
|
||||
#include <utility> // move
|
||||
#include <vector> // vector
|
||||
|
||||
#include <nlohmann/detail/exceptions.hpp>
|
||||
#include <nlohmann/detail/input/input_adapters.hpp>
|
||||
#include <nlohmann/detail/input/json_sax.hpp>
|
||||
#include <nlohmann/detail/input/lexer.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/is_sax.hpp>
|
||||
#include <nlohmann/detail/string_concat.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
////////////
|
||||
// parser //
|
||||
////////////
|
||||
|
||||
enum class parse_event_t : std::uint8_t
|
||||
{
|
||||
/// the parser read `{` and started to process a JSON object
|
||||
object_start,
|
||||
/// the parser read `}` and finished processing a JSON object
|
||||
object_end,
|
||||
/// the parser read `[` and started to process a JSON array
|
||||
array_start,
|
||||
/// the parser read `]` and finished processing a JSON array
|
||||
array_end,
|
||||
/// the parser read a key of a value in an object
|
||||
key,
|
||||
/// the parser finished reading a JSON value
|
||||
value
|
||||
};
|
||||
|
||||
template<typename BasicJsonType>
|
||||
using parser_callback_t =
|
||||
std::function<bool(int /*depth*/, parse_event_t /*event*/, BasicJsonType& /*parsed*/)>;
|
||||
|
||||
/*!
|
||||
@brief syntax analysis
|
||||
|
||||
This class implements a recursive descent parser.
|
||||
*/
|
||||
template<typename BasicJsonType, typename InputAdapterType>
|
||||
class parser
|
||||
{
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using lexer_t = lexer<BasicJsonType, InputAdapterType>;
|
||||
using token_type = typename lexer_t::token_type;
|
||||
|
||||
public:
|
||||
/// a parser reading from an input adapter
|
||||
explicit parser(InputAdapterType&& adapter,
|
||||
const parser_callback_t<BasicJsonType> cb = nullptr,
|
||||
const bool allow_exceptions_ = true,
|
||||
const bool skip_comments = false)
|
||||
: callback(cb)
|
||||
, m_lexer(std::move(adapter), skip_comments)
|
||||
, allow_exceptions(allow_exceptions_)
|
||||
{
|
||||
// read first token
|
||||
get_token();
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief public parser interface
|
||||
|
||||
@param[in] strict whether to expect the last token to be EOF
|
||||
@param[in,out] result parsed JSON value
|
||||
|
||||
@throw parse_error.101 in case of an unexpected token
|
||||
@throw parse_error.102 if to_unicode fails or surrogate error
|
||||
@throw parse_error.103 if to_unicode fails
|
||||
*/
|
||||
void parse(const bool strict, BasicJsonType& result)
|
||||
{
|
||||
if (callback)
|
||||
{
|
||||
json_sax_dom_callback_parser<BasicJsonType> sdp(result, callback, allow_exceptions);
|
||||
sax_parse_internal(&sdp);
|
||||
|
||||
// in strict mode, input must be completely read
|
||||
if (strict && (get_token() != token_type::end_of_input))
|
||||
{
|
||||
sdp.parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(),
|
||||
exception_message(token_type::end_of_input, "value"), nullptr));
|
||||
}
|
||||
|
||||
// in case of an error, return discarded value
|
||||
if (sdp.is_errored())
|
||||
{
|
||||
result = value_t::discarded;
|
||||
return;
|
||||
}
|
||||
|
||||
// set top-level value to null if it was discarded by the callback
|
||||
// function
|
||||
if (result.is_discarded())
|
||||
{
|
||||
result = nullptr;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
json_sax_dom_parser<BasicJsonType> sdp(result, allow_exceptions);
|
||||
sax_parse_internal(&sdp);
|
||||
|
||||
// in strict mode, input must be completely read
|
||||
if (strict && (get_token() != token_type::end_of_input))
|
||||
{
|
||||
sdp.parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"), nullptr));
|
||||
}
|
||||
|
||||
// in case of an error, return discarded value
|
||||
if (sdp.is_errored())
|
||||
{
|
||||
result = value_t::discarded;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
result.assert_invariant();
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief public accept interface
|
||||
|
||||
@param[in] strict whether to expect the last token to be EOF
|
||||
@return whether the input is a proper JSON text
|
||||
*/
|
||||
bool accept(const bool strict = true)
|
||||
{
|
||||
json_sax_acceptor<BasicJsonType> sax_acceptor;
|
||||
return sax_parse(&sax_acceptor, strict);
|
||||
}
|
||||
|
||||
template<typename SAX>
|
||||
JSON_HEDLEY_NON_NULL(2)
|
||||
bool sax_parse(SAX* sax, const bool strict = true)
|
||||
{
|
||||
(void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
|
||||
const bool result = sax_parse_internal(sax);
|
||||
|
||||
// strict mode: next byte must be EOF
|
||||
if (result && strict && (get_token() != token_type::end_of_input))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"), nullptr));
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
template<typename SAX>
|
||||
JSON_HEDLEY_NON_NULL(2)
|
||||
bool sax_parse_internal(SAX* sax)
|
||||
{
|
||||
// stack to remember the hierarchy of structured values we are parsing
|
||||
// true = array; false = object
|
||||
std::vector<bool> states;
|
||||
// value to avoid a goto (see comment where set to true)
|
||||
bool skip_to_state_evaluation = false;
|
||||
|
||||
while (true)
|
||||
{
|
||||
if (!skip_to_state_evaluation)
|
||||
{
|
||||
// invariant: get_token() was called before each iteration
|
||||
switch (last_token)
|
||||
{
|
||||
case token_type::begin_object:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->start_object(static_cast<std::size_t>(-1))))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// closing } -> we are done
|
||||
if (get_token() == token_type::end_object)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->end_object()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// parse key
|
||||
if (JSON_HEDLEY_UNLIKELY(last_token != token_type::value_string))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"), nullptr));
|
||||
}
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->key(m_lexer.get_string())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// parse separator (:)
|
||||
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"), nullptr));
|
||||
}
|
||||
|
||||
// remember we are now inside an object
|
||||
states.push_back(false);
|
||||
|
||||
// parse values
|
||||
get_token();
|
||||
continue;
|
||||
}
|
||||
|
||||
case token_type::begin_array:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->start_array(static_cast<std::size_t>(-1))))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// closing ] -> we are done
|
||||
if (get_token() == token_type::end_array)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->end_array()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// remember we are now inside an array
|
||||
states.push_back(true);
|
||||
|
||||
// parse values (no need to call get_token)
|
||||
continue;
|
||||
}
|
||||
|
||||
case token_type::value_float:
|
||||
{
|
||||
const auto res = m_lexer.get_number_float();
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(!std::isfinite(res)))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
out_of_range::create(406, concat("number overflow parsing '", m_lexer.get_token_string(), '\''), nullptr));
|
||||
}
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->number_float(res, m_lexer.get_string())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::literal_false:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->boolean(false)))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::literal_null:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->null()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::literal_true:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->boolean(true)))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::value_integer:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->number_integer(m_lexer.get_number_integer())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::value_string:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->string(m_lexer.get_string())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::value_unsigned:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->number_unsigned(m_lexer.get_number_unsigned())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::parse_error:
|
||||
{
|
||||
// using "uninitialized" to avoid "expected" message
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::uninitialized, "value"), nullptr));
|
||||
}
|
||||
case token_type::end_of_input:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(m_lexer.get_position().chars_read_total == 1))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(),
|
||||
"attempting to parse an empty input; check that your input string or stream contains the expected JSON", nullptr));
|
||||
}
|
||||
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"), nullptr));
|
||||
}
|
||||
case token_type::uninitialized:
|
||||
case token_type::end_array:
|
||||
case token_type::end_object:
|
||||
case token_type::name_separator:
|
||||
case token_type::value_separator:
|
||||
case token_type::literal_or_value:
|
||||
default: // the last token was unexpected
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"), nullptr));
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
skip_to_state_evaluation = false;
|
||||
}
|
||||
|
||||
// we reached this line after we successfully parsed a value
|
||||
if (states.empty())
|
||||
{
|
||||
// empty stack: we reached the end of the hierarchy: done
|
||||
return true;
|
||||
}
|
||||
|
||||
if (states.back()) // array
|
||||
{
|
||||
// comma -> next value
|
||||
if (get_token() == token_type::value_separator)
|
||||
{
|
||||
// parse a new value
|
||||
get_token();
|
||||
continue;
|
||||
}
|
||||
|
||||
// closing ]
|
||||
if (JSON_HEDLEY_LIKELY(last_token == token_type::end_array))
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->end_array()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// We are done with this array. Before we can parse a
|
||||
// new value, we need to evaluate the new state first.
|
||||
// By setting skip_to_state_evaluation to false, we
|
||||
// are effectively jumping to the beginning of this if.
|
||||
JSON_ASSERT(!states.empty());
|
||||
states.pop_back();
|
||||
skip_to_state_evaluation = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_array, "array"), nullptr));
|
||||
}
|
||||
|
||||
// states.back() is false -> object
|
||||
|
||||
// comma -> next value
|
||||
if (get_token() == token_type::value_separator)
|
||||
{
|
||||
// parse key
|
||||
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::value_string))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"), nullptr));
|
||||
}
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->key(m_lexer.get_string())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// parse separator (:)
|
||||
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"), nullptr));
|
||||
}
|
||||
|
||||
// parse values
|
||||
get_token();
|
||||
continue;
|
||||
}
|
||||
|
||||
// closing }
|
||||
if (JSON_HEDLEY_LIKELY(last_token == token_type::end_object))
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->end_object()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// We are done with this object. Before we can parse a
|
||||
// new value, we need to evaluate the new state first.
|
||||
// By setting skip_to_state_evaluation to false, we
|
||||
// are effectively jumping to the beginning of this if.
|
||||
JSON_ASSERT(!states.empty());
|
||||
states.pop_back();
|
||||
skip_to_state_evaluation = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_object, "object"), nullptr));
|
||||
}
|
||||
}
|
||||
|
||||
/// get next token from lexer
|
||||
token_type get_token()
|
||||
{
|
||||
return last_token = m_lexer.scan();
|
||||
}
|
||||
|
||||
std::string exception_message(const token_type expected, const std::string& context)
|
||||
{
|
||||
std::string error_msg = "syntax error ";
|
||||
|
||||
if (!context.empty())
|
||||
{
|
||||
error_msg += concat("while parsing ", context, ' ');
|
||||
}
|
||||
|
||||
error_msg += "- ";
|
||||
|
||||
if (last_token == token_type::parse_error)
|
||||
{
|
||||
error_msg += concat(m_lexer.get_error_message(), "; last read: '",
|
||||
m_lexer.get_token_string(), '\'');
|
||||
}
|
||||
else
|
||||
{
|
||||
error_msg += concat("unexpected ", lexer_t::token_type_name(last_token));
|
||||
}
|
||||
|
||||
if (expected != token_type::uninitialized)
|
||||
{
|
||||
error_msg += concat("; expected ", lexer_t::token_type_name(expected));
|
||||
}
|
||||
|
||||
return error_msg;
|
||||
}
|
||||
|
||||
private:
|
||||
/// callback function
|
||||
const parser_callback_t<BasicJsonType> callback = nullptr;
|
||||
/// the type of the last read token
|
||||
token_type last_token = token_type::uninitialized;
|
||||
/// the lexer
|
||||
lexer_t m_lexer;
|
||||
/// whether to throw exceptions in case of errors
|
||||
const bool allow_exceptions = true;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
37
sample/lib/json/include/nlohmann/detail/input/position_t.hpp
Normal file
37
sample/lib/json/include/nlohmann/detail/input/position_t.hpp
Normal file
@@ -0,0 +1,37 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef> // size_t
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
/// struct to capture the start position of the current token
|
||||
struct position_t
|
||||
{
|
||||
/// the total number of characters read
|
||||
std::size_t chars_read_total = 0;
|
||||
/// the number of characters read in the current line
|
||||
std::size_t chars_read_current_line = 0;
|
||||
/// the number of lines read
|
||||
std::size_t lines_read = 0;
|
||||
|
||||
/// conversion to size_t to preserve SAX interface
|
||||
constexpr operator size_t() const
|
||||
{
|
||||
return chars_read_total;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -0,0 +1,35 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
#include <nlohmann/detail/iterators/primitive_iterator.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
/*!
|
||||
@brief an iterator value
|
||||
|
||||
@note This structure could easily be a union, but MSVC currently does not allow
|
||||
unions members with complex constructors, see https://github.com/nlohmann/json/pull/105.
|
||||
*/
|
||||
template<typename BasicJsonType> struct internal_iterator
|
||||
{
|
||||
/// iterator for JSON objects
|
||||
typename BasicJsonType::object_t::iterator object_iterator {};
|
||||
/// iterator for JSON arrays
|
||||
typename BasicJsonType::array_t::iterator array_iterator {};
|
||||
/// generic iterator for all other types
|
||||
primitive_iterator_t primitive_iterator {};
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
751
sample/lib/json/include/nlohmann/detail/iterators/iter_impl.hpp
Normal file
751
sample/lib/json/include/nlohmann/detail/iterators/iter_impl.hpp
Normal file
@@ -0,0 +1,751 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iterator> // iterator, random_access_iterator_tag, bidirectional_iterator_tag, advance, next
|
||||
#include <type_traits> // conditional, is_const, remove_const
|
||||
|
||||
#include <nlohmann/detail/exceptions.hpp>
|
||||
#include <nlohmann/detail/iterators/internal_iterator.hpp>
|
||||
#include <nlohmann/detail/iterators/primitive_iterator.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/cpp_future.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
// forward declare, to be able to friend it later on
|
||||
template<typename IteratorType> class iteration_proxy;
|
||||
template<typename IteratorType> class iteration_proxy_value;
|
||||
|
||||
/*!
|
||||
@brief a template for a bidirectional iterator for the @ref basic_json class
|
||||
This class implements a both iterators (iterator and const_iterator) for the
|
||||
@ref basic_json class.
|
||||
@note An iterator is called *initialized* when a pointer to a JSON value has
|
||||
been set (e.g., by a constructor or a copy assignment). If the iterator is
|
||||
default-constructed, it is *uninitialized* and most methods are undefined.
|
||||
**The library uses assertions to detect calls on uninitialized iterators.**
|
||||
@requirement The class satisfies the following concept requirements:
|
||||
-
|
||||
[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
|
||||
The iterator that can be moved can be moved in both directions (i.e.
|
||||
incremented and decremented).
|
||||
@since version 1.0.0, simplified in version 2.0.9, change to bidirectional
|
||||
iterators in version 3.0.0 (see https://github.com/nlohmann/json/issues/593)
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-special-member-functions)
|
||||
{
|
||||
/// the iterator with BasicJsonType of different const-ness
|
||||
using other_iter_impl = iter_impl<typename std::conditional<std::is_const<BasicJsonType>::value, typename std::remove_const<BasicJsonType>::type, const BasicJsonType>::type>;
|
||||
/// allow basic_json to access private members
|
||||
friend other_iter_impl;
|
||||
friend BasicJsonType;
|
||||
friend iteration_proxy<iter_impl>;
|
||||
friend iteration_proxy_value<iter_impl>;
|
||||
|
||||
using object_t = typename BasicJsonType::object_t;
|
||||
using array_t = typename BasicJsonType::array_t;
|
||||
// make sure BasicJsonType is basic_json or const basic_json
|
||||
static_assert(is_basic_json<typename std::remove_const<BasicJsonType>::type>::value,
|
||||
"iter_impl only accepts (const) basic_json");
|
||||
// superficial check for the LegacyBidirectionalIterator named requirement
|
||||
static_assert(std::is_base_of<std::bidirectional_iterator_tag, std::bidirectional_iterator_tag>::value
|
||||
&& std::is_base_of<std::bidirectional_iterator_tag, typename std::iterator_traits<typename array_t::iterator>::iterator_category>::value,
|
||||
"basic_json iterator assumes array and object type iterators satisfy the LegacyBidirectionalIterator named requirement.");
|
||||
|
||||
public:
|
||||
/// The std::iterator class template (used as a base class to provide typedefs) is deprecated in C++17.
|
||||
/// The C++ Standard has never required user-defined iterators to derive from std::iterator.
|
||||
/// A user-defined iterator should provide publicly accessible typedefs named
|
||||
/// iterator_category, value_type, difference_type, pointer, and reference.
|
||||
/// Note that value_type is required to be non-const, even for constant iterators.
|
||||
using iterator_category = std::bidirectional_iterator_tag;
|
||||
|
||||
/// the type of the values when the iterator is dereferenced
|
||||
using value_type = typename BasicJsonType::value_type;
|
||||
/// a type to represent differences between iterators
|
||||
using difference_type = typename BasicJsonType::difference_type;
|
||||
/// defines a pointer to the type iterated over (value_type)
|
||||
using pointer = typename std::conditional<std::is_const<BasicJsonType>::value,
|
||||
typename BasicJsonType::const_pointer,
|
||||
typename BasicJsonType::pointer>::type;
|
||||
/// defines a reference to the type iterated over (value_type)
|
||||
using reference =
|
||||
typename std::conditional<std::is_const<BasicJsonType>::value,
|
||||
typename BasicJsonType::const_reference,
|
||||
typename BasicJsonType::reference>::type;
|
||||
|
||||
iter_impl() = default;
|
||||
~iter_impl() = default;
|
||||
iter_impl(iter_impl&&) noexcept = default;
|
||||
iter_impl& operator=(iter_impl&&) noexcept = default;
|
||||
|
||||
/*!
|
||||
@brief constructor for a given JSON instance
|
||||
@param[in] object pointer to a JSON object for this iterator
|
||||
@pre object != nullptr
|
||||
@post The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
explicit iter_impl(pointer object) noexcept : m_object(object)
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
{
|
||||
m_it.object_iterator = typename object_t::iterator();
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::array:
|
||||
{
|
||||
m_it.array_iterator = typename array_t::iterator();
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
{
|
||||
m_it.primitive_iterator = primitive_iterator_t();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@note The conventional copy constructor and copy assignment are implicitly
|
||||
defined. Combined with the following converting constructor and
|
||||
assignment, they support: (1) copy from iterator to iterator, (2)
|
||||
copy from const iterator to const iterator, and (3) conversion from
|
||||
iterator to const iterator. However conversion from const iterator
|
||||
to iterator is not defined.
|
||||
*/
|
||||
|
||||
/*!
|
||||
@brief const copy constructor
|
||||
@param[in] other const iterator to copy from
|
||||
@note This copy constructor had to be defined explicitly to circumvent a bug
|
||||
occurring on msvc v19.0 compiler (VS 2015) debug build. For more
|
||||
information refer to: https://github.com/nlohmann/json/issues/1608
|
||||
*/
|
||||
iter_impl(const iter_impl<const BasicJsonType>& other) noexcept
|
||||
: m_object(other.m_object), m_it(other.m_it)
|
||||
{}
|
||||
|
||||
/*!
|
||||
@brief converting assignment
|
||||
@param[in] other const iterator to copy from
|
||||
@return const/non-const iterator
|
||||
@note It is not checked whether @a other is initialized.
|
||||
*/
|
||||
iter_impl& operator=(const iter_impl<const BasicJsonType>& other) noexcept
|
||||
{
|
||||
if (&other != this)
|
||||
{
|
||||
m_object = other.m_object;
|
||||
m_it = other.m_it;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief converting constructor
|
||||
@param[in] other non-const iterator to copy from
|
||||
@note It is not checked whether @a other is initialized.
|
||||
*/
|
||||
iter_impl(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
|
||||
: m_object(other.m_object), m_it(other.m_it)
|
||||
{}
|
||||
|
||||
/*!
|
||||
@brief converting assignment
|
||||
@param[in] other non-const iterator to copy from
|
||||
@return const/non-const iterator
|
||||
@note It is not checked whether @a other is initialized.
|
||||
*/
|
||||
iter_impl& operator=(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept // NOLINT(cert-oop54-cpp)
|
||||
{
|
||||
m_object = other.m_object;
|
||||
m_it = other.m_it;
|
||||
return *this;
|
||||
}
|
||||
|
||||
JSON_PRIVATE_UNLESS_TESTED:
|
||||
/*!
|
||||
@brief set the iterator to the first value
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
void set_begin() noexcept
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
{
|
||||
m_it.object_iterator = m_object->m_data.m_value.object->begin();
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::array:
|
||||
{
|
||||
m_it.array_iterator = m_object->m_data.m_value.array->begin();
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
{
|
||||
// set to end so begin()==end() is true: null is empty
|
||||
m_it.primitive_iterator.set_end();
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
{
|
||||
m_it.primitive_iterator.set_begin();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief set the iterator past the last value
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
void set_end() noexcept
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
{
|
||||
m_it.object_iterator = m_object->m_data.m_value.object->end();
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::array:
|
||||
{
|
||||
m_it.array_iterator = m_object->m_data.m_value.array->end();
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
{
|
||||
m_it.primitive_iterator.set_end();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
/*!
|
||||
@brief return a reference to the value pointed to by the iterator
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
reference operator*() const
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
{
|
||||
JSON_ASSERT(m_it.object_iterator != m_object->m_data.m_value.object->end());
|
||||
return m_it.object_iterator->second;
|
||||
}
|
||||
|
||||
case value_t::array:
|
||||
{
|
||||
JSON_ASSERT(m_it.array_iterator != m_object->m_data.m_value.array->end());
|
||||
return *m_it.array_iterator;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
|
||||
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
{
|
||||
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
|
||||
{
|
||||
return *m_object;
|
||||
}
|
||||
|
||||
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief dereference the iterator
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
pointer operator->() const
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
{
|
||||
JSON_ASSERT(m_it.object_iterator != m_object->m_data.m_value.object->end());
|
||||
return &(m_it.object_iterator->second);
|
||||
}
|
||||
|
||||
case value_t::array:
|
||||
{
|
||||
JSON_ASSERT(m_it.array_iterator != m_object->m_data.m_value.array->end());
|
||||
return &*m_it.array_iterator;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
{
|
||||
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
|
||||
{
|
||||
return m_object;
|
||||
}
|
||||
|
||||
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief post-increment (it++)
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
iter_impl operator++(int)& // NOLINT(cert-dcl21-cpp)
|
||||
{
|
||||
auto result = *this;
|
||||
++(*this);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief pre-increment (++it)
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
iter_impl& operator++()
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
{
|
||||
std::advance(m_it.object_iterator, 1);
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::array:
|
||||
{
|
||||
std::advance(m_it.array_iterator, 1);
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
{
|
||||
++m_it.primitive_iterator;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief post-decrement (it--)
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
iter_impl operator--(int)& // NOLINT(cert-dcl21-cpp)
|
||||
{
|
||||
auto result = *this;
|
||||
--(*this);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief pre-decrement (--it)
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
iter_impl& operator--()
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
{
|
||||
std::advance(m_it.object_iterator, -1);
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::array:
|
||||
{
|
||||
std::advance(m_it.array_iterator, -1);
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
{
|
||||
--m_it.primitive_iterator;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief comparison: equal
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
template < typename IterImpl, detail::enable_if_t < (std::is_same<IterImpl, iter_impl>::value || std::is_same<IterImpl, other_iter_impl>::value), std::nullptr_t > = nullptr >
|
||||
bool operator==(const IterImpl& other) const
|
||||
{
|
||||
// if objects are not the same, the comparison is undefined
|
||||
if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
|
||||
{
|
||||
JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers", m_object));
|
||||
}
|
||||
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
return (m_it.object_iterator == other.m_it.object_iterator);
|
||||
|
||||
case value_t::array:
|
||||
return (m_it.array_iterator == other.m_it.array_iterator);
|
||||
|
||||
case value_t::null:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
return (m_it.primitive_iterator == other.m_it.primitive_iterator);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief comparison: not equal
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
template < typename IterImpl, detail::enable_if_t < (std::is_same<IterImpl, iter_impl>::value || std::is_same<IterImpl, other_iter_impl>::value), std::nullptr_t > = nullptr >
|
||||
bool operator!=(const IterImpl& other) const
|
||||
{
|
||||
return !operator==(other);
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief comparison: smaller
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
bool operator<(const iter_impl& other) const
|
||||
{
|
||||
// if objects are not the same, the comparison is undefined
|
||||
if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
|
||||
{
|
||||
JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers", m_object));
|
||||
}
|
||||
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
JSON_THROW(invalid_iterator::create(213, "cannot compare order of object iterators", m_object));
|
||||
|
||||
case value_t::array:
|
||||
return (m_it.array_iterator < other.m_it.array_iterator);
|
||||
|
||||
case value_t::null:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
return (m_it.primitive_iterator < other.m_it.primitive_iterator);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief comparison: less than or equal
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
bool operator<=(const iter_impl& other) const
|
||||
{
|
||||
return !other.operator < (*this);
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief comparison: greater than
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
bool operator>(const iter_impl& other) const
|
||||
{
|
||||
return !operator<=(other);
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief comparison: greater than or equal
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
bool operator>=(const iter_impl& other) const
|
||||
{
|
||||
return !operator<(other);
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief add to iterator
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
iter_impl& operator+=(difference_type i)
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators", m_object));
|
||||
|
||||
case value_t::array:
|
||||
{
|
||||
std::advance(m_it.array_iterator, i);
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
{
|
||||
m_it.primitive_iterator += i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief subtract from iterator
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
iter_impl& operator-=(difference_type i)
|
||||
{
|
||||
return operator+=(-i);
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief add to iterator
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
iter_impl operator+(difference_type i) const
|
||||
{
|
||||
auto result = *this;
|
||||
result += i;
|
||||
return result;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief addition of distance and iterator
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
friend iter_impl operator+(difference_type i, const iter_impl& it)
|
||||
{
|
||||
auto result = it;
|
||||
result += i;
|
||||
return result;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief subtract from iterator
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
iter_impl operator-(difference_type i) const
|
||||
{
|
||||
auto result = *this;
|
||||
result -= i;
|
||||
return result;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief return difference
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
difference_type operator-(const iter_impl& other) const
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators", m_object));
|
||||
|
||||
case value_t::array:
|
||||
return m_it.array_iterator - other.m_it.array_iterator;
|
||||
|
||||
case value_t::null:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
return m_it.primitive_iterator - other.m_it.primitive_iterator;
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief access to successor
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
reference operator[](difference_type n) const
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
switch (m_object->m_data.m_type)
|
||||
{
|
||||
case value_t::object:
|
||||
JSON_THROW(invalid_iterator::create(208, "cannot use operator[] for object iterators", m_object));
|
||||
|
||||
case value_t::array:
|
||||
return *std::next(m_it.array_iterator, n);
|
||||
|
||||
case value_t::null:
|
||||
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
|
||||
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
{
|
||||
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.get_value() == -n))
|
||||
{
|
||||
return *m_object;
|
||||
}
|
||||
|
||||
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief return the key of an object iterator
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
const typename object_t::key_type& key() const
|
||||
{
|
||||
JSON_ASSERT(m_object != nullptr);
|
||||
|
||||
if (JSON_HEDLEY_LIKELY(m_object->is_object()))
|
||||
{
|
||||
return m_it.object_iterator->first;
|
||||
}
|
||||
|
||||
JSON_THROW(invalid_iterator::create(207, "cannot use key() for non-object iterators", m_object));
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief return the value of an iterator
|
||||
@pre The iterator is initialized; i.e. `m_object != nullptr`.
|
||||
*/
|
||||
reference value() const
|
||||
{
|
||||
return operator*();
|
||||
}
|
||||
|
||||
JSON_PRIVATE_UNLESS_TESTED:
|
||||
/// associated JSON instance
|
||||
pointer m_object = nullptr;
|
||||
/// the actual iterator of the associated instance
|
||||
internal_iterator<typename std::remove_const<BasicJsonType>::type> m_it {};
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -0,0 +1,242 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef> // size_t
|
||||
#include <iterator> // input_iterator_tag
|
||||
#include <string> // string, to_string
|
||||
#include <tuple> // tuple_size, get, tuple_element
|
||||
#include <utility> // move
|
||||
|
||||
#if JSON_HAS_RANGES
|
||||
#include <ranges> // enable_borrowed_range
|
||||
#endif
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
template<typename string_type>
|
||||
void int_to_string( string_type& target, std::size_t value )
|
||||
{
|
||||
// For ADL
|
||||
using std::to_string;
|
||||
target = to_string(value);
|
||||
}
|
||||
template<typename IteratorType> class iteration_proxy_value
|
||||
{
|
||||
public:
|
||||
using difference_type = std::ptrdiff_t;
|
||||
using value_type = iteration_proxy_value;
|
||||
using pointer = value_type *;
|
||||
using reference = value_type &;
|
||||
using iterator_category = std::input_iterator_tag;
|
||||
using string_type = typename std::remove_cv< typename std::remove_reference<decltype( std::declval<IteratorType>().key() ) >::type >::type;
|
||||
|
||||
private:
|
||||
/// the iterator
|
||||
IteratorType anchor{};
|
||||
/// an index for arrays (used to create key names)
|
||||
std::size_t array_index = 0;
|
||||
/// last stringified array index
|
||||
mutable std::size_t array_index_last = 0;
|
||||
/// a string representation of the array index
|
||||
mutable string_type array_index_str = "0";
|
||||
/// an empty string (to return a reference for primitive values)
|
||||
string_type empty_str{};
|
||||
|
||||
public:
|
||||
explicit iteration_proxy_value() = default;
|
||||
explicit iteration_proxy_value(IteratorType it, std::size_t array_index_ = 0)
|
||||
noexcept(std::is_nothrow_move_constructible<IteratorType>::value
|
||||
&& std::is_nothrow_default_constructible<string_type>::value)
|
||||
: anchor(std::move(it))
|
||||
, array_index(array_index_)
|
||||
{}
|
||||
|
||||
iteration_proxy_value(iteration_proxy_value const&) = default;
|
||||
iteration_proxy_value& operator=(iteration_proxy_value const&) = default;
|
||||
// older GCCs are a bit fussy and require explicit noexcept specifiers on defaulted functions
|
||||
iteration_proxy_value(iteration_proxy_value&&)
|
||||
noexcept(std::is_nothrow_move_constructible<IteratorType>::value
|
||||
&& std::is_nothrow_move_constructible<string_type>::value) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor,cppcoreguidelines-noexcept-move-operations)
|
||||
iteration_proxy_value& operator=(iteration_proxy_value&&)
|
||||
noexcept(std::is_nothrow_move_assignable<IteratorType>::value
|
||||
&& std::is_nothrow_move_assignable<string_type>::value) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor,cppcoreguidelines-noexcept-move-operations)
|
||||
~iteration_proxy_value() = default;
|
||||
|
||||
/// dereference operator (needed for range-based for)
|
||||
const iteration_proxy_value& operator*() const
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// increment operator (needed for range-based for)
|
||||
iteration_proxy_value& operator++()
|
||||
{
|
||||
++anchor;
|
||||
++array_index;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
iteration_proxy_value operator++(int)& // NOLINT(cert-dcl21-cpp)
|
||||
{
|
||||
auto tmp = iteration_proxy_value(anchor, array_index);
|
||||
++anchor;
|
||||
++array_index;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
/// equality operator (needed for InputIterator)
|
||||
bool operator==(const iteration_proxy_value& o) const
|
||||
{
|
||||
return anchor == o.anchor;
|
||||
}
|
||||
|
||||
/// inequality operator (needed for range-based for)
|
||||
bool operator!=(const iteration_proxy_value& o) const
|
||||
{
|
||||
return anchor != o.anchor;
|
||||
}
|
||||
|
||||
/// return key of the iterator
|
||||
const string_type& key() const
|
||||
{
|
||||
JSON_ASSERT(anchor.m_object != nullptr);
|
||||
|
||||
switch (anchor.m_object->type())
|
||||
{
|
||||
// use integer array index as key
|
||||
case value_t::array:
|
||||
{
|
||||
if (array_index != array_index_last)
|
||||
{
|
||||
int_to_string( array_index_str, array_index );
|
||||
array_index_last = array_index;
|
||||
}
|
||||
return array_index_str;
|
||||
}
|
||||
|
||||
// use key from the object
|
||||
case value_t::object:
|
||||
return anchor.key();
|
||||
|
||||
// use an empty key for all primitive types
|
||||
case value_t::null:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::number_integer:
|
||||
case value_t::number_unsigned:
|
||||
case value_t::number_float:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
return empty_str;
|
||||
}
|
||||
}
|
||||
|
||||
/// return value of the iterator
|
||||
typename IteratorType::reference value() const
|
||||
{
|
||||
return anchor.value();
|
||||
}
|
||||
};
|
||||
|
||||
/// proxy class for the items() function
|
||||
template<typename IteratorType> class iteration_proxy
|
||||
{
|
||||
private:
|
||||
/// the container to iterate
|
||||
typename IteratorType::pointer container = nullptr;
|
||||
|
||||
public:
|
||||
explicit iteration_proxy() = default;
|
||||
|
||||
/// construct iteration proxy from a container
|
||||
explicit iteration_proxy(typename IteratorType::reference cont) noexcept
|
||||
: container(&cont) {}
|
||||
|
||||
iteration_proxy(iteration_proxy const&) = default;
|
||||
iteration_proxy& operator=(iteration_proxy const&) = default;
|
||||
iteration_proxy(iteration_proxy&&) noexcept = default;
|
||||
iteration_proxy& operator=(iteration_proxy&&) noexcept = default;
|
||||
~iteration_proxy() = default;
|
||||
|
||||
/// return iterator begin (needed for range-based for)
|
||||
iteration_proxy_value<IteratorType> begin() const noexcept
|
||||
{
|
||||
return iteration_proxy_value<IteratorType>(container->begin());
|
||||
}
|
||||
|
||||
/// return iterator end (needed for range-based for)
|
||||
iteration_proxy_value<IteratorType> end() const noexcept
|
||||
{
|
||||
return iteration_proxy_value<IteratorType>(container->end());
|
||||
}
|
||||
};
|
||||
|
||||
// Structured Bindings Support
|
||||
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
|
||||
// And see https://github.com/nlohmann/json/pull/1391
|
||||
template<std::size_t N, typename IteratorType, enable_if_t<N == 0, int> = 0>
|
||||
auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.key())
|
||||
{
|
||||
return i.key();
|
||||
}
|
||||
// Structured Bindings Support
|
||||
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
|
||||
// And see https://github.com/nlohmann/json/pull/1391
|
||||
template<std::size_t N, typename IteratorType, enable_if_t<N == 1, int> = 0>
|
||||
auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.value())
|
||||
{
|
||||
return i.value();
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
||||
|
||||
// The Addition to the STD Namespace is required to add
|
||||
// Structured Bindings Support to the iteration_proxy_value class
|
||||
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
|
||||
// And see https://github.com/nlohmann/json/pull/1391
|
||||
namespace std
|
||||
{
|
||||
|
||||
#if defined(__clang__)
|
||||
// Fix: https://github.com/nlohmann/json/issues/1401
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wmismatched-tags"
|
||||
#endif
|
||||
template<typename IteratorType>
|
||||
class tuple_size<::nlohmann::detail::iteration_proxy_value<IteratorType>> // NOLINT(cert-dcl58-cpp)
|
||||
: public std::integral_constant<std::size_t, 2> {};
|
||||
|
||||
template<std::size_t N, typename IteratorType>
|
||||
class tuple_element<N, ::nlohmann::detail::iteration_proxy_value<IteratorType >> // NOLINT(cert-dcl58-cpp)
|
||||
{
|
||||
public:
|
||||
using type = decltype(
|
||||
get<N>(std::declval <
|
||||
::nlohmann::detail::iteration_proxy_value<IteratorType >> ()));
|
||||
};
|
||||
#if defined(__clang__)
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
} // namespace std
|
||||
|
||||
#if JSON_HAS_RANGES
|
||||
template <typename IteratorType>
|
||||
inline constexpr bool ::std::ranges::enable_borrowed_range<::nlohmann::detail::iteration_proxy<IteratorType>> = true;
|
||||
#endif
|
@@ -0,0 +1,61 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iterator> // random_access_iterator_tag
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
#include <nlohmann/detail/meta/void_t.hpp>
|
||||
#include <nlohmann/detail/meta/cpp_future.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
template<typename It, typename = void>
|
||||
struct iterator_types {};
|
||||
|
||||
template<typename It>
|
||||
struct iterator_types <
|
||||
It,
|
||||
void_t<typename It::difference_type, typename It::value_type, typename It::pointer,
|
||||
typename It::reference, typename It::iterator_category >>
|
||||
{
|
||||
using difference_type = typename It::difference_type;
|
||||
using value_type = typename It::value_type;
|
||||
using pointer = typename It::pointer;
|
||||
using reference = typename It::reference;
|
||||
using iterator_category = typename It::iterator_category;
|
||||
};
|
||||
|
||||
// This is required as some compilers implement std::iterator_traits in a way that
|
||||
// doesn't work with SFINAE. See https://github.com/nlohmann/json/issues/1341.
|
||||
template<typename T, typename = void>
|
||||
struct iterator_traits
|
||||
{
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct iterator_traits < T, enable_if_t < !std::is_pointer<T>::value >>
|
||||
: iterator_types<T>
|
||||
{
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct iterator_traits<T*, enable_if_t<std::is_object<T>::value>>
|
||||
{
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
using value_type = T;
|
||||
using difference_type = ptrdiff_t;
|
||||
using pointer = T*;
|
||||
using reference = T&;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -0,0 +1,130 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef> // ptrdiff_t
|
||||
#include <iterator> // reverse_iterator
|
||||
#include <utility> // declval
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
//////////////////////
|
||||
// reverse_iterator //
|
||||
//////////////////////
|
||||
|
||||
/*!
|
||||
@brief a template for a reverse iterator class
|
||||
|
||||
@tparam Base the base iterator type to reverse. Valid types are @ref
|
||||
iterator (to create @ref reverse_iterator) and @ref const_iterator (to
|
||||
create @ref const_reverse_iterator).
|
||||
|
||||
@requirement The class satisfies the following concept requirements:
|
||||
-
|
||||
[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
|
||||
The iterator that can be moved can be moved in both directions (i.e.
|
||||
incremented and decremented).
|
||||
- [OutputIterator](https://en.cppreference.com/w/cpp/named_req/OutputIterator):
|
||||
It is possible to write to the pointed-to element (only if @a Base is
|
||||
@ref iterator).
|
||||
|
||||
@since version 1.0.0
|
||||
*/
|
||||
template<typename Base>
|
||||
class json_reverse_iterator : public std::reverse_iterator<Base>
|
||||
{
|
||||
public:
|
||||
using difference_type = std::ptrdiff_t;
|
||||
/// shortcut to the reverse iterator adapter
|
||||
using base_iterator = std::reverse_iterator<Base>;
|
||||
/// the reference type for the pointed-to element
|
||||
using reference = typename Base::reference;
|
||||
|
||||
/// create reverse iterator from iterator
|
||||
explicit json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
|
||||
: base_iterator(it) {}
|
||||
|
||||
/// create reverse iterator from base class
|
||||
explicit json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {}
|
||||
|
||||
/// post-increment (it++)
|
||||
json_reverse_iterator operator++(int)& // NOLINT(cert-dcl21-cpp)
|
||||
{
|
||||
return static_cast<json_reverse_iterator>(base_iterator::operator++(1));
|
||||
}
|
||||
|
||||
/// pre-increment (++it)
|
||||
json_reverse_iterator& operator++()
|
||||
{
|
||||
return static_cast<json_reverse_iterator&>(base_iterator::operator++());
|
||||
}
|
||||
|
||||
/// post-decrement (it--)
|
||||
json_reverse_iterator operator--(int)& // NOLINT(cert-dcl21-cpp)
|
||||
{
|
||||
return static_cast<json_reverse_iterator>(base_iterator::operator--(1));
|
||||
}
|
||||
|
||||
/// pre-decrement (--it)
|
||||
json_reverse_iterator& operator--()
|
||||
{
|
||||
return static_cast<json_reverse_iterator&>(base_iterator::operator--());
|
||||
}
|
||||
|
||||
/// add to iterator
|
||||
json_reverse_iterator& operator+=(difference_type i)
|
||||
{
|
||||
return static_cast<json_reverse_iterator&>(base_iterator::operator+=(i));
|
||||
}
|
||||
|
||||
/// add to iterator
|
||||
json_reverse_iterator operator+(difference_type i) const
|
||||
{
|
||||
return static_cast<json_reverse_iterator>(base_iterator::operator+(i));
|
||||
}
|
||||
|
||||
/// subtract from iterator
|
||||
json_reverse_iterator operator-(difference_type i) const
|
||||
{
|
||||
return static_cast<json_reverse_iterator>(base_iterator::operator-(i));
|
||||
}
|
||||
|
||||
/// return difference
|
||||
difference_type operator-(const json_reverse_iterator& other) const
|
||||
{
|
||||
return base_iterator(*this) - base_iterator(other);
|
||||
}
|
||||
|
||||
/// access to successor
|
||||
reference operator[](difference_type n) const
|
||||
{
|
||||
return *(this->operator+(n));
|
||||
}
|
||||
|
||||
/// return the key of an object iterator
|
||||
auto key() const -> decltype(std::declval<Base>().key())
|
||||
{
|
||||
auto it = --this->base();
|
||||
return it.key();
|
||||
}
|
||||
|
||||
/// return the value of an iterator
|
||||
reference value() const
|
||||
{
|
||||
auto it = --this->base();
|
||||
return it.operator * ();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -0,0 +1,132 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef> // ptrdiff_t
|
||||
#include <limits> // numeric_limits
|
||||
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
/*
|
||||
@brief an iterator for primitive JSON types
|
||||
|
||||
This class models an iterator for primitive JSON types (boolean, number,
|
||||
string). It's only purpose is to allow the iterator/const_iterator classes
|
||||
to "iterate" over primitive values. Internally, the iterator is modeled by
|
||||
a `difference_type` variable. Value begin_value (`0`) models the begin,
|
||||
end_value (`1`) models past the end.
|
||||
*/
|
||||
class primitive_iterator_t
|
||||
{
|
||||
private:
|
||||
using difference_type = std::ptrdiff_t;
|
||||
static constexpr difference_type begin_value = 0;
|
||||
static constexpr difference_type end_value = begin_value + 1;
|
||||
|
||||
JSON_PRIVATE_UNLESS_TESTED:
|
||||
/// iterator as signed integer type
|
||||
difference_type m_it = (std::numeric_limits<std::ptrdiff_t>::min)();
|
||||
|
||||
public:
|
||||
constexpr difference_type get_value() const noexcept
|
||||
{
|
||||
return m_it;
|
||||
}
|
||||
|
||||
/// set iterator to a defined beginning
|
||||
void set_begin() noexcept
|
||||
{
|
||||
m_it = begin_value;
|
||||
}
|
||||
|
||||
/// set iterator to a defined past the end
|
||||
void set_end() noexcept
|
||||
{
|
||||
m_it = end_value;
|
||||
}
|
||||
|
||||
/// return whether the iterator can be dereferenced
|
||||
constexpr bool is_begin() const noexcept
|
||||
{
|
||||
return m_it == begin_value;
|
||||
}
|
||||
|
||||
/// return whether the iterator is at end
|
||||
constexpr bool is_end() const noexcept
|
||||
{
|
||||
return m_it == end_value;
|
||||
}
|
||||
|
||||
friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
|
||||
{
|
||||
return lhs.m_it == rhs.m_it;
|
||||
}
|
||||
|
||||
friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
|
||||
{
|
||||
return lhs.m_it < rhs.m_it;
|
||||
}
|
||||
|
||||
primitive_iterator_t operator+(difference_type n) noexcept
|
||||
{
|
||||
auto result = *this;
|
||||
result += n;
|
||||
return result;
|
||||
}
|
||||
|
||||
friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
|
||||
{
|
||||
return lhs.m_it - rhs.m_it;
|
||||
}
|
||||
|
||||
primitive_iterator_t& operator++() noexcept
|
||||
{
|
||||
++m_it;
|
||||
return *this;
|
||||
}
|
||||
|
||||
primitive_iterator_t operator++(int)& noexcept // NOLINT(cert-dcl21-cpp)
|
||||
{
|
||||
auto result = *this;
|
||||
++m_it;
|
||||
return result;
|
||||
}
|
||||
|
||||
primitive_iterator_t& operator--() noexcept
|
||||
{
|
||||
--m_it;
|
||||
return *this;
|
||||
}
|
||||
|
||||
primitive_iterator_t operator--(int)& noexcept // NOLINT(cert-dcl21-cpp)
|
||||
{
|
||||
auto result = *this;
|
||||
--m_it;
|
||||
return result;
|
||||
}
|
||||
|
||||
primitive_iterator_t& operator+=(difference_type n) noexcept
|
||||
{
|
||||
m_it += n;
|
||||
return *this;
|
||||
}
|
||||
|
||||
primitive_iterator_t& operator-=(difference_type n) noexcept
|
||||
{
|
||||
m_it -= n;
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -0,0 +1,39 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <type_traits> // conditional, is_same
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
/*!
|
||||
@brief Default base class of the @ref basic_json class.
|
||||
|
||||
So that the correct implementations of the copy / move ctors / assign operators
|
||||
of @ref basic_json do not require complex case distinctions
|
||||
(no base class / custom base class used as customization point),
|
||||
@ref basic_json always has a base class.
|
||||
By default, this class is used because it is empty and thus has no effect
|
||||
on the behavior of @ref basic_json.
|
||||
*/
|
||||
struct json_default_base {};
|
||||
|
||||
template<class T>
|
||||
using json_base_class = typename std::conditional <
|
||||
std::is_same<T, void>::value,
|
||||
json_default_base,
|
||||
T
|
||||
>::type;
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
988
sample/lib/json/include/nlohmann/detail/json_pointer.hpp
Normal file
988
sample/lib/json/include/nlohmann/detail/json_pointer.hpp
Normal file
@@ -0,0 +1,988 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm> // all_of
|
||||
#include <cctype> // isdigit
|
||||
#include <cerrno> // errno, ERANGE
|
||||
#include <cstdlib> // strtoull
|
||||
#ifndef JSON_NO_IO
|
||||
#include <iosfwd> // ostream
|
||||
#endif // JSON_NO_IO
|
||||
#include <limits> // max
|
||||
#include <numeric> // accumulate
|
||||
#include <string> // string
|
||||
#include <utility> // move
|
||||
#include <vector> // vector
|
||||
|
||||
#include <nlohmann/detail/exceptions.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/string_concat.hpp>
|
||||
#include <nlohmann/detail/string_escape.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
|
||||
/// @brief JSON Pointer defines a string syntax for identifying a specific value within a JSON document
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/
|
||||
template<typename RefStringType>
|
||||
class json_pointer
|
||||
{
|
||||
// allow basic_json to access private members
|
||||
NLOHMANN_BASIC_JSON_TPL_DECLARATION
|
||||
friend class basic_json;
|
||||
|
||||
template<typename>
|
||||
friend class json_pointer;
|
||||
|
||||
template<typename T>
|
||||
struct string_t_helper
|
||||
{
|
||||
using type = T;
|
||||
};
|
||||
|
||||
NLOHMANN_BASIC_JSON_TPL_DECLARATION
|
||||
struct string_t_helper<NLOHMANN_BASIC_JSON_TPL>
|
||||
{
|
||||
using type = StringType;
|
||||
};
|
||||
|
||||
public:
|
||||
// for backwards compatibility accept BasicJsonType
|
||||
using string_t = typename string_t_helper<RefStringType>::type;
|
||||
|
||||
/// @brief create JSON pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/json_pointer/
|
||||
explicit json_pointer(const string_t& s = "")
|
||||
: reference_tokens(split(s))
|
||||
{}
|
||||
|
||||
/// @brief return a string representation of the JSON pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/to_string/
|
||||
string_t to_string() const
|
||||
{
|
||||
return std::accumulate(reference_tokens.begin(), reference_tokens.end(),
|
||||
string_t{},
|
||||
[](const string_t& a, const string_t& b)
|
||||
{
|
||||
return detail::concat(a, '/', detail::escape(b));
|
||||
});
|
||||
}
|
||||
|
||||
/// @brief return a string representation of the JSON pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_string/
|
||||
JSON_HEDLEY_DEPRECATED_FOR(3.11.0, to_string())
|
||||
operator string_t() const
|
||||
{
|
||||
return to_string();
|
||||
}
|
||||
|
||||
#ifndef JSON_NO_IO
|
||||
/// @brief write string representation of the JSON pointer to stream
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/operator_ltlt/
|
||||
friend std::ostream& operator<<(std::ostream& o, const json_pointer& ptr)
|
||||
{
|
||||
o << ptr.to_string();
|
||||
return o;
|
||||
}
|
||||
#endif
|
||||
|
||||
/// @brief append another JSON pointer at the end of this JSON pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slasheq/
|
||||
json_pointer& operator/=(const json_pointer& ptr)
|
||||
{
|
||||
reference_tokens.insert(reference_tokens.end(),
|
||||
ptr.reference_tokens.begin(),
|
||||
ptr.reference_tokens.end());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// @brief append an unescaped reference token at the end of this JSON pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slasheq/
|
||||
json_pointer& operator/=(string_t token)
|
||||
{
|
||||
push_back(std::move(token));
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// @brief append an array index at the end of this JSON pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slasheq/
|
||||
json_pointer& operator/=(std::size_t array_idx)
|
||||
{
|
||||
return *this /= std::to_string(array_idx);
|
||||
}
|
||||
|
||||
/// @brief create a new JSON pointer by appending the right JSON pointer at the end of the left JSON pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slash/
|
||||
friend json_pointer operator/(const json_pointer& lhs,
|
||||
const json_pointer& rhs)
|
||||
{
|
||||
return json_pointer(lhs) /= rhs;
|
||||
}
|
||||
|
||||
/// @brief create a new JSON pointer by appending the unescaped token at the end of the JSON pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slash/
|
||||
friend json_pointer operator/(const json_pointer& lhs, string_t token) // NOLINT(performance-unnecessary-value-param)
|
||||
{
|
||||
return json_pointer(lhs) /= std::move(token);
|
||||
}
|
||||
|
||||
/// @brief create a new JSON pointer by appending the array-index-token at the end of the JSON pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slash/
|
||||
friend json_pointer operator/(const json_pointer& lhs, std::size_t array_idx)
|
||||
{
|
||||
return json_pointer(lhs) /= array_idx;
|
||||
}
|
||||
|
||||
/// @brief returns the parent of this JSON pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/parent_pointer/
|
||||
json_pointer parent_pointer() const
|
||||
{
|
||||
if (empty())
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
json_pointer res = *this;
|
||||
res.pop_back();
|
||||
return res;
|
||||
}
|
||||
|
||||
/// @brief remove last reference token
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/pop_back/
|
||||
void pop_back()
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(empty()))
|
||||
{
|
||||
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent", nullptr));
|
||||
}
|
||||
|
||||
reference_tokens.pop_back();
|
||||
}
|
||||
|
||||
/// @brief return last reference token
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/back/
|
||||
const string_t& back() const
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(empty()))
|
||||
{
|
||||
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent", nullptr));
|
||||
}
|
||||
|
||||
return reference_tokens.back();
|
||||
}
|
||||
|
||||
/// @brief append an unescaped token at the end of the reference pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/push_back/
|
||||
void push_back(const string_t& token)
|
||||
{
|
||||
reference_tokens.push_back(token);
|
||||
}
|
||||
|
||||
/// @brief append an unescaped token at the end of the reference pointer
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/push_back/
|
||||
void push_back(string_t&& token)
|
||||
{
|
||||
reference_tokens.push_back(std::move(token));
|
||||
}
|
||||
|
||||
/// @brief return whether pointer points to the root document
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/empty/
|
||||
bool empty() const noexcept
|
||||
{
|
||||
return reference_tokens.empty();
|
||||
}
|
||||
|
||||
private:
|
||||
/*!
|
||||
@param[in] s reference token to be converted into an array index
|
||||
|
||||
@return integer representation of @a s
|
||||
|
||||
@throw parse_error.106 if an array index begins with '0'
|
||||
@throw parse_error.109 if an array index begins not with a digit
|
||||
@throw out_of_range.404 if string @a s could not be converted to an integer
|
||||
@throw out_of_range.410 if an array index exceeds size_type
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
static typename BasicJsonType::size_type array_index(const string_t& s)
|
||||
{
|
||||
using size_type = typename BasicJsonType::size_type;
|
||||
|
||||
// error condition (cf. RFC 6901, Sect. 4)
|
||||
if (JSON_HEDLEY_UNLIKELY(s.size() > 1 && s[0] == '0'))
|
||||
{
|
||||
JSON_THROW(detail::parse_error::create(106, 0, detail::concat("array index '", s, "' must not begin with '0'"), nullptr));
|
||||
}
|
||||
|
||||
// error condition (cf. RFC 6901, Sect. 4)
|
||||
if (JSON_HEDLEY_UNLIKELY(s.size() > 1 && !(s[0] >= '1' && s[0] <= '9')))
|
||||
{
|
||||
JSON_THROW(detail::parse_error::create(109, 0, detail::concat("array index '", s, "' is not a number"), nullptr));
|
||||
}
|
||||
|
||||
const char* p = s.c_str();
|
||||
char* p_end = nullptr;
|
||||
errno = 0; // strtoull doesn't reset errno
|
||||
const unsigned long long res = std::strtoull(p, &p_end, 10); // NOLINT(runtime/int)
|
||||
if (p == p_end // invalid input or empty string
|
||||
|| errno == ERANGE // out of range
|
||||
|| JSON_HEDLEY_UNLIKELY(static_cast<std::size_t>(p_end - p) != s.size())) // incomplete read
|
||||
{
|
||||
JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", s, "'"), nullptr));
|
||||
}
|
||||
|
||||
// only triggered on special platforms (like 32bit), see also
|
||||
// https://github.com/nlohmann/json/pull/2203
|
||||
if (res >= static_cast<unsigned long long>((std::numeric_limits<size_type>::max)())) // NOLINT(runtime/int)
|
||||
{
|
||||
JSON_THROW(detail::out_of_range::create(410, detail::concat("array index ", s, " exceeds size_type"), nullptr)); // LCOV_EXCL_LINE
|
||||
}
|
||||
|
||||
return static_cast<size_type>(res);
|
||||
}
|
||||
|
||||
JSON_PRIVATE_UNLESS_TESTED:
|
||||
json_pointer top() const
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(empty()))
|
||||
{
|
||||
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent", nullptr));
|
||||
}
|
||||
|
||||
json_pointer result = *this;
|
||||
result.reference_tokens = {reference_tokens[0]};
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
/*!
|
||||
@brief create and return a reference to the pointed to value
|
||||
|
||||
@complexity Linear in the number of reference tokens.
|
||||
|
||||
@throw parse_error.109 if array index is not a number
|
||||
@throw type_error.313 if value cannot be unflattened
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
BasicJsonType& get_and_create(BasicJsonType& j) const
|
||||
{
|
||||
auto* result = &j;
|
||||
|
||||
// in case no reference tokens exist, return a reference to the JSON value
|
||||
// j which will be overwritten by a primitive value
|
||||
for (const auto& reference_token : reference_tokens)
|
||||
{
|
||||
switch (result->type())
|
||||
{
|
||||
case detail::value_t::null:
|
||||
{
|
||||
if (reference_token == "0")
|
||||
{
|
||||
// start a new array if reference token is 0
|
||||
result = &result->operator[](0);
|
||||
}
|
||||
else
|
||||
{
|
||||
// start a new object otherwise
|
||||
result = &result->operator[](reference_token);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::object:
|
||||
{
|
||||
// create an entry in the object
|
||||
result = &result->operator[](reference_token);
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::array:
|
||||
{
|
||||
// create an entry in the array
|
||||
result = &result->operator[](array_index<BasicJsonType>(reference_token));
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
The following code is only reached if there exists a reference
|
||||
token _and_ the current value is primitive. In this case, we have
|
||||
an error situation, because primitive values may only occur as
|
||||
single value; that is, with an empty list of reference tokens.
|
||||
*/
|
||||
case detail::value_t::string:
|
||||
case detail::value_t::boolean:
|
||||
case detail::value_t::number_integer:
|
||||
case detail::value_t::number_unsigned:
|
||||
case detail::value_t::number_float:
|
||||
case detail::value_t::binary:
|
||||
case detail::value_t::discarded:
|
||||
default:
|
||||
JSON_THROW(detail::type_error::create(313, "invalid value to unflatten", &j));
|
||||
}
|
||||
}
|
||||
|
||||
return *result;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief return a reference to the pointed to value
|
||||
|
||||
@note This version does not throw if a value is not present, but tries to
|
||||
create nested values instead. For instance, calling this function
|
||||
with pointer `"/this/that"` on a null value is equivalent to calling
|
||||
`operator[]("this").operator[]("that")` on that value, effectively
|
||||
changing the null value to an object.
|
||||
|
||||
@param[in] ptr a JSON value
|
||||
|
||||
@return reference to the JSON value pointed to by the JSON pointer
|
||||
|
||||
@complexity Linear in the length of the JSON pointer.
|
||||
|
||||
@throw parse_error.106 if an array index begins with '0'
|
||||
@throw parse_error.109 if an array index was not a number
|
||||
@throw out_of_range.404 if the JSON pointer can not be resolved
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
BasicJsonType& get_unchecked(BasicJsonType* ptr) const
|
||||
{
|
||||
for (const auto& reference_token : reference_tokens)
|
||||
{
|
||||
// convert null values to arrays or objects before continuing
|
||||
if (ptr->is_null())
|
||||
{
|
||||
// check if reference token is a number
|
||||
const bool nums =
|
||||
std::all_of(reference_token.begin(), reference_token.end(),
|
||||
[](const unsigned char x)
|
||||
{
|
||||
return std::isdigit(x);
|
||||
});
|
||||
|
||||
// change value to array for numbers or "-" or to object otherwise
|
||||
*ptr = (nums || reference_token == "-")
|
||||
? detail::value_t::array
|
||||
: detail::value_t::object;
|
||||
}
|
||||
|
||||
switch (ptr->type())
|
||||
{
|
||||
case detail::value_t::object:
|
||||
{
|
||||
// use unchecked object access
|
||||
ptr = &ptr->operator[](reference_token);
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::array:
|
||||
{
|
||||
if (reference_token == "-")
|
||||
{
|
||||
// explicitly treat "-" as index beyond the end
|
||||
ptr = &ptr->operator[](ptr->m_data.m_value.array->size());
|
||||
}
|
||||
else
|
||||
{
|
||||
// convert array index to number; unchecked access
|
||||
ptr = &ptr->operator[](array_index<BasicJsonType>(reference_token));
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::null:
|
||||
case detail::value_t::string:
|
||||
case detail::value_t::boolean:
|
||||
case detail::value_t::number_integer:
|
||||
case detail::value_t::number_unsigned:
|
||||
case detail::value_t::number_float:
|
||||
case detail::value_t::binary:
|
||||
case detail::value_t::discarded:
|
||||
default:
|
||||
JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
|
||||
}
|
||||
}
|
||||
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
/*!
|
||||
@throw parse_error.106 if an array index begins with '0'
|
||||
@throw parse_error.109 if an array index was not a number
|
||||
@throw out_of_range.402 if the array index '-' is used
|
||||
@throw out_of_range.404 if the JSON pointer can not be resolved
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
BasicJsonType& get_checked(BasicJsonType* ptr) const
|
||||
{
|
||||
for (const auto& reference_token : reference_tokens)
|
||||
{
|
||||
switch (ptr->type())
|
||||
{
|
||||
case detail::value_t::object:
|
||||
{
|
||||
// note: at performs range check
|
||||
ptr = &ptr->at(reference_token);
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::array:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
|
||||
{
|
||||
// "-" always fails the range check
|
||||
JSON_THROW(detail::out_of_range::create(402, detail::concat(
|
||||
"array index '-' (", std::to_string(ptr->m_data.m_value.array->size()),
|
||||
") is out of range"), ptr));
|
||||
}
|
||||
|
||||
// note: at performs range check
|
||||
ptr = &ptr->at(array_index<BasicJsonType>(reference_token));
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::null:
|
||||
case detail::value_t::string:
|
||||
case detail::value_t::boolean:
|
||||
case detail::value_t::number_integer:
|
||||
case detail::value_t::number_unsigned:
|
||||
case detail::value_t::number_float:
|
||||
case detail::value_t::binary:
|
||||
case detail::value_t::discarded:
|
||||
default:
|
||||
JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
|
||||
}
|
||||
}
|
||||
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief return a const reference to the pointed to value
|
||||
|
||||
@param[in] ptr a JSON value
|
||||
|
||||
@return const reference to the JSON value pointed to by the JSON
|
||||
pointer
|
||||
|
||||
@throw parse_error.106 if an array index begins with '0'
|
||||
@throw parse_error.109 if an array index was not a number
|
||||
@throw out_of_range.402 if the array index '-' is used
|
||||
@throw out_of_range.404 if the JSON pointer can not be resolved
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
const BasicJsonType& get_unchecked(const BasicJsonType* ptr) const
|
||||
{
|
||||
for (const auto& reference_token : reference_tokens)
|
||||
{
|
||||
switch (ptr->type())
|
||||
{
|
||||
case detail::value_t::object:
|
||||
{
|
||||
// use unchecked object access
|
||||
ptr = &ptr->operator[](reference_token);
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::array:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
|
||||
{
|
||||
// "-" cannot be used for const access
|
||||
JSON_THROW(detail::out_of_range::create(402, detail::concat("array index '-' (", std::to_string(ptr->m_data.m_value.array->size()), ") is out of range"), ptr));
|
||||
}
|
||||
|
||||
// use unchecked array access
|
||||
ptr = &ptr->operator[](array_index<BasicJsonType>(reference_token));
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::null:
|
||||
case detail::value_t::string:
|
||||
case detail::value_t::boolean:
|
||||
case detail::value_t::number_integer:
|
||||
case detail::value_t::number_unsigned:
|
||||
case detail::value_t::number_float:
|
||||
case detail::value_t::binary:
|
||||
case detail::value_t::discarded:
|
||||
default:
|
||||
JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
|
||||
}
|
||||
}
|
||||
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
/*!
|
||||
@throw parse_error.106 if an array index begins with '0'
|
||||
@throw parse_error.109 if an array index was not a number
|
||||
@throw out_of_range.402 if the array index '-' is used
|
||||
@throw out_of_range.404 if the JSON pointer can not be resolved
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
const BasicJsonType& get_checked(const BasicJsonType* ptr) const
|
||||
{
|
||||
for (const auto& reference_token : reference_tokens)
|
||||
{
|
||||
switch (ptr->type())
|
||||
{
|
||||
case detail::value_t::object:
|
||||
{
|
||||
// note: at performs range check
|
||||
ptr = &ptr->at(reference_token);
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::array:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
|
||||
{
|
||||
// "-" always fails the range check
|
||||
JSON_THROW(detail::out_of_range::create(402, detail::concat(
|
||||
"array index '-' (", std::to_string(ptr->m_data.m_value.array->size()),
|
||||
") is out of range"), ptr));
|
||||
}
|
||||
|
||||
// note: at performs range check
|
||||
ptr = &ptr->at(array_index<BasicJsonType>(reference_token));
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::null:
|
||||
case detail::value_t::string:
|
||||
case detail::value_t::boolean:
|
||||
case detail::value_t::number_integer:
|
||||
case detail::value_t::number_unsigned:
|
||||
case detail::value_t::number_float:
|
||||
case detail::value_t::binary:
|
||||
case detail::value_t::discarded:
|
||||
default:
|
||||
JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
|
||||
}
|
||||
}
|
||||
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
/*!
|
||||
@throw parse_error.106 if an array index begins with '0'
|
||||
@throw parse_error.109 if an array index was not a number
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
bool contains(const BasicJsonType* ptr) const
|
||||
{
|
||||
for (const auto& reference_token : reference_tokens)
|
||||
{
|
||||
switch (ptr->type())
|
||||
{
|
||||
case detail::value_t::object:
|
||||
{
|
||||
if (!ptr->contains(reference_token))
|
||||
{
|
||||
// we did not find the key in the object
|
||||
return false;
|
||||
}
|
||||
|
||||
ptr = &ptr->operator[](reference_token);
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::array:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
|
||||
{
|
||||
// "-" always fails the range check
|
||||
return false;
|
||||
}
|
||||
if (JSON_HEDLEY_UNLIKELY(reference_token.size() == 1 && !("0" <= reference_token && reference_token <= "9")))
|
||||
{
|
||||
// invalid char
|
||||
return false;
|
||||
}
|
||||
if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1))
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!('1' <= reference_token[0] && reference_token[0] <= '9')))
|
||||
{
|
||||
// first char should be between '1' and '9'
|
||||
return false;
|
||||
}
|
||||
for (std::size_t i = 1; i < reference_token.size(); i++)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!('0' <= reference_token[i] && reference_token[i] <= '9')))
|
||||
{
|
||||
// other char should be between '0' and '9'
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const auto idx = array_index<BasicJsonType>(reference_token);
|
||||
if (idx >= ptr->size())
|
||||
{
|
||||
// index out of range
|
||||
return false;
|
||||
}
|
||||
|
||||
ptr = &ptr->operator[](idx);
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::null:
|
||||
case detail::value_t::string:
|
||||
case detail::value_t::boolean:
|
||||
case detail::value_t::number_integer:
|
||||
case detail::value_t::number_unsigned:
|
||||
case detail::value_t::number_float:
|
||||
case detail::value_t::binary:
|
||||
case detail::value_t::discarded:
|
||||
default:
|
||||
{
|
||||
// we do not expect primitive values if there is still a
|
||||
// reference token to process
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// no reference token left means we found a primitive value
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief split the string input to reference tokens
|
||||
|
||||
@note This function is only called by the json_pointer constructor.
|
||||
All exceptions below are documented there.
|
||||
|
||||
@throw parse_error.107 if the pointer is not empty or begins with '/'
|
||||
@throw parse_error.108 if character '~' is not followed by '0' or '1'
|
||||
*/
|
||||
static std::vector<string_t> split(const string_t& reference_string)
|
||||
{
|
||||
std::vector<string_t> result;
|
||||
|
||||
// special case: empty reference string -> no reference tokens
|
||||
if (reference_string.empty())
|
||||
{
|
||||
return result;
|
||||
}
|
||||
|
||||
// check if nonempty reference string begins with slash
|
||||
if (JSON_HEDLEY_UNLIKELY(reference_string[0] != '/'))
|
||||
{
|
||||
JSON_THROW(detail::parse_error::create(107, 1, detail::concat("JSON pointer must be empty or begin with '/' - was: '", reference_string, "'"), nullptr));
|
||||
}
|
||||
|
||||
// extract the reference tokens:
|
||||
// - slash: position of the last read slash (or end of string)
|
||||
// - start: position after the previous slash
|
||||
for (
|
||||
// search for the first slash after the first character
|
||||
std::size_t slash = reference_string.find_first_of('/', 1),
|
||||
// set the beginning of the first reference token
|
||||
start = 1;
|
||||
// we can stop if start == 0 (if slash == string_t::npos)
|
||||
start != 0;
|
||||
// set the beginning of the next reference token
|
||||
// (will eventually be 0 if slash == string_t::npos)
|
||||
start = (slash == string_t::npos) ? 0 : slash + 1,
|
||||
// find next slash
|
||||
slash = reference_string.find_first_of('/', start))
|
||||
{
|
||||
// use the text between the beginning of the reference token
|
||||
// (start) and the last slash (slash).
|
||||
auto reference_token = reference_string.substr(start, slash - start);
|
||||
|
||||
// check reference tokens are properly escaped
|
||||
for (std::size_t pos = reference_token.find_first_of('~');
|
||||
pos != string_t::npos;
|
||||
pos = reference_token.find_first_of('~', pos + 1))
|
||||
{
|
||||
JSON_ASSERT(reference_token[pos] == '~');
|
||||
|
||||
// ~ must be followed by 0 or 1
|
||||
if (JSON_HEDLEY_UNLIKELY(pos == reference_token.size() - 1 ||
|
||||
(reference_token[pos + 1] != '0' &&
|
||||
reference_token[pos + 1] != '1')))
|
||||
{
|
||||
JSON_THROW(detail::parse_error::create(108, 0, "escape character '~' must be followed with '0' or '1'", nullptr));
|
||||
}
|
||||
}
|
||||
|
||||
// finally, store the reference token
|
||||
detail::unescape(reference_token);
|
||||
result.push_back(reference_token);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
/*!
|
||||
@param[in] reference_string the reference string to the current value
|
||||
@param[in] value the value to consider
|
||||
@param[in,out] result the result object to insert values to
|
||||
|
||||
@note Empty objects or arrays are flattened to `null`.
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
static void flatten(const string_t& reference_string,
|
||||
const BasicJsonType& value,
|
||||
BasicJsonType& result)
|
||||
{
|
||||
switch (value.type())
|
||||
{
|
||||
case detail::value_t::array:
|
||||
{
|
||||
if (value.m_data.m_value.array->empty())
|
||||
{
|
||||
// flatten empty array as null
|
||||
result[reference_string] = nullptr;
|
||||
}
|
||||
else
|
||||
{
|
||||
// iterate array and use index as reference string
|
||||
for (std::size_t i = 0; i < value.m_data.m_value.array->size(); ++i)
|
||||
{
|
||||
flatten(detail::concat(reference_string, '/', std::to_string(i)),
|
||||
value.m_data.m_value.array->operator[](i), result);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::object:
|
||||
{
|
||||
if (value.m_data.m_value.object->empty())
|
||||
{
|
||||
// flatten empty object as null
|
||||
result[reference_string] = nullptr;
|
||||
}
|
||||
else
|
||||
{
|
||||
// iterate object and use keys as reference string
|
||||
for (const auto& element : *value.m_data.m_value.object)
|
||||
{
|
||||
flatten(detail::concat(reference_string, '/', detail::escape(element.first)), element.second, result);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case detail::value_t::null:
|
||||
case detail::value_t::string:
|
||||
case detail::value_t::boolean:
|
||||
case detail::value_t::number_integer:
|
||||
case detail::value_t::number_unsigned:
|
||||
case detail::value_t::number_float:
|
||||
case detail::value_t::binary:
|
||||
case detail::value_t::discarded:
|
||||
default:
|
||||
{
|
||||
// add primitive value with its reference string
|
||||
result[reference_string] = value;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@param[in] value flattened JSON
|
||||
|
||||
@return unflattened JSON
|
||||
|
||||
@throw parse_error.109 if array index is not a number
|
||||
@throw type_error.314 if value is not an object
|
||||
@throw type_error.315 if object values are not primitive
|
||||
@throw type_error.313 if value cannot be unflattened
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
static BasicJsonType
|
||||
unflatten(const BasicJsonType& value)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!value.is_object()))
|
||||
{
|
||||
JSON_THROW(detail::type_error::create(314, "only objects can be unflattened", &value));
|
||||
}
|
||||
|
||||
BasicJsonType result;
|
||||
|
||||
// iterate the JSON object values
|
||||
for (const auto& element : *value.m_data.m_value.object)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!element.second.is_primitive()))
|
||||
{
|
||||
JSON_THROW(detail::type_error::create(315, "values in object must be primitive", &element.second));
|
||||
}
|
||||
|
||||
// assign value to reference pointed to by JSON pointer; Note that if
|
||||
// the JSON pointer is "" (i.e., points to the whole value), function
|
||||
// get_and_create returns a reference to result itself. An assignment
|
||||
// will then create a primitive value.
|
||||
json_pointer(element.first).get_and_create(result) = element.second;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// can't use conversion operator because of ambiguity
|
||||
json_pointer<string_t> convert() const&
|
||||
{
|
||||
json_pointer<string_t> result;
|
||||
result.reference_tokens = reference_tokens;
|
||||
return result;
|
||||
}
|
||||
|
||||
json_pointer<string_t> convert()&&
|
||||
{
|
||||
json_pointer<string_t> result;
|
||||
result.reference_tokens = std::move(reference_tokens);
|
||||
return result;
|
||||
}
|
||||
|
||||
public:
|
||||
#if JSON_HAS_THREE_WAY_COMPARISON
|
||||
/// @brief compares two JSON pointers for equality
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
|
||||
template<typename RefStringTypeRhs>
|
||||
bool operator==(const json_pointer<RefStringTypeRhs>& rhs) const noexcept
|
||||
{
|
||||
return reference_tokens == rhs.reference_tokens;
|
||||
}
|
||||
|
||||
/// @brief compares JSON pointer and string for equality
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
|
||||
JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator==(json_pointer))
|
||||
bool operator==(const string_t& rhs) const
|
||||
{
|
||||
return *this == json_pointer(rhs);
|
||||
}
|
||||
|
||||
/// @brief 3-way compares two JSON pointers
|
||||
template<typename RefStringTypeRhs>
|
||||
std::strong_ordering operator<=>(const json_pointer<RefStringTypeRhs>& rhs) const noexcept // *NOPAD*
|
||||
{
|
||||
return reference_tokens <=> rhs.reference_tokens; // *NOPAD*
|
||||
}
|
||||
#else
|
||||
/// @brief compares two JSON pointers for equality
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
|
||||
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
|
||||
// NOLINTNEXTLINE(readability-redundant-declaration)
|
||||
friend bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
|
||||
const json_pointer<RefStringTypeRhs>& rhs) noexcept;
|
||||
|
||||
/// @brief compares JSON pointer and string for equality
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
|
||||
template<typename RefStringTypeLhs, typename StringType>
|
||||
// NOLINTNEXTLINE(readability-redundant-declaration)
|
||||
friend bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
|
||||
const StringType& rhs);
|
||||
|
||||
/// @brief compares string and JSON pointer for equality
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
|
||||
template<typename RefStringTypeRhs, typename StringType>
|
||||
// NOLINTNEXTLINE(readability-redundant-declaration)
|
||||
friend bool operator==(const StringType& lhs,
|
||||
const json_pointer<RefStringTypeRhs>& rhs);
|
||||
|
||||
/// @brief compares two JSON pointers for inequality
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_ne/
|
||||
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
|
||||
// NOLINTNEXTLINE(readability-redundant-declaration)
|
||||
friend bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
|
||||
const json_pointer<RefStringTypeRhs>& rhs) noexcept;
|
||||
|
||||
/// @brief compares JSON pointer and string for inequality
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_ne/
|
||||
template<typename RefStringTypeLhs, typename StringType>
|
||||
// NOLINTNEXTLINE(readability-redundant-declaration)
|
||||
friend bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
|
||||
const StringType& rhs);
|
||||
|
||||
/// @brief compares string and JSON pointer for inequality
|
||||
/// @sa https://json.nlohmann.me/api/json_pointer/operator_ne/
|
||||
template<typename RefStringTypeRhs, typename StringType>
|
||||
// NOLINTNEXTLINE(readability-redundant-declaration)
|
||||
friend bool operator!=(const StringType& lhs,
|
||||
const json_pointer<RefStringTypeRhs>& rhs);
|
||||
|
||||
/// @brief compares two JSON pointer for less-than
|
||||
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
|
||||
// NOLINTNEXTLINE(readability-redundant-declaration)
|
||||
friend bool operator<(const json_pointer<RefStringTypeLhs>& lhs,
|
||||
const json_pointer<RefStringTypeRhs>& rhs) noexcept;
|
||||
#endif
|
||||
|
||||
private:
|
||||
/// the reference tokens
|
||||
std::vector<string_t> reference_tokens;
|
||||
};
|
||||
|
||||
#if !JSON_HAS_THREE_WAY_COMPARISON
|
||||
// functions cannot be defined inside class due to ODR violations
|
||||
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
|
||||
inline bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
|
||||
const json_pointer<RefStringTypeRhs>& rhs) noexcept
|
||||
{
|
||||
return lhs.reference_tokens == rhs.reference_tokens;
|
||||
}
|
||||
|
||||
template<typename RefStringTypeLhs,
|
||||
typename StringType = typename json_pointer<RefStringTypeLhs>::string_t>
|
||||
JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator==(json_pointer, json_pointer))
|
||||
inline bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
|
||||
const StringType& rhs)
|
||||
{
|
||||
return lhs == json_pointer<RefStringTypeLhs>(rhs);
|
||||
}
|
||||
|
||||
template<typename RefStringTypeRhs,
|
||||
typename StringType = typename json_pointer<RefStringTypeRhs>::string_t>
|
||||
JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator==(json_pointer, json_pointer))
|
||||
inline bool operator==(const StringType& lhs,
|
||||
const json_pointer<RefStringTypeRhs>& rhs)
|
||||
{
|
||||
return json_pointer<RefStringTypeRhs>(lhs) == rhs;
|
||||
}
|
||||
|
||||
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
|
||||
inline bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
|
||||
const json_pointer<RefStringTypeRhs>& rhs) noexcept
|
||||
{
|
||||
return !(lhs == rhs);
|
||||
}
|
||||
|
||||
template<typename RefStringTypeLhs,
|
||||
typename StringType = typename json_pointer<RefStringTypeLhs>::string_t>
|
||||
JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator!=(json_pointer, json_pointer))
|
||||
inline bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
|
||||
const StringType& rhs)
|
||||
{
|
||||
return !(lhs == rhs);
|
||||
}
|
||||
|
||||
template<typename RefStringTypeRhs,
|
||||
typename StringType = typename json_pointer<RefStringTypeRhs>::string_t>
|
||||
JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator!=(json_pointer, json_pointer))
|
||||
inline bool operator!=(const StringType& lhs,
|
||||
const json_pointer<RefStringTypeRhs>& rhs)
|
||||
{
|
||||
return !(lhs == rhs);
|
||||
}
|
||||
|
||||
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
|
||||
inline bool operator<(const json_pointer<RefStringTypeLhs>& lhs,
|
||||
const json_pointer<RefStringTypeRhs>& rhs) noexcept
|
||||
{
|
||||
return lhs.reference_tokens < rhs.reference_tokens;
|
||||
}
|
||||
#endif
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
78
sample/lib/json/include/nlohmann/detail/json_ref.hpp
Normal file
78
sample/lib/json/include/nlohmann/detail/json_ref.hpp
Normal file
@@ -0,0 +1,78 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <initializer_list>
|
||||
#include <utility>
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
template<typename BasicJsonType>
|
||||
class json_ref
|
||||
{
|
||||
public:
|
||||
using value_type = BasicJsonType;
|
||||
|
||||
json_ref(value_type&& value)
|
||||
: owned_value(std::move(value))
|
||||
{}
|
||||
|
||||
json_ref(const value_type& value)
|
||||
: value_ref(&value)
|
||||
{}
|
||||
|
||||
json_ref(std::initializer_list<json_ref> init)
|
||||
: owned_value(init)
|
||||
{}
|
||||
|
||||
template <
|
||||
class... Args,
|
||||
enable_if_t<std::is_constructible<value_type, Args...>::value, int> = 0 >
|
||||
json_ref(Args && ... args)
|
||||
: owned_value(std::forward<Args>(args)...)
|
||||
{}
|
||||
|
||||
// class should be movable only
|
||||
json_ref(json_ref&&) noexcept = default;
|
||||
json_ref(const json_ref&) = delete;
|
||||
json_ref& operator=(const json_ref&) = delete;
|
||||
json_ref& operator=(json_ref&&) = delete;
|
||||
~json_ref() = default;
|
||||
|
||||
value_type moved_or_copied() const
|
||||
{
|
||||
if (value_ref == nullptr)
|
||||
{
|
||||
return std::move(owned_value);
|
||||
}
|
||||
return *value_ref;
|
||||
}
|
||||
|
||||
value_type const& operator*() const
|
||||
{
|
||||
return value_ref ? *value_ref : owned_value;
|
||||
}
|
||||
|
||||
value_type const* operator->() const
|
||||
{
|
||||
return &** this;
|
||||
}
|
||||
|
||||
private:
|
||||
mutable value_type owned_value = nullptr;
|
||||
value_type const* value_ref = nullptr;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
482
sample/lib/json/include/nlohmann/detail/macro_scope.hpp
Normal file
482
sample/lib/json/include/nlohmann/detail/macro_scope.hpp
Normal file
@@ -0,0 +1,482 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <utility> // declval, pair
|
||||
#include <nlohmann/detail/meta/detected.hpp>
|
||||
#include <nlohmann/thirdparty/hedley/hedley.hpp>
|
||||
|
||||
// This file contains all internal macro definitions (except those affecting ABI)
|
||||
// You MUST include macro_unscope.hpp at the end of json.hpp to undef all of them
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
|
||||
// exclude unsupported compilers
|
||||
#if !defined(JSON_SKIP_UNSUPPORTED_COMPILER_CHECK)
|
||||
#if defined(__clang__)
|
||||
#if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
|
||||
#error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
|
||||
#endif
|
||||
#elif defined(__GNUC__) && !(defined(__ICC) || defined(__INTEL_COMPILER))
|
||||
#if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
|
||||
#error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// C++ language standard detection
|
||||
// if the user manually specified the used c++ version this is skipped
|
||||
#if !defined(JSON_HAS_CPP_20) && !defined(JSON_HAS_CPP_17) && !defined(JSON_HAS_CPP_14) && !defined(JSON_HAS_CPP_11)
|
||||
#if (defined(__cplusplus) && __cplusplus >= 202002L) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L)
|
||||
#define JSON_HAS_CPP_20
|
||||
#define JSON_HAS_CPP_17
|
||||
#define JSON_HAS_CPP_14
|
||||
#elif (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464
|
||||
#define JSON_HAS_CPP_17
|
||||
#define JSON_HAS_CPP_14
|
||||
#elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1)
|
||||
#define JSON_HAS_CPP_14
|
||||
#endif
|
||||
// the cpp 11 flag is always specified because it is the minimal required version
|
||||
#define JSON_HAS_CPP_11
|
||||
#endif
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<version>)
|
||||
#include <version>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if !defined(JSON_HAS_FILESYSTEM) && !defined(JSON_HAS_EXPERIMENTAL_FILESYSTEM)
|
||||
#ifdef JSON_HAS_CPP_17
|
||||
#if defined(__cpp_lib_filesystem)
|
||||
#define JSON_HAS_FILESYSTEM 1
|
||||
#elif defined(__cpp_lib_experimental_filesystem)
|
||||
#define JSON_HAS_EXPERIMENTAL_FILESYSTEM 1
|
||||
#elif !defined(__has_include)
|
||||
#define JSON_HAS_EXPERIMENTAL_FILESYSTEM 1
|
||||
#elif __has_include(<filesystem>)
|
||||
#define JSON_HAS_FILESYSTEM 1
|
||||
#elif __has_include(<experimental/filesystem>)
|
||||
#define JSON_HAS_EXPERIMENTAL_FILESYSTEM 1
|
||||
#endif
|
||||
|
||||
// std::filesystem does not work on MinGW GCC 8: https://sourceforge.net/p/mingw-w64/bugs/737/
|
||||
#if defined(__MINGW32__) && defined(__GNUC__) && __GNUC__ == 8
|
||||
#undef JSON_HAS_FILESYSTEM
|
||||
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
#endif
|
||||
|
||||
// no filesystem support before GCC 8: https://en.cppreference.com/w/cpp/compiler_support
|
||||
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 8
|
||||
#undef JSON_HAS_FILESYSTEM
|
||||
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
#endif
|
||||
|
||||
// no filesystem support before Clang 7: https://en.cppreference.com/w/cpp/compiler_support
|
||||
#if defined(__clang_major__) && __clang_major__ < 7
|
||||
#undef JSON_HAS_FILESYSTEM
|
||||
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
#endif
|
||||
|
||||
// no filesystem support before MSVC 19.14: https://en.cppreference.com/w/cpp/compiler_support
|
||||
#if defined(_MSC_VER) && _MSC_VER < 1914
|
||||
#undef JSON_HAS_FILESYSTEM
|
||||
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
#endif
|
||||
|
||||
// no filesystem support before iOS 13
|
||||
#if defined(__IPHONE_OS_VERSION_MIN_REQUIRED) && __IPHONE_OS_VERSION_MIN_REQUIRED < 130000
|
||||
#undef JSON_HAS_FILESYSTEM
|
||||
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
#endif
|
||||
|
||||
// no filesystem support before macOS Catalina
|
||||
#if defined(__MAC_OS_X_VERSION_MIN_REQUIRED) && __MAC_OS_X_VERSION_MIN_REQUIRED < 101500
|
||||
#undef JSON_HAS_FILESYSTEM
|
||||
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
#define JSON_HAS_EXPERIMENTAL_FILESYSTEM 0
|
||||
#endif
|
||||
|
||||
#ifndef JSON_HAS_FILESYSTEM
|
||||
#define JSON_HAS_FILESYSTEM 0
|
||||
#endif
|
||||
|
||||
#ifndef JSON_HAS_THREE_WAY_COMPARISON
|
||||
#if defined(__cpp_impl_three_way_comparison) && __cpp_impl_three_way_comparison >= 201907L \
|
||||
&& defined(__cpp_lib_three_way_comparison) && __cpp_lib_three_way_comparison >= 201907L
|
||||
#define JSON_HAS_THREE_WAY_COMPARISON 1
|
||||
#else
|
||||
#define JSON_HAS_THREE_WAY_COMPARISON 0
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef JSON_HAS_RANGES
|
||||
// ranges header shipping in GCC 11.1.0 (released 2021-04-27) has syntax error
|
||||
#if defined(__GLIBCXX__) && __GLIBCXX__ == 20210427
|
||||
#define JSON_HAS_RANGES 0
|
||||
#elif defined(__cpp_lib_ranges)
|
||||
#define JSON_HAS_RANGES 1
|
||||
#else
|
||||
#define JSON_HAS_RANGES 0
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef JSON_HAS_STATIC_RTTI
|
||||
#if !defined(_HAS_STATIC_RTTI) || _HAS_STATIC_RTTI != 0
|
||||
#define JSON_HAS_STATIC_RTTI 1
|
||||
#else
|
||||
#define JSON_HAS_STATIC_RTTI 0
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef JSON_HAS_CPP_17
|
||||
#define JSON_INLINE_VARIABLE inline
|
||||
#else
|
||||
#define JSON_INLINE_VARIABLE
|
||||
#endif
|
||||
|
||||
#if JSON_HEDLEY_HAS_ATTRIBUTE(no_unique_address)
|
||||
#define JSON_NO_UNIQUE_ADDRESS [[no_unique_address]]
|
||||
#else
|
||||
#define JSON_NO_UNIQUE_ADDRESS
|
||||
#endif
|
||||
|
||||
// disable documentation warnings on clang
|
||||
#if defined(__clang__)
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wdocumentation"
|
||||
#pragma clang diagnostic ignored "-Wdocumentation-unknown-command"
|
||||
#endif
|
||||
|
||||
// allow disabling exceptions
|
||||
#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && !defined(JSON_NOEXCEPTION)
|
||||
#define JSON_THROW(exception) throw exception
|
||||
#define JSON_TRY try
|
||||
#define JSON_CATCH(exception) catch(exception)
|
||||
#define JSON_INTERNAL_CATCH(exception) catch(exception)
|
||||
#else
|
||||
#include <cstdlib>
|
||||
#define JSON_THROW(exception) std::abort()
|
||||
#define JSON_TRY if(true)
|
||||
#define JSON_CATCH(exception) if(false)
|
||||
#define JSON_INTERNAL_CATCH(exception) if(false)
|
||||
#endif
|
||||
|
||||
// override exception macros
|
||||
#if defined(JSON_THROW_USER)
|
||||
#undef JSON_THROW
|
||||
#define JSON_THROW JSON_THROW_USER
|
||||
#endif
|
||||
#if defined(JSON_TRY_USER)
|
||||
#undef JSON_TRY
|
||||
#define JSON_TRY JSON_TRY_USER
|
||||
#endif
|
||||
#if defined(JSON_CATCH_USER)
|
||||
#undef JSON_CATCH
|
||||
#define JSON_CATCH JSON_CATCH_USER
|
||||
#undef JSON_INTERNAL_CATCH
|
||||
#define JSON_INTERNAL_CATCH JSON_CATCH_USER
|
||||
#endif
|
||||
#if defined(JSON_INTERNAL_CATCH_USER)
|
||||
#undef JSON_INTERNAL_CATCH
|
||||
#define JSON_INTERNAL_CATCH JSON_INTERNAL_CATCH_USER
|
||||
#endif
|
||||
|
||||
// allow overriding assert
|
||||
#if !defined(JSON_ASSERT)
|
||||
#include <cassert> // assert
|
||||
#define JSON_ASSERT(x) assert(x)
|
||||
#endif
|
||||
|
||||
// allow to access some private functions (needed by the test suite)
|
||||
#if defined(JSON_TESTS_PRIVATE)
|
||||
#define JSON_PRIVATE_UNLESS_TESTED public
|
||||
#else
|
||||
#define JSON_PRIVATE_UNLESS_TESTED private
|
||||
#endif
|
||||
|
||||
/*!
|
||||
@brief macro to briefly define a mapping between an enum and JSON
|
||||
@def NLOHMANN_JSON_SERIALIZE_ENUM
|
||||
@since version 3.4.0
|
||||
*/
|
||||
#define NLOHMANN_JSON_SERIALIZE_ENUM(ENUM_TYPE, ...) \
|
||||
template<typename BasicJsonType> \
|
||||
inline void to_json(BasicJsonType& j, const ENUM_TYPE& e) \
|
||||
{ \
|
||||
static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
|
||||
static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
|
||||
auto it = std::find_if(std::begin(m), std::end(m), \
|
||||
[e](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
|
||||
{ \
|
||||
return ej_pair.first == e; \
|
||||
}); \
|
||||
j = ((it != std::end(m)) ? it : std::begin(m))->second; \
|
||||
} \
|
||||
template<typename BasicJsonType> \
|
||||
inline void from_json(const BasicJsonType& j, ENUM_TYPE& e) \
|
||||
{ \
|
||||
static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
|
||||
static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
|
||||
auto it = std::find_if(std::begin(m), std::end(m), \
|
||||
[&j](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
|
||||
{ \
|
||||
return ej_pair.second == j; \
|
||||
}); \
|
||||
e = ((it != std::end(m)) ? it : std::begin(m))->first; \
|
||||
}
|
||||
|
||||
// Ugly macros to avoid uglier copy-paste when specializing basic_json. They
|
||||
// may be removed in the future once the class is split.
|
||||
|
||||
#define NLOHMANN_BASIC_JSON_TPL_DECLARATION \
|
||||
template<template<typename, typename, typename...> class ObjectType, \
|
||||
template<typename, typename...> class ArrayType, \
|
||||
class StringType, class BooleanType, class NumberIntegerType, \
|
||||
class NumberUnsignedType, class NumberFloatType, \
|
||||
template<typename> class AllocatorType, \
|
||||
template<typename, typename = void> class JSONSerializer, \
|
||||
class BinaryType, \
|
||||
class CustomBaseClass>
|
||||
|
||||
#define NLOHMANN_BASIC_JSON_TPL \
|
||||
basic_json<ObjectType, ArrayType, StringType, BooleanType, \
|
||||
NumberIntegerType, NumberUnsignedType, NumberFloatType, \
|
||||
AllocatorType, JSONSerializer, BinaryType, CustomBaseClass>
|
||||
|
||||
// Macros to simplify conversion from/to types
|
||||
|
||||
#define NLOHMANN_JSON_EXPAND( x ) x
|
||||
#define NLOHMANN_JSON_GET_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, _61, _62, _63, _64, NAME,...) NAME
|
||||
#define NLOHMANN_JSON_PASTE(...) NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_GET_MACRO(__VA_ARGS__, \
|
||||
NLOHMANN_JSON_PASTE64, \
|
||||
NLOHMANN_JSON_PASTE63, \
|
||||
NLOHMANN_JSON_PASTE62, \
|
||||
NLOHMANN_JSON_PASTE61, \
|
||||
NLOHMANN_JSON_PASTE60, \
|
||||
NLOHMANN_JSON_PASTE59, \
|
||||
NLOHMANN_JSON_PASTE58, \
|
||||
NLOHMANN_JSON_PASTE57, \
|
||||
NLOHMANN_JSON_PASTE56, \
|
||||
NLOHMANN_JSON_PASTE55, \
|
||||
NLOHMANN_JSON_PASTE54, \
|
||||
NLOHMANN_JSON_PASTE53, \
|
||||
NLOHMANN_JSON_PASTE52, \
|
||||
NLOHMANN_JSON_PASTE51, \
|
||||
NLOHMANN_JSON_PASTE50, \
|
||||
NLOHMANN_JSON_PASTE49, \
|
||||
NLOHMANN_JSON_PASTE48, \
|
||||
NLOHMANN_JSON_PASTE47, \
|
||||
NLOHMANN_JSON_PASTE46, \
|
||||
NLOHMANN_JSON_PASTE45, \
|
||||
NLOHMANN_JSON_PASTE44, \
|
||||
NLOHMANN_JSON_PASTE43, \
|
||||
NLOHMANN_JSON_PASTE42, \
|
||||
NLOHMANN_JSON_PASTE41, \
|
||||
NLOHMANN_JSON_PASTE40, \
|
||||
NLOHMANN_JSON_PASTE39, \
|
||||
NLOHMANN_JSON_PASTE38, \
|
||||
NLOHMANN_JSON_PASTE37, \
|
||||
NLOHMANN_JSON_PASTE36, \
|
||||
NLOHMANN_JSON_PASTE35, \
|
||||
NLOHMANN_JSON_PASTE34, \
|
||||
NLOHMANN_JSON_PASTE33, \
|
||||
NLOHMANN_JSON_PASTE32, \
|
||||
NLOHMANN_JSON_PASTE31, \
|
||||
NLOHMANN_JSON_PASTE30, \
|
||||
NLOHMANN_JSON_PASTE29, \
|
||||
NLOHMANN_JSON_PASTE28, \
|
||||
NLOHMANN_JSON_PASTE27, \
|
||||
NLOHMANN_JSON_PASTE26, \
|
||||
NLOHMANN_JSON_PASTE25, \
|
||||
NLOHMANN_JSON_PASTE24, \
|
||||
NLOHMANN_JSON_PASTE23, \
|
||||
NLOHMANN_JSON_PASTE22, \
|
||||
NLOHMANN_JSON_PASTE21, \
|
||||
NLOHMANN_JSON_PASTE20, \
|
||||
NLOHMANN_JSON_PASTE19, \
|
||||
NLOHMANN_JSON_PASTE18, \
|
||||
NLOHMANN_JSON_PASTE17, \
|
||||
NLOHMANN_JSON_PASTE16, \
|
||||
NLOHMANN_JSON_PASTE15, \
|
||||
NLOHMANN_JSON_PASTE14, \
|
||||
NLOHMANN_JSON_PASTE13, \
|
||||
NLOHMANN_JSON_PASTE12, \
|
||||
NLOHMANN_JSON_PASTE11, \
|
||||
NLOHMANN_JSON_PASTE10, \
|
||||
NLOHMANN_JSON_PASTE9, \
|
||||
NLOHMANN_JSON_PASTE8, \
|
||||
NLOHMANN_JSON_PASTE7, \
|
||||
NLOHMANN_JSON_PASTE6, \
|
||||
NLOHMANN_JSON_PASTE5, \
|
||||
NLOHMANN_JSON_PASTE4, \
|
||||
NLOHMANN_JSON_PASTE3, \
|
||||
NLOHMANN_JSON_PASTE2, \
|
||||
NLOHMANN_JSON_PASTE1)(__VA_ARGS__))
|
||||
#define NLOHMANN_JSON_PASTE2(func, v1) func(v1)
|
||||
#define NLOHMANN_JSON_PASTE3(func, v1, v2) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE2(func, v2)
|
||||
#define NLOHMANN_JSON_PASTE4(func, v1, v2, v3) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE3(func, v2, v3)
|
||||
#define NLOHMANN_JSON_PASTE5(func, v1, v2, v3, v4) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE4(func, v2, v3, v4)
|
||||
#define NLOHMANN_JSON_PASTE6(func, v1, v2, v3, v4, v5) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE5(func, v2, v3, v4, v5)
|
||||
#define NLOHMANN_JSON_PASTE7(func, v1, v2, v3, v4, v5, v6) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE6(func, v2, v3, v4, v5, v6)
|
||||
#define NLOHMANN_JSON_PASTE8(func, v1, v2, v3, v4, v5, v6, v7) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE7(func, v2, v3, v4, v5, v6, v7)
|
||||
#define NLOHMANN_JSON_PASTE9(func, v1, v2, v3, v4, v5, v6, v7, v8) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE8(func, v2, v3, v4, v5, v6, v7, v8)
|
||||
#define NLOHMANN_JSON_PASTE10(func, v1, v2, v3, v4, v5, v6, v7, v8, v9) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE9(func, v2, v3, v4, v5, v6, v7, v8, v9)
|
||||
#define NLOHMANN_JSON_PASTE11(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE10(func, v2, v3, v4, v5, v6, v7, v8, v9, v10)
|
||||
#define NLOHMANN_JSON_PASTE12(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE11(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11)
|
||||
#define NLOHMANN_JSON_PASTE13(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE12(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12)
|
||||
#define NLOHMANN_JSON_PASTE14(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE13(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13)
|
||||
#define NLOHMANN_JSON_PASTE15(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE14(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14)
|
||||
#define NLOHMANN_JSON_PASTE16(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE15(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15)
|
||||
#define NLOHMANN_JSON_PASTE17(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE16(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16)
|
||||
#define NLOHMANN_JSON_PASTE18(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE17(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17)
|
||||
#define NLOHMANN_JSON_PASTE19(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE18(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18)
|
||||
#define NLOHMANN_JSON_PASTE20(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE19(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19)
|
||||
#define NLOHMANN_JSON_PASTE21(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE20(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20)
|
||||
#define NLOHMANN_JSON_PASTE22(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE21(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21)
|
||||
#define NLOHMANN_JSON_PASTE23(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE22(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22)
|
||||
#define NLOHMANN_JSON_PASTE24(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE23(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23)
|
||||
#define NLOHMANN_JSON_PASTE25(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE24(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24)
|
||||
#define NLOHMANN_JSON_PASTE26(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE25(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25)
|
||||
#define NLOHMANN_JSON_PASTE27(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE26(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26)
|
||||
#define NLOHMANN_JSON_PASTE28(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE27(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27)
|
||||
#define NLOHMANN_JSON_PASTE29(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE28(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28)
|
||||
#define NLOHMANN_JSON_PASTE30(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE29(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29)
|
||||
#define NLOHMANN_JSON_PASTE31(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE30(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30)
|
||||
#define NLOHMANN_JSON_PASTE32(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE31(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31)
|
||||
#define NLOHMANN_JSON_PASTE33(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE32(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32)
|
||||
#define NLOHMANN_JSON_PASTE34(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE33(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33)
|
||||
#define NLOHMANN_JSON_PASTE35(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE34(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34)
|
||||
#define NLOHMANN_JSON_PASTE36(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE35(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35)
|
||||
#define NLOHMANN_JSON_PASTE37(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE36(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36)
|
||||
#define NLOHMANN_JSON_PASTE38(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE37(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37)
|
||||
#define NLOHMANN_JSON_PASTE39(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE38(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38)
|
||||
#define NLOHMANN_JSON_PASTE40(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE39(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39)
|
||||
#define NLOHMANN_JSON_PASTE41(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE40(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40)
|
||||
#define NLOHMANN_JSON_PASTE42(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE41(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41)
|
||||
#define NLOHMANN_JSON_PASTE43(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE42(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42)
|
||||
#define NLOHMANN_JSON_PASTE44(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE43(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43)
|
||||
#define NLOHMANN_JSON_PASTE45(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE44(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44)
|
||||
#define NLOHMANN_JSON_PASTE46(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE45(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45)
|
||||
#define NLOHMANN_JSON_PASTE47(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE46(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46)
|
||||
#define NLOHMANN_JSON_PASTE48(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE47(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47)
|
||||
#define NLOHMANN_JSON_PASTE49(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE48(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48)
|
||||
#define NLOHMANN_JSON_PASTE50(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE49(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49)
|
||||
#define NLOHMANN_JSON_PASTE51(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE50(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50)
|
||||
#define NLOHMANN_JSON_PASTE52(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE51(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51)
|
||||
#define NLOHMANN_JSON_PASTE53(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE52(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52)
|
||||
#define NLOHMANN_JSON_PASTE54(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE53(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53)
|
||||
#define NLOHMANN_JSON_PASTE55(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE54(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54)
|
||||
#define NLOHMANN_JSON_PASTE56(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE55(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55)
|
||||
#define NLOHMANN_JSON_PASTE57(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE56(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56)
|
||||
#define NLOHMANN_JSON_PASTE58(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE57(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57)
|
||||
#define NLOHMANN_JSON_PASTE59(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE58(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58)
|
||||
#define NLOHMANN_JSON_PASTE60(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE59(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59)
|
||||
#define NLOHMANN_JSON_PASTE61(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE60(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60)
|
||||
#define NLOHMANN_JSON_PASTE62(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE61(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61)
|
||||
#define NLOHMANN_JSON_PASTE63(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE62(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62)
|
||||
#define NLOHMANN_JSON_PASTE64(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62, v63) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE63(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62, v63)
|
||||
|
||||
#define NLOHMANN_JSON_TO(v1) nlohmann_json_j[#v1] = nlohmann_json_t.v1;
|
||||
#define NLOHMANN_JSON_FROM(v1) nlohmann_json_j.at(#v1).get_to(nlohmann_json_t.v1);
|
||||
#define NLOHMANN_JSON_FROM_WITH_DEFAULT(v1) nlohmann_json_t.v1 = nlohmann_json_j.value(#v1, nlohmann_json_default_obj.v1);
|
||||
|
||||
/*!
|
||||
@brief macro
|
||||
@def NLOHMANN_DEFINE_TYPE_INTRUSIVE
|
||||
@since version 3.9.0
|
||||
*/
|
||||
#define NLOHMANN_DEFINE_TYPE_INTRUSIVE(Type, ...) \
|
||||
friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
|
||||
friend void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) }
|
||||
|
||||
#define NLOHMANN_DEFINE_TYPE_INTRUSIVE_WITH_DEFAULT(Type, ...) \
|
||||
friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
|
||||
friend void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) }
|
||||
|
||||
#define NLOHMANN_DEFINE_TYPE_INTRUSIVE_ONLY_SERIALIZE(Type, ...) \
|
||||
friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) }
|
||||
|
||||
/*!
|
||||
@brief macro
|
||||
@def NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE
|
||||
@since version 3.9.0
|
||||
*/
|
||||
#define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE(Type, ...) \
|
||||
inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
|
||||
inline void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) }
|
||||
|
||||
#define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_ONLY_SERIALIZE(Type, ...) \
|
||||
inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) }
|
||||
|
||||
#define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_WITH_DEFAULT(Type, ...) \
|
||||
inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
|
||||
inline void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) }
|
||||
|
||||
// inspired from https://stackoverflow.com/a/26745591
|
||||
// allows to call any std function as if (e.g. with begin):
|
||||
// using std::begin; begin(x);
|
||||
//
|
||||
// it allows using the detected idiom to retrieve the return type
|
||||
// of such an expression
|
||||
#define NLOHMANN_CAN_CALL_STD_FUNC_IMPL(std_name) \
|
||||
namespace detail { \
|
||||
using std::std_name; \
|
||||
\
|
||||
template<typename... T> \
|
||||
using result_of_##std_name = decltype(std_name(std::declval<T>()...)); \
|
||||
} \
|
||||
\
|
||||
namespace detail2 { \
|
||||
struct std_name##_tag \
|
||||
{ \
|
||||
}; \
|
||||
\
|
||||
template<typename... T> \
|
||||
std_name##_tag std_name(T&&...); \
|
||||
\
|
||||
template<typename... T> \
|
||||
using result_of_##std_name = decltype(std_name(std::declval<T>()...)); \
|
||||
\
|
||||
template<typename... T> \
|
||||
struct would_call_std_##std_name \
|
||||
{ \
|
||||
static constexpr auto const value = ::nlohmann::detail:: \
|
||||
is_detected_exact<std_name##_tag, result_of_##std_name, T...>::value; \
|
||||
}; \
|
||||
} /* namespace detail2 */ \
|
||||
\
|
||||
template<typename... T> \
|
||||
struct would_call_std_##std_name : detail2::would_call_std_##std_name<T...> \
|
||||
{ \
|
||||
}
|
||||
|
||||
#ifndef JSON_USE_IMPLICIT_CONVERSIONS
|
||||
#define JSON_USE_IMPLICIT_CONVERSIONS 1
|
||||
#endif
|
||||
|
||||
#if JSON_USE_IMPLICIT_CONVERSIONS
|
||||
#define JSON_EXPLICIT
|
||||
#else
|
||||
#define JSON_EXPLICIT explicit
|
||||
#endif
|
||||
|
||||
#ifndef JSON_DISABLE_ENUM_SERIALIZATION
|
||||
#define JSON_DISABLE_ENUM_SERIALIZATION 0
|
||||
#endif
|
||||
|
||||
#ifndef JSON_USE_GLOBAL_UDLS
|
||||
#define JSON_USE_GLOBAL_UDLS 1
|
||||
#endif
|
45
sample/lib/json/include/nlohmann/detail/macro_unscope.hpp
Normal file
45
sample/lib/json/include/nlohmann/detail/macro_unscope.hpp
Normal file
@@ -0,0 +1,45 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
// restore clang diagnostic settings
|
||||
#if defined(__clang__)
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
// clean up
|
||||
#undef JSON_ASSERT
|
||||
#undef JSON_INTERNAL_CATCH
|
||||
#undef JSON_THROW
|
||||
#undef JSON_PRIVATE_UNLESS_TESTED
|
||||
#undef NLOHMANN_BASIC_JSON_TPL_DECLARATION
|
||||
#undef NLOHMANN_BASIC_JSON_TPL
|
||||
#undef JSON_EXPLICIT
|
||||
#undef NLOHMANN_CAN_CALL_STD_FUNC_IMPL
|
||||
#undef JSON_INLINE_VARIABLE
|
||||
#undef JSON_NO_UNIQUE_ADDRESS
|
||||
#undef JSON_DISABLE_ENUM_SERIALIZATION
|
||||
#undef JSON_USE_GLOBAL_UDLS
|
||||
|
||||
#ifndef JSON_TEST_KEEP_MACROS
|
||||
#undef JSON_CATCH
|
||||
#undef JSON_TRY
|
||||
#undef JSON_HAS_CPP_11
|
||||
#undef JSON_HAS_CPP_14
|
||||
#undef JSON_HAS_CPP_17
|
||||
#undef JSON_HAS_CPP_20
|
||||
#undef JSON_HAS_FILESYSTEM
|
||||
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
#undef JSON_HAS_THREE_WAY_COMPARISON
|
||||
#undef JSON_HAS_RANGES
|
||||
#undef JSON_HAS_STATIC_RTTI
|
||||
#undef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
|
||||
#endif
|
||||
|
||||
#include <nlohmann/thirdparty/hedley/hedley_undef.hpp>
|
@@ -0,0 +1,17 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
|
||||
NLOHMANN_CAN_CALL_STD_FUNC_IMPL(begin);
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -0,0 +1,17 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
|
||||
NLOHMANN_CAN_CALL_STD_FUNC_IMPL(end);
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
171
sample/lib/json/include/nlohmann/detail/meta/cpp_future.hpp
Normal file
171
sample/lib/json/include/nlohmann/detail/meta/cpp_future.hpp
Normal file
@@ -0,0 +1,171 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-FileCopyrightText: 2018 The Abseil Authors
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array> // array
|
||||
#include <cstddef> // size_t
|
||||
#include <type_traits> // conditional, enable_if, false_type, integral_constant, is_constructible, is_integral, is_same, remove_cv, remove_reference, true_type
|
||||
#include <utility> // index_sequence, make_index_sequence, index_sequence_for
|
||||
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
template<typename T>
|
||||
using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
|
||||
|
||||
#ifdef JSON_HAS_CPP_14
|
||||
|
||||
// the following utilities are natively available in C++14
|
||||
using std::enable_if_t;
|
||||
using std::index_sequence;
|
||||
using std::make_index_sequence;
|
||||
using std::index_sequence_for;
|
||||
|
||||
#else
|
||||
|
||||
// alias templates to reduce boilerplate
|
||||
template<bool B, typename T = void>
|
||||
using enable_if_t = typename std::enable_if<B, T>::type;
|
||||
|
||||
// The following code is taken from https://github.com/abseil/abseil-cpp/blob/10cb35e459f5ecca5b2ff107635da0bfa41011b4/absl/utility/utility.h
|
||||
// which is part of Google Abseil (https://github.com/abseil/abseil-cpp), licensed under the Apache License 2.0.
|
||||
|
||||
//// START OF CODE FROM GOOGLE ABSEIL
|
||||
|
||||
// integer_sequence
|
||||
//
|
||||
// Class template representing a compile-time integer sequence. An instantiation
|
||||
// of `integer_sequence<T, Ints...>` has a sequence of integers encoded in its
|
||||
// type through its template arguments (which is a common need when
|
||||
// working with C++11 variadic templates). `absl::integer_sequence` is designed
|
||||
// to be a drop-in replacement for C++14's `std::integer_sequence`.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// template< class T, T... Ints >
|
||||
// void user_function(integer_sequence<T, Ints...>);
|
||||
//
|
||||
// int main()
|
||||
// {
|
||||
// // user_function's `T` will be deduced to `int` and `Ints...`
|
||||
// // will be deduced to `0, 1, 2, 3, 4`.
|
||||
// user_function(make_integer_sequence<int, 5>());
|
||||
// }
|
||||
template <typename T, T... Ints>
|
||||
struct integer_sequence
|
||||
{
|
||||
using value_type = T;
|
||||
static constexpr std::size_t size() noexcept
|
||||
{
|
||||
return sizeof...(Ints);
|
||||
}
|
||||
};
|
||||
|
||||
// index_sequence
|
||||
//
|
||||
// A helper template for an `integer_sequence` of `size_t`,
|
||||
// `absl::index_sequence` is designed to be a drop-in replacement for C++14's
|
||||
// `std::index_sequence`.
|
||||
template <size_t... Ints>
|
||||
using index_sequence = integer_sequence<size_t, Ints...>;
|
||||
|
||||
namespace utility_internal
|
||||
{
|
||||
|
||||
template <typename Seq, size_t SeqSize, size_t Rem>
|
||||
struct Extend;
|
||||
|
||||
// Note that SeqSize == sizeof...(Ints). It's passed explicitly for efficiency.
|
||||
template <typename T, T... Ints, size_t SeqSize>
|
||||
struct Extend<integer_sequence<T, Ints...>, SeqSize, 0>
|
||||
{
|
||||
using type = integer_sequence < T, Ints..., (Ints + SeqSize)... >;
|
||||
};
|
||||
|
||||
template <typename T, T... Ints, size_t SeqSize>
|
||||
struct Extend<integer_sequence<T, Ints...>, SeqSize, 1>
|
||||
{
|
||||
using type = integer_sequence < T, Ints..., (Ints + SeqSize)..., 2 * SeqSize >;
|
||||
};
|
||||
|
||||
// Recursion helper for 'make_integer_sequence<T, N>'.
|
||||
// 'Gen<T, N>::type' is an alias for 'integer_sequence<T, 0, 1, ... N-1>'.
|
||||
template <typename T, size_t N>
|
||||
struct Gen
|
||||
{
|
||||
using type =
|
||||
typename Extend < typename Gen < T, N / 2 >::type, N / 2, N % 2 >::type;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct Gen<T, 0>
|
||||
{
|
||||
using type = integer_sequence<T>;
|
||||
};
|
||||
|
||||
} // namespace utility_internal
|
||||
|
||||
// Compile-time sequences of integers
|
||||
|
||||
// make_integer_sequence
|
||||
//
|
||||
// This template alias is equivalent to
|
||||
// `integer_sequence<int, 0, 1, ..., N-1>`, and is designed to be a drop-in
|
||||
// replacement for C++14's `std::make_integer_sequence`.
|
||||
template <typename T, T N>
|
||||
using make_integer_sequence = typename utility_internal::Gen<T, N>::type;
|
||||
|
||||
// make_index_sequence
|
||||
//
|
||||
// This template alias is equivalent to `index_sequence<0, 1, ..., N-1>`,
|
||||
// and is designed to be a drop-in replacement for C++14's
|
||||
// `std::make_index_sequence`.
|
||||
template <size_t N>
|
||||
using make_index_sequence = make_integer_sequence<size_t, N>;
|
||||
|
||||
// index_sequence_for
|
||||
//
|
||||
// Converts a typename pack into an index sequence of the same length, and
|
||||
// is designed to be a drop-in replacement for C++14's
|
||||
// `std::index_sequence_for()`
|
||||
template <typename... Ts>
|
||||
using index_sequence_for = make_index_sequence<sizeof...(Ts)>;
|
||||
|
||||
//// END OF CODE FROM GOOGLE ABSEIL
|
||||
|
||||
#endif
|
||||
|
||||
// dispatch utility (taken from ranges-v3)
|
||||
template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
|
||||
template<> struct priority_tag<0> {};
|
||||
|
||||
// taken from ranges-v3
|
||||
template<typename T>
|
||||
struct static_const
|
||||
{
|
||||
static JSON_INLINE_VARIABLE constexpr T value{};
|
||||
};
|
||||
|
||||
#ifndef JSON_HAS_CPP_17
|
||||
template<typename T>
|
||||
constexpr T static_const<T>::value;
|
||||
#endif
|
||||
|
||||
template<typename T, typename... Args>
|
||||
inline constexpr std::array<T, sizeof...(Args)> make_array(Args&& ... args)
|
||||
{
|
||||
return std::array<T, sizeof...(Args)> {{static_cast<T>(std::forward<Args>(args))...}};
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
70
sample/lib/json/include/nlohmann/detail/meta/detected.hpp
Normal file
70
sample/lib/json/include/nlohmann/detail/meta/detected.hpp
Normal file
@@ -0,0 +1,70 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <type_traits>
|
||||
|
||||
#include <nlohmann/detail/meta/void_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
// https://en.cppreference.com/w/cpp/experimental/is_detected
|
||||
struct nonesuch
|
||||
{
|
||||
nonesuch() = delete;
|
||||
~nonesuch() = delete;
|
||||
nonesuch(nonesuch const&) = delete;
|
||||
nonesuch(nonesuch const&&) = delete;
|
||||
void operator=(nonesuch const&) = delete;
|
||||
void operator=(nonesuch&&) = delete;
|
||||
};
|
||||
|
||||
template<class Default,
|
||||
class AlwaysVoid,
|
||||
template<class...> class Op,
|
||||
class... Args>
|
||||
struct detector
|
||||
{
|
||||
using value_t = std::false_type;
|
||||
using type = Default;
|
||||
};
|
||||
|
||||
template<class Default, template<class...> class Op, class... Args>
|
||||
struct detector<Default, void_t<Op<Args...>>, Op, Args...>
|
||||
{
|
||||
using value_t = std::true_type;
|
||||
using type = Op<Args...>;
|
||||
};
|
||||
|
||||
template<template<class...> class Op, class... Args>
|
||||
using is_detected = typename detector<nonesuch, void, Op, Args...>::value_t;
|
||||
|
||||
template<template<class...> class Op, class... Args>
|
||||
struct is_detected_lazy : is_detected<Op, Args...> { };
|
||||
|
||||
template<template<class...> class Op, class... Args>
|
||||
using detected_t = typename detector<nonesuch, void, Op, Args...>::type;
|
||||
|
||||
template<class Default, template<class...> class Op, class... Args>
|
||||
using detected_or = detector<Default, void, Op, Args...>;
|
||||
|
||||
template<class Default, template<class...> class Op, class... Args>
|
||||
using detected_or_t = typename detected_or<Default, Op, Args...>::type;
|
||||
|
||||
template<class Expected, template<class...> class Op, class... Args>
|
||||
using is_detected_exact = std::is_same<Expected, detected_t<Op, Args...>>;
|
||||
|
||||
template<class To, template<class...> class Op, class... Args>
|
||||
using is_detected_convertible =
|
||||
std::is_convertible<detected_t<Op, Args...>, To>;
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -0,0 +1,21 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
// dispatching helper struct
|
||||
template <class T> struct identity_tag {};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
159
sample/lib/json/include/nlohmann/detail/meta/is_sax.hpp
Normal file
159
sample/lib/json/include/nlohmann/detail/meta/is_sax.hpp
Normal file
@@ -0,0 +1,159 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint> // size_t
|
||||
#include <utility> // declval
|
||||
#include <string> // string
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
#include <nlohmann/detail/meta/detected.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
template<typename T>
|
||||
using null_function_t = decltype(std::declval<T&>().null());
|
||||
|
||||
template<typename T>
|
||||
using boolean_function_t =
|
||||
decltype(std::declval<T&>().boolean(std::declval<bool>()));
|
||||
|
||||
template<typename T, typename Integer>
|
||||
using number_integer_function_t =
|
||||
decltype(std::declval<T&>().number_integer(std::declval<Integer>()));
|
||||
|
||||
template<typename T, typename Unsigned>
|
||||
using number_unsigned_function_t =
|
||||
decltype(std::declval<T&>().number_unsigned(std::declval<Unsigned>()));
|
||||
|
||||
template<typename T, typename Float, typename String>
|
||||
using number_float_function_t = decltype(std::declval<T&>().number_float(
|
||||
std::declval<Float>(), std::declval<const String&>()));
|
||||
|
||||
template<typename T, typename String>
|
||||
using string_function_t =
|
||||
decltype(std::declval<T&>().string(std::declval<String&>()));
|
||||
|
||||
template<typename T, typename Binary>
|
||||
using binary_function_t =
|
||||
decltype(std::declval<T&>().binary(std::declval<Binary&>()));
|
||||
|
||||
template<typename T>
|
||||
using start_object_function_t =
|
||||
decltype(std::declval<T&>().start_object(std::declval<std::size_t>()));
|
||||
|
||||
template<typename T, typename String>
|
||||
using key_function_t =
|
||||
decltype(std::declval<T&>().key(std::declval<String&>()));
|
||||
|
||||
template<typename T>
|
||||
using end_object_function_t = decltype(std::declval<T&>().end_object());
|
||||
|
||||
template<typename T>
|
||||
using start_array_function_t =
|
||||
decltype(std::declval<T&>().start_array(std::declval<std::size_t>()));
|
||||
|
||||
template<typename T>
|
||||
using end_array_function_t = decltype(std::declval<T&>().end_array());
|
||||
|
||||
template<typename T, typename Exception>
|
||||
using parse_error_function_t = decltype(std::declval<T&>().parse_error(
|
||||
std::declval<std::size_t>(), std::declval<const std::string&>(),
|
||||
std::declval<const Exception&>()));
|
||||
|
||||
template<typename SAX, typename BasicJsonType>
|
||||
struct is_sax
|
||||
{
|
||||
private:
|
||||
static_assert(is_basic_json<BasicJsonType>::value,
|
||||
"BasicJsonType must be of type basic_json<...>");
|
||||
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using binary_t = typename BasicJsonType::binary_t;
|
||||
using exception_t = typename BasicJsonType::exception;
|
||||
|
||||
public:
|
||||
static constexpr bool value =
|
||||
is_detected_exact<bool, null_function_t, SAX>::value &&
|
||||
is_detected_exact<bool, boolean_function_t, SAX>::value &&
|
||||
is_detected_exact<bool, number_integer_function_t, SAX, number_integer_t>::value &&
|
||||
is_detected_exact<bool, number_unsigned_function_t, SAX, number_unsigned_t>::value &&
|
||||
is_detected_exact<bool, number_float_function_t, SAX, number_float_t, string_t>::value &&
|
||||
is_detected_exact<bool, string_function_t, SAX, string_t>::value &&
|
||||
is_detected_exact<bool, binary_function_t, SAX, binary_t>::value &&
|
||||
is_detected_exact<bool, start_object_function_t, SAX>::value &&
|
||||
is_detected_exact<bool, key_function_t, SAX, string_t>::value &&
|
||||
is_detected_exact<bool, end_object_function_t, SAX>::value &&
|
||||
is_detected_exact<bool, start_array_function_t, SAX>::value &&
|
||||
is_detected_exact<bool, end_array_function_t, SAX>::value &&
|
||||
is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value;
|
||||
};
|
||||
|
||||
template<typename SAX, typename BasicJsonType>
|
||||
struct is_sax_static_asserts
|
||||
{
|
||||
private:
|
||||
static_assert(is_basic_json<BasicJsonType>::value,
|
||||
"BasicJsonType must be of type basic_json<...>");
|
||||
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using binary_t = typename BasicJsonType::binary_t;
|
||||
using exception_t = typename BasicJsonType::exception;
|
||||
|
||||
public:
|
||||
static_assert(is_detected_exact<bool, null_function_t, SAX>::value,
|
||||
"Missing/invalid function: bool null()");
|
||||
static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value,
|
||||
"Missing/invalid function: bool boolean(bool)");
|
||||
static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value,
|
||||
"Missing/invalid function: bool boolean(bool)");
|
||||
static_assert(
|
||||
is_detected_exact<bool, number_integer_function_t, SAX,
|
||||
number_integer_t>::value,
|
||||
"Missing/invalid function: bool number_integer(number_integer_t)");
|
||||
static_assert(
|
||||
is_detected_exact<bool, number_unsigned_function_t, SAX,
|
||||
number_unsigned_t>::value,
|
||||
"Missing/invalid function: bool number_unsigned(number_unsigned_t)");
|
||||
static_assert(is_detected_exact<bool, number_float_function_t, SAX,
|
||||
number_float_t, string_t>::value,
|
||||
"Missing/invalid function: bool number_float(number_float_t, const string_t&)");
|
||||
static_assert(
|
||||
is_detected_exact<bool, string_function_t, SAX, string_t>::value,
|
||||
"Missing/invalid function: bool string(string_t&)");
|
||||
static_assert(
|
||||
is_detected_exact<bool, binary_function_t, SAX, binary_t>::value,
|
||||
"Missing/invalid function: bool binary(binary_t&)");
|
||||
static_assert(is_detected_exact<bool, start_object_function_t, SAX>::value,
|
||||
"Missing/invalid function: bool start_object(std::size_t)");
|
||||
static_assert(is_detected_exact<bool, key_function_t, SAX, string_t>::value,
|
||||
"Missing/invalid function: bool key(string_t&)");
|
||||
static_assert(is_detected_exact<bool, end_object_function_t, SAX>::value,
|
||||
"Missing/invalid function: bool end_object()");
|
||||
static_assert(is_detected_exact<bool, start_array_function_t, SAX>::value,
|
||||
"Missing/invalid function: bool start_array(std::size_t)");
|
||||
static_assert(is_detected_exact<bool, end_array_function_t, SAX>::value,
|
||||
"Missing/invalid function: bool end_array()");
|
||||
static_assert(
|
||||
is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value,
|
||||
"Missing/invalid function: bool parse_error(std::size_t, const "
|
||||
"std::string&, const exception&)");
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
29
sample/lib/json/include/nlohmann/detail/meta/std_fs.hpp
Normal file
29
sample/lib/json/include/nlohmann/detail/meta/std_fs.hpp
Normal file
@@ -0,0 +1,29 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
|
||||
#if JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
#include <experimental/filesystem>
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
namespace std_fs = std::experimental::filesystem;
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
||||
#elif JSON_HAS_FILESYSTEM
|
||||
#include <filesystem>
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
namespace std_fs = std::filesystem;
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
||||
#endif
|
795
sample/lib/json/include/nlohmann/detail/meta/type_traits.hpp
Normal file
795
sample/lib/json/include/nlohmann/detail/meta/type_traits.hpp
Normal file
@@ -0,0 +1,795 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <limits> // numeric_limits
|
||||
#include <type_traits> // false_type, is_constructible, is_integral, is_same, true_type
|
||||
#include <utility> // declval
|
||||
#include <tuple> // tuple
|
||||
#include <string> // char_traits
|
||||
|
||||
#include <nlohmann/detail/iterators/iterator_traits.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/call_std/begin.hpp>
|
||||
#include <nlohmann/detail/meta/call_std/end.hpp>
|
||||
#include <nlohmann/detail/meta/cpp_future.hpp>
|
||||
#include <nlohmann/detail/meta/detected.hpp>
|
||||
#include <nlohmann/json_fwd.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
/*!
|
||||
@brief detail namespace with internal helper functions
|
||||
|
||||
This namespace collects functions that should not be exposed,
|
||||
implementations of some @ref basic_json methods, and meta-programming helpers.
|
||||
|
||||
@since version 2.1.0
|
||||
*/
|
||||
namespace detail
|
||||
{
|
||||
|
||||
/////////////
|
||||
// helpers //
|
||||
/////////////
|
||||
|
||||
// Note to maintainers:
|
||||
//
|
||||
// Every trait in this file expects a non CV-qualified type.
|
||||
// The only exceptions are in the 'aliases for detected' section
|
||||
// (i.e. those of the form: decltype(T::member_function(std::declval<T>())))
|
||||
//
|
||||
// In this case, T has to be properly CV-qualified to constraint the function arguments
|
||||
// (e.g. to_json(BasicJsonType&, const T&))
|
||||
|
||||
template<typename> struct is_basic_json : std::false_type {};
|
||||
|
||||
NLOHMANN_BASIC_JSON_TPL_DECLARATION
|
||||
struct is_basic_json<NLOHMANN_BASIC_JSON_TPL> : std::true_type {};
|
||||
|
||||
// used by exceptions create() member functions
|
||||
// true_type for pointer to possibly cv-qualified basic_json or std::nullptr_t
|
||||
// false_type otherwise
|
||||
template<typename BasicJsonContext>
|
||||
struct is_basic_json_context :
|
||||
std::integral_constant < bool,
|
||||
is_basic_json<typename std::remove_cv<typename std::remove_pointer<BasicJsonContext>::type>::type>::value
|
||||
|| std::is_same<BasicJsonContext, std::nullptr_t>::value >
|
||||
{};
|
||||
|
||||
//////////////////////
|
||||
// json_ref helpers //
|
||||
//////////////////////
|
||||
|
||||
template<typename>
|
||||
class json_ref;
|
||||
|
||||
template<typename>
|
||||
struct is_json_ref : std::false_type {};
|
||||
|
||||
template<typename T>
|
||||
struct is_json_ref<json_ref<T>> : std::true_type {};
|
||||
|
||||
//////////////////////////
|
||||
// aliases for detected //
|
||||
//////////////////////////
|
||||
|
||||
template<typename T>
|
||||
using mapped_type_t = typename T::mapped_type;
|
||||
|
||||
template<typename T>
|
||||
using key_type_t = typename T::key_type;
|
||||
|
||||
template<typename T>
|
||||
using value_type_t = typename T::value_type;
|
||||
|
||||
template<typename T>
|
||||
using difference_type_t = typename T::difference_type;
|
||||
|
||||
template<typename T>
|
||||
using pointer_t = typename T::pointer;
|
||||
|
||||
template<typename T>
|
||||
using reference_t = typename T::reference;
|
||||
|
||||
template<typename T>
|
||||
using iterator_category_t = typename T::iterator_category;
|
||||
|
||||
template<typename T, typename... Args>
|
||||
using to_json_function = decltype(T::to_json(std::declval<Args>()...));
|
||||
|
||||
template<typename T, typename... Args>
|
||||
using from_json_function = decltype(T::from_json(std::declval<Args>()...));
|
||||
|
||||
template<typename T, typename U>
|
||||
using get_template_function = decltype(std::declval<T>().template get<U>());
|
||||
|
||||
// trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
|
||||
template<typename BasicJsonType, typename T, typename = void>
|
||||
struct has_from_json : std::false_type {};
|
||||
|
||||
// trait checking if j.get<T> is valid
|
||||
// use this trait instead of std::is_constructible or std::is_convertible,
|
||||
// both rely on, or make use of implicit conversions, and thus fail when T
|
||||
// has several constructors/operator= (see https://github.com/nlohmann/json/issues/958)
|
||||
template <typename BasicJsonType, typename T>
|
||||
struct is_getable
|
||||
{
|
||||
static constexpr bool value = is_detected<get_template_function, const BasicJsonType&, T>::value;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType, typename T>
|
||||
struct has_from_json < BasicJsonType, T, enable_if_t < !is_basic_json<T>::value >>
|
||||
{
|
||||
using serializer = typename BasicJsonType::template json_serializer<T, void>;
|
||||
|
||||
static constexpr bool value =
|
||||
is_detected_exact<void, from_json_function, serializer,
|
||||
const BasicJsonType&, T&>::value;
|
||||
};
|
||||
|
||||
// This trait checks if JSONSerializer<T>::from_json(json const&) exists
|
||||
// this overload is used for non-default-constructible user-defined-types
|
||||
template<typename BasicJsonType, typename T, typename = void>
|
||||
struct has_non_default_from_json : std::false_type {};
|
||||
|
||||
template<typename BasicJsonType, typename T>
|
||||
struct has_non_default_from_json < BasicJsonType, T, enable_if_t < !is_basic_json<T>::value >>
|
||||
{
|
||||
using serializer = typename BasicJsonType::template json_serializer<T, void>;
|
||||
|
||||
static constexpr bool value =
|
||||
is_detected_exact<T, from_json_function, serializer,
|
||||
const BasicJsonType&>::value;
|
||||
};
|
||||
|
||||
// This trait checks if BasicJsonType::json_serializer<T>::to_json exists
|
||||
// Do not evaluate the trait when T is a basic_json type, to avoid template instantiation infinite recursion.
|
||||
template<typename BasicJsonType, typename T, typename = void>
|
||||
struct has_to_json : std::false_type {};
|
||||
|
||||
template<typename BasicJsonType, typename T>
|
||||
struct has_to_json < BasicJsonType, T, enable_if_t < !is_basic_json<T>::value >>
|
||||
{
|
||||
using serializer = typename BasicJsonType::template json_serializer<T, void>;
|
||||
|
||||
static constexpr bool value =
|
||||
is_detected_exact<void, to_json_function, serializer, BasicJsonType&,
|
||||
T>::value;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
using detect_key_compare = typename T::key_compare;
|
||||
|
||||
template<typename T>
|
||||
struct has_key_compare : std::integral_constant<bool, is_detected<detect_key_compare, T>::value> {};
|
||||
|
||||
// obtains the actual object key comparator
|
||||
template<typename BasicJsonType>
|
||||
struct actual_object_comparator
|
||||
{
|
||||
using object_t = typename BasicJsonType::object_t;
|
||||
using object_comparator_t = typename BasicJsonType::default_object_comparator_t;
|
||||
using type = typename std::conditional < has_key_compare<object_t>::value,
|
||||
typename object_t::key_compare, object_comparator_t>::type;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType>
|
||||
using actual_object_comparator_t = typename actual_object_comparator<BasicJsonType>::type;
|
||||
|
||||
/////////////////
|
||||
// char_traits //
|
||||
/////////////////
|
||||
|
||||
// Primary template of char_traits calls std char_traits
|
||||
template<typename T>
|
||||
struct char_traits : std::char_traits<T>
|
||||
{};
|
||||
|
||||
// Explicitly define char traits for unsigned char since it is not standard
|
||||
template<>
|
||||
struct char_traits<unsigned char> : std::char_traits<char>
|
||||
{
|
||||
using char_type = unsigned char;
|
||||
using int_type = uint64_t;
|
||||
|
||||
// Redefine to_int_type function
|
||||
static int_type to_int_type(char_type c) noexcept
|
||||
{
|
||||
return static_cast<int_type>(c);
|
||||
}
|
||||
|
||||
static char_type to_char_type(int_type i) noexcept
|
||||
{
|
||||
return static_cast<char_type>(i);
|
||||
}
|
||||
|
||||
static constexpr int_type eof() noexcept
|
||||
{
|
||||
return static_cast<int_type>(EOF);
|
||||
}
|
||||
};
|
||||
|
||||
// Explicitly define char traits for signed char since it is not standard
|
||||
template<>
|
||||
struct char_traits<signed char> : std::char_traits<char>
|
||||
{
|
||||
using char_type = signed char;
|
||||
using int_type = uint64_t;
|
||||
|
||||
// Redefine to_int_type function
|
||||
static int_type to_int_type(char_type c) noexcept
|
||||
{
|
||||
return static_cast<int_type>(c);
|
||||
}
|
||||
|
||||
static char_type to_char_type(int_type i) noexcept
|
||||
{
|
||||
return static_cast<char_type>(i);
|
||||
}
|
||||
|
||||
static constexpr int_type eof() noexcept
|
||||
{
|
||||
return static_cast<int_type>(EOF);
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////
|
||||
// is_ functions //
|
||||
///////////////////
|
||||
|
||||
// https://en.cppreference.com/w/cpp/types/conjunction
|
||||
template<class...> struct conjunction : std::true_type { };
|
||||
template<class B> struct conjunction<B> : B { };
|
||||
template<class B, class... Bn>
|
||||
struct conjunction<B, Bn...>
|
||||
: std::conditional<static_cast<bool>(B::value), conjunction<Bn...>, B>::type {};
|
||||
|
||||
// https://en.cppreference.com/w/cpp/types/negation
|
||||
template<class B> struct negation : std::integral_constant < bool, !B::value > { };
|
||||
|
||||
// Reimplementation of is_constructible and is_default_constructible, due to them being broken for
|
||||
// std::pair and std::tuple until LWG 2367 fix (see https://cplusplus.github.io/LWG/lwg-defects.html#2367).
|
||||
// This causes compile errors in e.g. clang 3.5 or gcc 4.9.
|
||||
template <typename T>
|
||||
struct is_default_constructible : std::is_default_constructible<T> {};
|
||||
|
||||
template <typename T1, typename T2>
|
||||
struct is_default_constructible<std::pair<T1, T2>>
|
||||
: conjunction<is_default_constructible<T1>, is_default_constructible<T2>> {};
|
||||
|
||||
template <typename T1, typename T2>
|
||||
struct is_default_constructible<const std::pair<T1, T2>>
|
||||
: conjunction<is_default_constructible<T1>, is_default_constructible<T2>> {};
|
||||
|
||||
template <typename... Ts>
|
||||
struct is_default_constructible<std::tuple<Ts...>>
|
||||
: conjunction<is_default_constructible<Ts>...> {};
|
||||
|
||||
template <typename... Ts>
|
||||
struct is_default_constructible<const std::tuple<Ts...>>
|
||||
: conjunction<is_default_constructible<Ts>...> {};
|
||||
|
||||
template <typename T, typename... Args>
|
||||
struct is_constructible : std::is_constructible<T, Args...> {};
|
||||
|
||||
template <typename T1, typename T2>
|
||||
struct is_constructible<std::pair<T1, T2>> : is_default_constructible<std::pair<T1, T2>> {};
|
||||
|
||||
template <typename T1, typename T2>
|
||||
struct is_constructible<const std::pair<T1, T2>> : is_default_constructible<const std::pair<T1, T2>> {};
|
||||
|
||||
template <typename... Ts>
|
||||
struct is_constructible<std::tuple<Ts...>> : is_default_constructible<std::tuple<Ts...>> {};
|
||||
|
||||
template <typename... Ts>
|
||||
struct is_constructible<const std::tuple<Ts...>> : is_default_constructible<const std::tuple<Ts...>> {};
|
||||
|
||||
template<typename T, typename = void>
|
||||
struct is_iterator_traits : std::false_type {};
|
||||
|
||||
template<typename T>
|
||||
struct is_iterator_traits<iterator_traits<T>>
|
||||
{
|
||||
private:
|
||||
using traits = iterator_traits<T>;
|
||||
|
||||
public:
|
||||
static constexpr auto value =
|
||||
is_detected<value_type_t, traits>::value &&
|
||||
is_detected<difference_type_t, traits>::value &&
|
||||
is_detected<pointer_t, traits>::value &&
|
||||
is_detected<iterator_category_t, traits>::value &&
|
||||
is_detected<reference_t, traits>::value;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct is_range
|
||||
{
|
||||
private:
|
||||
using t_ref = typename std::add_lvalue_reference<T>::type;
|
||||
|
||||
using iterator = detected_t<result_of_begin, t_ref>;
|
||||
using sentinel = detected_t<result_of_end, t_ref>;
|
||||
|
||||
// to be 100% correct, it should use https://en.cppreference.com/w/cpp/iterator/input_or_output_iterator
|
||||
// and https://en.cppreference.com/w/cpp/iterator/sentinel_for
|
||||
// but reimplementing these would be too much work, as a lot of other concepts are used underneath
|
||||
static constexpr auto is_iterator_begin =
|
||||
is_iterator_traits<iterator_traits<iterator>>::value;
|
||||
|
||||
public:
|
||||
static constexpr bool value = !std::is_same<iterator, nonesuch>::value && !std::is_same<sentinel, nonesuch>::value && is_iterator_begin;
|
||||
};
|
||||
|
||||
template<typename R>
|
||||
using iterator_t = enable_if_t<is_range<R>::value, result_of_begin<decltype(std::declval<R&>())>>;
|
||||
|
||||
template<typename T>
|
||||
using range_value_t = value_type_t<iterator_traits<iterator_t<T>>>;
|
||||
|
||||
// The following implementation of is_complete_type is taken from
|
||||
// https://blogs.msdn.microsoft.com/vcblog/2015/12/02/partial-support-for-expression-sfinae-in-vs-2015-update-1/
|
||||
// and is written by Xiang Fan who agreed to using it in this library.
|
||||
|
||||
template<typename T, typename = void>
|
||||
struct is_complete_type : std::false_type {};
|
||||
|
||||
template<typename T>
|
||||
struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {};
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleObjectType,
|
||||
typename = void>
|
||||
struct is_compatible_object_type_impl : std::false_type {};
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleObjectType>
|
||||
struct is_compatible_object_type_impl <
|
||||
BasicJsonType, CompatibleObjectType,
|
||||
enable_if_t < is_detected<mapped_type_t, CompatibleObjectType>::value&&
|
||||
is_detected<key_type_t, CompatibleObjectType>::value >>
|
||||
{
|
||||
using object_t = typename BasicJsonType::object_t;
|
||||
|
||||
// macOS's is_constructible does not play well with nonesuch...
|
||||
static constexpr bool value =
|
||||
is_constructible<typename object_t::key_type,
|
||||
typename CompatibleObjectType::key_type>::value &&
|
||||
is_constructible<typename object_t::mapped_type,
|
||||
typename CompatibleObjectType::mapped_type>::value;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleObjectType>
|
||||
struct is_compatible_object_type
|
||||
: is_compatible_object_type_impl<BasicJsonType, CompatibleObjectType> {};
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleObjectType,
|
||||
typename = void>
|
||||
struct is_constructible_object_type_impl : std::false_type {};
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleObjectType>
|
||||
struct is_constructible_object_type_impl <
|
||||
BasicJsonType, ConstructibleObjectType,
|
||||
enable_if_t < is_detected<mapped_type_t, ConstructibleObjectType>::value&&
|
||||
is_detected<key_type_t, ConstructibleObjectType>::value >>
|
||||
{
|
||||
using object_t = typename BasicJsonType::object_t;
|
||||
|
||||
static constexpr bool value =
|
||||
(is_default_constructible<ConstructibleObjectType>::value &&
|
||||
(std::is_move_assignable<ConstructibleObjectType>::value ||
|
||||
std::is_copy_assignable<ConstructibleObjectType>::value) &&
|
||||
(is_constructible<typename ConstructibleObjectType::key_type,
|
||||
typename object_t::key_type>::value &&
|
||||
std::is_same <
|
||||
typename object_t::mapped_type,
|
||||
typename ConstructibleObjectType::mapped_type >::value)) ||
|
||||
(has_from_json<BasicJsonType,
|
||||
typename ConstructibleObjectType::mapped_type>::value ||
|
||||
has_non_default_from_json <
|
||||
BasicJsonType,
|
||||
typename ConstructibleObjectType::mapped_type >::value);
|
||||
};
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleObjectType>
|
||||
struct is_constructible_object_type
|
||||
: is_constructible_object_type_impl<BasicJsonType,
|
||||
ConstructibleObjectType> {};
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleStringType>
|
||||
struct is_compatible_string_type
|
||||
{
|
||||
static constexpr auto value =
|
||||
is_constructible<typename BasicJsonType::string_t, CompatibleStringType>::value;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleStringType>
|
||||
struct is_constructible_string_type
|
||||
{
|
||||
// launder type through decltype() to fix compilation failure on ICPC
|
||||
#ifdef __INTEL_COMPILER
|
||||
using laundered_type = decltype(std::declval<ConstructibleStringType>());
|
||||
#else
|
||||
using laundered_type = ConstructibleStringType;
|
||||
#endif
|
||||
|
||||
static constexpr auto value =
|
||||
conjunction <
|
||||
is_constructible<laundered_type, typename BasicJsonType::string_t>,
|
||||
is_detected_exact<typename BasicJsonType::string_t::value_type,
|
||||
value_type_t, laundered_type >>::value;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleArrayType, typename = void>
|
||||
struct is_compatible_array_type_impl : std::false_type {};
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleArrayType>
|
||||
struct is_compatible_array_type_impl <
|
||||
BasicJsonType, CompatibleArrayType,
|
||||
enable_if_t <
|
||||
is_detected<iterator_t, CompatibleArrayType>::value&&
|
||||
is_iterator_traits<iterator_traits<detected_t<iterator_t, CompatibleArrayType>>>::value&&
|
||||
// special case for types like std::filesystem::path whose iterator's value_type are themselves
|
||||
// c.f. https://github.com/nlohmann/json/pull/3073
|
||||
!std::is_same<CompatibleArrayType, detected_t<range_value_t, CompatibleArrayType>>::value >>
|
||||
{
|
||||
static constexpr bool value =
|
||||
is_constructible<BasicJsonType,
|
||||
range_value_t<CompatibleArrayType>>::value;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleArrayType>
|
||||
struct is_compatible_array_type
|
||||
: is_compatible_array_type_impl<BasicJsonType, CompatibleArrayType> {};
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleArrayType, typename = void>
|
||||
struct is_constructible_array_type_impl : std::false_type {};
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleArrayType>
|
||||
struct is_constructible_array_type_impl <
|
||||
BasicJsonType, ConstructibleArrayType,
|
||||
enable_if_t<std::is_same<ConstructibleArrayType,
|
||||
typename BasicJsonType::value_type>::value >>
|
||||
: std::true_type {};
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleArrayType>
|
||||
struct is_constructible_array_type_impl <
|
||||
BasicJsonType, ConstructibleArrayType,
|
||||
enable_if_t < !std::is_same<ConstructibleArrayType,
|
||||
typename BasicJsonType::value_type>::value&&
|
||||
!is_compatible_string_type<BasicJsonType, ConstructibleArrayType>::value&&
|
||||
is_default_constructible<ConstructibleArrayType>::value&&
|
||||
(std::is_move_assignable<ConstructibleArrayType>::value ||
|
||||
std::is_copy_assignable<ConstructibleArrayType>::value)&&
|
||||
is_detected<iterator_t, ConstructibleArrayType>::value&&
|
||||
is_iterator_traits<iterator_traits<detected_t<iterator_t, ConstructibleArrayType>>>::value&&
|
||||
is_detected<range_value_t, ConstructibleArrayType>::value&&
|
||||
// special case for types like std::filesystem::path whose iterator's value_type are themselves
|
||||
// c.f. https://github.com/nlohmann/json/pull/3073
|
||||
!std::is_same<ConstructibleArrayType, detected_t<range_value_t, ConstructibleArrayType>>::value&&
|
||||
is_complete_type <
|
||||
detected_t<range_value_t, ConstructibleArrayType >>::value >>
|
||||
{
|
||||
using value_type = range_value_t<ConstructibleArrayType>;
|
||||
|
||||
static constexpr bool value =
|
||||
std::is_same<value_type,
|
||||
typename BasicJsonType::array_t::value_type>::value ||
|
||||
has_from_json<BasicJsonType,
|
||||
value_type>::value ||
|
||||
has_non_default_from_json <
|
||||
BasicJsonType,
|
||||
value_type >::value;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleArrayType>
|
||||
struct is_constructible_array_type
|
||||
: is_constructible_array_type_impl<BasicJsonType, ConstructibleArrayType> {};
|
||||
|
||||
template<typename RealIntegerType, typename CompatibleNumberIntegerType,
|
||||
typename = void>
|
||||
struct is_compatible_integer_type_impl : std::false_type {};
|
||||
|
||||
template<typename RealIntegerType, typename CompatibleNumberIntegerType>
|
||||
struct is_compatible_integer_type_impl <
|
||||
RealIntegerType, CompatibleNumberIntegerType,
|
||||
enable_if_t < std::is_integral<RealIntegerType>::value&&
|
||||
std::is_integral<CompatibleNumberIntegerType>::value&&
|
||||
!std::is_same<bool, CompatibleNumberIntegerType>::value >>
|
||||
{
|
||||
// is there an assert somewhere on overflows?
|
||||
using RealLimits = std::numeric_limits<RealIntegerType>;
|
||||
using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
|
||||
|
||||
static constexpr auto value =
|
||||
is_constructible<RealIntegerType,
|
||||
CompatibleNumberIntegerType>::value &&
|
||||
CompatibleLimits::is_integer &&
|
||||
RealLimits::is_signed == CompatibleLimits::is_signed;
|
||||
};
|
||||
|
||||
template<typename RealIntegerType, typename CompatibleNumberIntegerType>
|
||||
struct is_compatible_integer_type
|
||||
: is_compatible_integer_type_impl<RealIntegerType,
|
||||
CompatibleNumberIntegerType> {};
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleType, typename = void>
|
||||
struct is_compatible_type_impl: std::false_type {};
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleType>
|
||||
struct is_compatible_type_impl <
|
||||
BasicJsonType, CompatibleType,
|
||||
enable_if_t<is_complete_type<CompatibleType>::value >>
|
||||
{
|
||||
static constexpr bool value =
|
||||
has_to_json<BasicJsonType, CompatibleType>::value;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleType>
|
||||
struct is_compatible_type
|
||||
: is_compatible_type_impl<BasicJsonType, CompatibleType> {};
|
||||
|
||||
template<typename T1, typename T2>
|
||||
struct is_constructible_tuple : std::false_type {};
|
||||
|
||||
template<typename T1, typename... Args>
|
||||
struct is_constructible_tuple<T1, std::tuple<Args...>> : conjunction<is_constructible<T1, Args>...> {};
|
||||
|
||||
template<typename BasicJsonType, typename T>
|
||||
struct is_json_iterator_of : std::false_type {};
|
||||
|
||||
template<typename BasicJsonType>
|
||||
struct is_json_iterator_of<BasicJsonType, typename BasicJsonType::iterator> : std::true_type {};
|
||||
|
||||
template<typename BasicJsonType>
|
||||
struct is_json_iterator_of<BasicJsonType, typename BasicJsonType::const_iterator> : std::true_type
|
||||
{};
|
||||
|
||||
// checks if a given type T is a template specialization of Primary
|
||||
template<template <typename...> class Primary, typename T>
|
||||
struct is_specialization_of : std::false_type {};
|
||||
|
||||
template<template <typename...> class Primary, typename... Args>
|
||||
struct is_specialization_of<Primary, Primary<Args...>> : std::true_type {};
|
||||
|
||||
template<typename T>
|
||||
using is_json_pointer = is_specialization_of<::nlohmann::json_pointer, uncvref_t<T>>;
|
||||
|
||||
// checks if A and B are comparable using Compare functor
|
||||
template<typename Compare, typename A, typename B, typename = void>
|
||||
struct is_comparable : std::false_type {};
|
||||
|
||||
template<typename Compare, typename A, typename B>
|
||||
struct is_comparable<Compare, A, B, void_t<
|
||||
decltype(std::declval<Compare>()(std::declval<A>(), std::declval<B>())),
|
||||
decltype(std::declval<Compare>()(std::declval<B>(), std::declval<A>()))
|
||||
>> : std::true_type {};
|
||||
|
||||
template<typename T>
|
||||
using detect_is_transparent = typename T::is_transparent;
|
||||
|
||||
// type trait to check if KeyType can be used as object key (without a BasicJsonType)
|
||||
// see is_usable_as_basic_json_key_type below
|
||||
template<typename Comparator, typename ObjectKeyType, typename KeyTypeCVRef, bool RequireTransparentComparator = true,
|
||||
bool ExcludeObjectKeyType = RequireTransparentComparator, typename KeyType = uncvref_t<KeyTypeCVRef>>
|
||||
using is_usable_as_key_type = typename std::conditional <
|
||||
is_comparable<Comparator, ObjectKeyType, KeyTypeCVRef>::value
|
||||
&& !(ExcludeObjectKeyType && std::is_same<KeyType,
|
||||
ObjectKeyType>::value)
|
||||
&& (!RequireTransparentComparator
|
||||
|| is_detected <detect_is_transparent, Comparator>::value)
|
||||
&& !is_json_pointer<KeyType>::value,
|
||||
std::true_type,
|
||||
std::false_type >::type;
|
||||
|
||||
// type trait to check if KeyType can be used as object key
|
||||
// true if:
|
||||
// - KeyType is comparable with BasicJsonType::object_t::key_type
|
||||
// - if ExcludeObjectKeyType is true, KeyType is not BasicJsonType::object_t::key_type
|
||||
// - the comparator is transparent or RequireTransparentComparator is false
|
||||
// - KeyType is not a JSON iterator or json_pointer
|
||||
template<typename BasicJsonType, typename KeyTypeCVRef, bool RequireTransparentComparator = true,
|
||||
bool ExcludeObjectKeyType = RequireTransparentComparator, typename KeyType = uncvref_t<KeyTypeCVRef>>
|
||||
using is_usable_as_basic_json_key_type = typename std::conditional <
|
||||
is_usable_as_key_type<typename BasicJsonType::object_comparator_t,
|
||||
typename BasicJsonType::object_t::key_type, KeyTypeCVRef,
|
||||
RequireTransparentComparator, ExcludeObjectKeyType>::value
|
||||
&& !is_json_iterator_of<BasicJsonType, KeyType>::value,
|
||||
std::true_type,
|
||||
std::false_type >::type;
|
||||
|
||||
template<typename ObjectType, typename KeyType>
|
||||
using detect_erase_with_key_type = decltype(std::declval<ObjectType&>().erase(std::declval<KeyType>()));
|
||||
|
||||
// type trait to check if object_t has an erase() member functions accepting KeyType
|
||||
template<typename BasicJsonType, typename KeyType>
|
||||
using has_erase_with_key_type = typename std::conditional <
|
||||
is_detected <
|
||||
detect_erase_with_key_type,
|
||||
typename BasicJsonType::object_t, KeyType >::value,
|
||||
std::true_type,
|
||||
std::false_type >::type;
|
||||
|
||||
// a naive helper to check if a type is an ordered_map (exploits the fact that
|
||||
// ordered_map inherits capacity() from std::vector)
|
||||
template <typename T>
|
||||
struct is_ordered_map
|
||||
{
|
||||
using one = char;
|
||||
|
||||
struct two
|
||||
{
|
||||
char x[2]; // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||
};
|
||||
|
||||
template <typename C> static one test( decltype(&C::capacity) ) ;
|
||||
template <typename C> static two test(...);
|
||||
|
||||
enum { value = sizeof(test<T>(nullptr)) == sizeof(char) }; // NOLINT(cppcoreguidelines-pro-type-vararg,hicpp-vararg)
|
||||
};
|
||||
|
||||
// to avoid useless casts (see https://github.com/nlohmann/json/issues/2893#issuecomment-889152324)
|
||||
template < typename T, typename U, enable_if_t < !std::is_same<T, U>::value, int > = 0 >
|
||||
T conditional_static_cast(U value)
|
||||
{
|
||||
return static_cast<T>(value);
|
||||
}
|
||||
|
||||
template<typename T, typename U, enable_if_t<std::is_same<T, U>::value, int> = 0>
|
||||
T conditional_static_cast(U value)
|
||||
{
|
||||
return value;
|
||||
}
|
||||
|
||||
template<typename... Types>
|
||||
using all_integral = conjunction<std::is_integral<Types>...>;
|
||||
|
||||
template<typename... Types>
|
||||
using all_signed = conjunction<std::is_signed<Types>...>;
|
||||
|
||||
template<typename... Types>
|
||||
using all_unsigned = conjunction<std::is_unsigned<Types>...>;
|
||||
|
||||
// there's a disjunction trait in another PR; replace when merged
|
||||
template<typename... Types>
|
||||
using same_sign = std::integral_constant < bool,
|
||||
all_signed<Types...>::value || all_unsigned<Types...>::value >;
|
||||
|
||||
template<typename OfType, typename T>
|
||||
using never_out_of_range = std::integral_constant < bool,
|
||||
(std::is_signed<OfType>::value && (sizeof(T) < sizeof(OfType)))
|
||||
|| (same_sign<OfType, T>::value && sizeof(OfType) == sizeof(T)) >;
|
||||
|
||||
template<typename OfType, typename T,
|
||||
bool OfTypeSigned = std::is_signed<OfType>::value,
|
||||
bool TSigned = std::is_signed<T>::value>
|
||||
struct value_in_range_of_impl2;
|
||||
|
||||
template<typename OfType, typename T>
|
||||
struct value_in_range_of_impl2<OfType, T, false, false>
|
||||
{
|
||||
static constexpr bool test(T val)
|
||||
{
|
||||
using CommonType = typename std::common_type<OfType, T>::type;
|
||||
return static_cast<CommonType>(val) <= static_cast<CommonType>((std::numeric_limits<OfType>::max)());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename OfType, typename T>
|
||||
struct value_in_range_of_impl2<OfType, T, true, false>
|
||||
{
|
||||
static constexpr bool test(T val)
|
||||
{
|
||||
using CommonType = typename std::common_type<OfType, T>::type;
|
||||
return static_cast<CommonType>(val) <= static_cast<CommonType>((std::numeric_limits<OfType>::max)());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename OfType, typename T>
|
||||
struct value_in_range_of_impl2<OfType, T, false, true>
|
||||
{
|
||||
static constexpr bool test(T val)
|
||||
{
|
||||
using CommonType = typename std::common_type<OfType, T>::type;
|
||||
return val >= 0 && static_cast<CommonType>(val) <= static_cast<CommonType>((std::numeric_limits<OfType>::max)());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename OfType, typename T>
|
||||
struct value_in_range_of_impl2<OfType, T, true, true>
|
||||
{
|
||||
static constexpr bool test(T val)
|
||||
{
|
||||
using CommonType = typename std::common_type<OfType, T>::type;
|
||||
return static_cast<CommonType>(val) >= static_cast<CommonType>((std::numeric_limits<OfType>::min)())
|
||||
&& static_cast<CommonType>(val) <= static_cast<CommonType>((std::numeric_limits<OfType>::max)());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename OfType, typename T,
|
||||
bool NeverOutOfRange = never_out_of_range<OfType, T>::value,
|
||||
typename = detail::enable_if_t<all_integral<OfType, T>::value>>
|
||||
struct value_in_range_of_impl1;
|
||||
|
||||
template<typename OfType, typename T>
|
||||
struct value_in_range_of_impl1<OfType, T, false>
|
||||
{
|
||||
static constexpr bool test(T val)
|
||||
{
|
||||
return value_in_range_of_impl2<OfType, T>::test(val);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename OfType, typename T>
|
||||
struct value_in_range_of_impl1<OfType, T, true>
|
||||
{
|
||||
static constexpr bool test(T /*val*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename OfType, typename T>
|
||||
inline constexpr bool value_in_range_of(T val)
|
||||
{
|
||||
return value_in_range_of_impl1<OfType, T>::test(val);
|
||||
}
|
||||
|
||||
template<bool Value>
|
||||
using bool_constant = std::integral_constant<bool, Value>;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// is_c_string
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace impl
|
||||
{
|
||||
|
||||
template<typename T>
|
||||
inline constexpr bool is_c_string()
|
||||
{
|
||||
using TUnExt = typename std::remove_extent<T>::type;
|
||||
using TUnCVExt = typename std::remove_cv<TUnExt>::type;
|
||||
using TUnPtr = typename std::remove_pointer<T>::type;
|
||||
using TUnCVPtr = typename std::remove_cv<TUnPtr>::type;
|
||||
return
|
||||
(std::is_array<T>::value && std::is_same<TUnCVExt, char>::value)
|
||||
|| (std::is_pointer<T>::value && std::is_same<TUnCVPtr, char>::value);
|
||||
}
|
||||
|
||||
} // namespace impl
|
||||
|
||||
// checks whether T is a [cv] char */[cv] char[] C string
|
||||
template<typename T>
|
||||
struct is_c_string : bool_constant<impl::is_c_string<T>()> {};
|
||||
|
||||
template<typename T>
|
||||
using is_c_string_uncvref = is_c_string<uncvref_t<T>>;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// is_transparent
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace impl
|
||||
{
|
||||
|
||||
template<typename T>
|
||||
inline constexpr bool is_transparent()
|
||||
{
|
||||
return is_detected<detect_is_transparent, T>::value;
|
||||
}
|
||||
|
||||
} // namespace impl
|
||||
|
||||
// checks whether T has a member named is_transparent
|
||||
template<typename T>
|
||||
struct is_transparent : bool_constant<impl::is_transparent<T>()> {};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
24
sample/lib/json/include/nlohmann/detail/meta/void_t.hpp
Normal file
24
sample/lib/json/include/nlohmann/detail/meta/void_t.hpp
Normal file
@@ -0,0 +1,24 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
template<typename ...Ts> struct make_void
|
||||
{
|
||||
using type = void;
|
||||
};
|
||||
template<typename ...Ts> using void_t = typename make_void<Ts...>::type;
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user