Compare commits
4 Commits
cuda
...
cb949ac7e5
Author | SHA1 | Date | |
---|---|---|---|
cb949ac7e5
|
|||
2c297ea15d
|
|||
4e4b6e67f4
|
|||
82847774ee
|
@@ -1,6 +1,6 @@
|
|||||||
FROM mcr.microsoft.com/devcontainers/cpp:ubuntu22.04
|
FROM mcr.microsoft.com/devcontainers/cpp:ubuntu22.04
|
||||||
|
|
||||||
ARG REINSTALL_CMAKE_VERSION_FROM_SOURCE="3.22.2"
|
ARG REINSTALL_CMAKE_VERSION_FROM_SOURCE="3.29.3"
|
||||||
|
|
||||||
# Optionally install the cmake for vcpkg
|
# Optionally install the cmake for vcpkg
|
||||||
COPY ./reinstall-cmake.sh /tmp/
|
COPY ./reinstall-cmake.sh /tmp/
|
||||||
@@ -23,7 +23,7 @@ RUN add-apt-repository ppa:ubuntu-toolchain-r/test
|
|||||||
RUN apt-get update
|
RUN apt-get update
|
||||||
|
|
||||||
# Install GCC 13.1
|
# Install GCC 13.1
|
||||||
RUN apt-get install -y gcc-13 g++-13
|
RUN apt-get install -y gcc-13 g++-13 doxygen
|
||||||
|
|
||||||
# Install lcov 2.1
|
# Install lcov 2.1
|
||||||
RUN wget --quiet https://github.com/linux-test-project/lcov/releases/download/v2.1/lcov-2.1.tar.gz && \
|
RUN wget --quiet https://github.com/linux-test-project/lcov/releases/download/v2.1/lcov-2.1.tar.gz && \
|
||||||
|
@@ -51,15 +51,10 @@ endif (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
|||||||
|
|
||||||
|
|
||||||
if (CODE_COVERAGE)
|
if (CODE_COVERAGE)
|
||||||
get_property(LANGUAGES GLOBAL PROPERTY ENABLED_LANGUAGES)
|
|
||||||
message("ALL LANGUAGES: ${LANGUAGES}")
|
|
||||||
foreach(LANG ${LANGUAGES})
|
|
||||||
message("${LANG} compiler is \"${CMAKE_${LANG}_COMPILER_ID}\"")
|
|
||||||
endforeach()
|
|
||||||
enable_testing()
|
enable_testing()
|
||||||
#include(CodeCoverage)
|
include(CodeCoverage)
|
||||||
#MESSAGE("Code coverage enabled")
|
MESSAGE("Code coverage enabled")
|
||||||
#SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||||
endif (CODE_COVERAGE)
|
endif (CODE_COVERAGE)
|
||||||
|
|
||||||
if (ENABLE_CLANG_TIDY)
|
if (ENABLE_CLANG_TIDY)
|
||||||
@@ -98,6 +93,7 @@ install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DES
|
|||||||
# Documentation
|
# Documentation
|
||||||
# -------------
|
# -------------
|
||||||
find_package(Doxygen)
|
find_package(Doxygen)
|
||||||
|
if (Doxygen_FOUND)
|
||||||
set(DOC_DIR ${CMAKE_CURRENT_SOURCE_DIR}/docs)
|
set(DOC_DIR ${CMAKE_CURRENT_SOURCE_DIR}/docs)
|
||||||
set(doxyfile_in ${DOC_DIR}/Doxyfile.in)
|
set(doxyfile_in ${DOC_DIR}/Doxyfile.in)
|
||||||
set(doxyfile ${DOC_DIR}/Doxyfile)
|
set(doxyfile ${DOC_DIR}/Doxyfile)
|
||||||
@@ -105,3 +101,6 @@ configure_file(${doxyfile_in} ${doxyfile} @ONLY)
|
|||||||
doxygen_add_docs(doxygen
|
doxygen_add_docs(doxygen
|
||||||
WORKING_DIRECTORY ${DOC_DIR}
|
WORKING_DIRECTORY ${DOC_DIR}
|
||||||
CONFIG_FILE ${doxyfile})
|
CONFIG_FILE ${doxyfile})
|
||||||
|
else (Doxygen_FOUND)
|
||||||
|
MESSAGE("* Doxygen not found")
|
||||||
|
endif (Doxygen_FOUND)
|
||||||
|
6
Makefile
6
Makefile
@@ -58,10 +58,10 @@ diagrams: ## Create an UML class diagram & depnendency of the project (diagrams/
|
|||||||
@$(dot) -Tsvg $(f_debug)/dependency.dot.BayesNet -o $(f_diagrams)/dependency.svg
|
@$(dot) -Tsvg $(f_debug)/dependency.dot.BayesNet -o $(f_diagrams)/dependency.svg
|
||||||
|
|
||||||
buildd: ## Build the debug targets
|
buildd: ## Build the debug targets
|
||||||
cmake --build $(f_debug) -t $(app_targets) --parallel
|
cmake --build $(f_debug) -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||||
|
|
||||||
buildr: ## Build the release targets
|
buildr: ## Build the release targets
|
||||||
cmake --build $(f_release) -t $(app_targets) --parallel
|
cmake --build $(f_release) -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||||
|
|
||||||
clean: ## Clean the tests info
|
clean: ## Clean the tests info
|
||||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||||
@@ -105,7 +105,7 @@ opt = ""
|
|||||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||||
@echo ">>> Running BayesNet tests...";
|
@echo ">>> Running BayesNet tests...";
|
||||||
@$(MAKE) clean
|
@$(MAKE) clean
|
||||||
@cmake --build $(f_debug) -t $(test_targets) --parallel
|
@cmake --build $(f_debug) -t $(test_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||||
@for t in $(test_targets); do \
|
@for t in $(test_targets); do \
|
||||||
echo ">>> Running $$t...";\
|
echo ">>> Running $$t...";\
|
||||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||||
|
@@ -9,15 +9,7 @@
|
|||||||
#include "Classifier.h"
|
#include "Classifier.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false), device(torch::kCPU)
|
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||||
{
|
|
||||||
if (torch::cuda::is_available()) {
|
|
||||||
device = torch::Device(torch::kCUDA);
|
|
||||||
std::cout << "CUDA is available! Using GPU." << std::endl;
|
|
||||||
} else {
|
|
||||||
std::cout << "CUDA is not available. Using CPU." << std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
@@ -39,7 +31,7 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
try {
|
try {
|
||||||
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
|
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
|
||||||
dataset = torch::cat({ dataset, yresized }, 0).to(device);
|
dataset = torch::cat({ dataset, yresized }, 0);
|
||||||
}
|
}
|
||||||
catch (const std::exception& e) {
|
catch (const std::exception& e) {
|
||||||
std::stringstream oss;
|
std::stringstream oss;
|
||||||
@@ -58,7 +50,7 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
dataset = X;
|
dataset = X;
|
||||||
buildDataset(y);
|
buildDataset(y);
|
||||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble).to(device);
|
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||||
return build(features, className, states, weights, smoothing);
|
return build(features, className, states, weights, smoothing);
|
||||||
}
|
}
|
||||||
// X is nxm where n is the number of features and m the number of samples
|
// X is nxm where n is the number of features and m the number of samples
|
||||||
|
@@ -38,7 +38,6 @@ namespace bayesnet {
|
|||||||
std::string dump_cpt() const override;
|
std::string dump_cpt() const override;
|
||||||
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
||||||
protected:
|
protected:
|
||||||
torch::Device device;
|
|
||||||
bool fitted;
|
bool fitted;
|
||||||
unsigned int m, n; // m: number of samples, n: number of features
|
unsigned int m, n; // m: number of samples, n: number of features
|
||||||
Network model;
|
Network model;
|
||||||
|
@@ -97,7 +97,7 @@ namespace bayesnet {
|
|||||||
dimensions.push_back(numStates);
|
dimensions.push_back(numStates);
|
||||||
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||||
// Create a tensor of zeros with the dimensions of the CPT
|
// Create a tensor of zeros with the dimensions of the CPT
|
||||||
cpTable = torch::zeros(dimensions, torch::kDouble).to(device) + smoothing;
|
cpTable = torch::zeros(dimensions, torch::kDouble) + smoothing;
|
||||||
// Fill table with counts
|
// Fill table with counts
|
||||||
auto pos = find(features.begin(), features.end(), name);
|
auto pos = find(features.begin(), features.end(), name);
|
||||||
if (pos == features.end()) {
|
if (pos == features.end()) {
|
||||||
|
2
lib/json
2
lib/json
Submodule lib/json updated: 960b763ecd...b36f4c477c
2
lib/mdlp
2
lib/mdlp
Submodule lib/mdlp updated: 2db60e007d...2d8b949abd
@@ -7,7 +7,6 @@
|
|||||||
#include <ArffFiles.hpp>
|
#include <ArffFiles.hpp>
|
||||||
#include <CPPFImdlp.h>
|
#include <CPPFImdlp.h>
|
||||||
#include <bayesnet/ensembles/BoostAODE.h>
|
#include <bayesnet/ensembles/BoostAODE.h>
|
||||||
#include <torch/torch.h>
|
|
||||||
|
|
||||||
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
||||||
{
|
{
|
||||||
@@ -20,8 +19,7 @@ std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, m
|
|||||||
}
|
}
|
||||||
return Xd;
|
return Xd;
|
||||||
}
|
}
|
||||||
|
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last)
|
||||||
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last, torch::Device device)
|
|
||||||
{
|
{
|
||||||
auto handler = ArffFiles();
|
auto handler = ArffFiles();
|
||||||
handler.load(name, class_last);
|
handler.load(name, class_last);
|
||||||
@@ -36,16 +34,16 @@ tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<s
|
|||||||
torch::Tensor Xd;
|
torch::Tensor Xd;
|
||||||
auto states = map<std::string, std::vector<int>>();
|
auto states = map<std::string, std::vector<int>>();
|
||||||
auto Xr = discretizeDataset(X, y);
|
auto Xr = discretizeDataset(X, y);
|
||||||
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32).to(device);
|
Xd = torch::zeros({ static_cast<int>(Xr.size()), static_cast<int>(Xr[0].size()) }, torch::kInt32);
|
||||||
for (int i = 0; i < features.size(); ++i) {
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
states[features[i]] = std::vector<int>(*max_element(Xr[i].begin(), Xr[i].end()) + 1);
|
||||||
auto item = states.at(features[i]);
|
auto item = states.at(features[i]);
|
||||||
iota(begin(item), end(item), 0);
|
iota(begin(item), end(item), 0);
|
||||||
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32).to(device));
|
Xd.index_put_({ i, "..." }, torch::tensor(Xr[i], torch::kInt32));
|
||||||
}
|
}
|
||||||
states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
|
states[className] = std::vector<int>(*max_element(y.begin(), y.end()) + 1);
|
||||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||||
return { Xd, torch::tensor(y, torch::kInt32).to(device), features, className, states };
|
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char* argv[])
|
int main(int argc, char* argv[])
|
||||||
@@ -55,22 +53,16 @@ int main(int argc, char* argv[])
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
std::string file_name = argv[1];
|
std::string file_name = argv[1];
|
||||||
torch::Device device(torch::kCPU);
|
|
||||||
if (torch::cuda::is_available()) {
|
|
||||||
device = torch::Device(torch::kCUDA);
|
|
||||||
std::cout << "CUDA is available! Using GPU." << std::endl;
|
|
||||||
} else {
|
|
||||||
std::cout << "CUDA is not available. Using CPU." << std::endl;
|
|
||||||
}
|
|
||||||
torch::Tensor X, y;
|
torch::Tensor X, y;
|
||||||
std::vector<std::string> features;
|
std::vector<std::string> features;
|
||||||
std::string className;
|
std::string className;
|
||||||
map<std::string, std::vector<int>> states;
|
map<std::string, std::vector<int>> states;
|
||||||
auto clf = bayesnet::BoostAODE(false); // false for not using voting in predict
|
auto clf = bayesnet::BoostAODE(false); // false for not using voting in predict
|
||||||
std::cout << "Library version: " << clf.getVersion() << std::endl;
|
std::cout << "Library version: " << clf.getVersion() << std::endl;
|
||||||
tie(X, y, features, className, states) = loadDataset(file_name, true, device);
|
tie(X, y, features, className, states) = loadDataset(file_name, true);
|
||||||
clf.fit(X, y, features, className, states, bayesnet::Smoothing_t::LAPLACE);
|
clf.fit(X, y, features, className, states, bayesnet::Smoothing_t::LAPLACE);
|
||||||
auto score = clf.score(X, y);
|
auto score = clf.score(X, y);
|
||||||
std::cout << "File: " << file_name << " Model: BoostAODE score: " << score << std::endl;
|
std::cout << "File: " << file_name << " Model: BoostAODE score: " << score << std::endl;
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Submodule tests/lib/Files updated: a5316928d4...a4329f5f9d
Submodule tests/lib/catch2 updated: 4e8d92bf02...fa43b77429
Reference in New Issue
Block a user