Compare commits

...

36 Commits

Author SHA1 Message Date
182b52a887 Add states as result in Proposal methods 2023-08-12 16:16:17 +02:00
405887f833 Solved Ld poor results 2023-08-12 11:49:18 +02:00
3a85481a5a Redo pass states to Network Fit needed in crossval
fix mistake in headerline (report)
2023-08-12 11:10:53 +02:00
0ad5505c16 Spodeld working with poor accuracy 2023-08-10 02:06:18 +02:00
323444b74a const functions 2023-08-08 01:53:41 +02:00
ef1bffcac3 Fixed normal classifiers 2023-08-07 13:50:11 +02:00
06db8f51ce Refactor library and models to lighten data stored
Refactro Ensemble to inherit from Classifier insted of BaseClassifier
2023-08-07 12:49:37 +02:00
e74565ba01 update clang-tidy 2023-08-07 00:44:12 +02:00
2da0fb5d8f Merge branch 'main' into TANNew 2023-08-06 11:40:10 +02:00
14ea51648a Complete AODELd 2023-08-06 11:31:44 +02:00
9e94f4e140 Rename suffix of proposal classifier to Ld 2023-08-05 23:23:31 +02:00
1d0fd629c9 Add SPODENew to models 2023-08-05 23:11:36 +02:00
506ef34c6f Add report output to main 2023-08-05 20:29:05 +02:00
7f45495837 Refactor New classifiers to extract predict 2023-08-05 18:39:48 +02:00
1a09ccca4c Add KDBNew fix computeCPT error 2023-08-05 14:40:42 +02:00
a1c6ab18f3 TANNew restructured with poor results 2023-08-04 20:11:22 +02:00
64ac8fb4f2 TANNew as a TAN variant working 2023-08-04 19:42:18 +02:00
c568ba111d Add Proposal class 2023-08-04 13:05:12 +02:00
45c1d052ac Compile TANNew with poor accuracy 2023-08-04 01:35:45 +02:00
eb1cec58a3 Complete nxm 2023-08-03 20:22:33 +02:00
f520b40016 Almost complete proposal in TANNew 2023-08-02 02:21:55 +02:00
cdfb45d2cb Add topological order to Network 2023-08-02 00:56:52 +02:00
f63a9a64f9 Update Makefile to add Release & Debug build 2023-08-01 19:02:37 +02:00
285f0938a6 Update mdlp library 2023-08-01 17:33:01 +02:00
8f8f9773ce Make TANNew same as TAN with local discretization 2023-08-01 13:17:12 +02:00
a9ba21560d Add environment platform to experiment result 2023-08-01 10:55:53 +02:00
a18fbe5594 Begin implementation 2023-07-31 19:53:55 +02:00
adf650d257 Max threading 2023-07-31 18:49:18 +02:00
43bb017d5d Fix problem with tensors way 2023-07-30 19:00:02 +02:00
53697648e7 Merge branch 'aftermath' into main 2023-07-30 01:05:31 +02:00
4ebc9c2013 Complete fixing the linter warnings 2023-07-30 00:16:58 +02:00
b882569169 Fix some more lint warnings 2023-07-30 00:04:18 +02:00
8b2ed26ab7 Fix some lint warnings 2023-07-29 20:37:51 +02:00
5efa3beaee Fix some lint warnings 2023-07-29 20:20:38 +02:00
9a0449c12d Fix some lint warnings 2023-07-29 19:38:42 +02:00
7222119dfb Refactor experiment crossvalidation 2023-07-29 19:00:39 +02:00
59 changed files with 1172 additions and 583 deletions

View File

@@ -13,5 +13,4 @@ HeaderFilterRegex: 'src/*'
AnalyzeTemporaryDtors: false AnalyzeTemporaryDtors: false
WarningsAsErrors: '' WarningsAsErrors: ''
FormatStyle: file FormatStyle: file
FormatStyleOptions: ''
... ...

18
.vscode/launch.json vendored
View File

@@ -10,12 +10,13 @@
"-d", "-d",
"iris", "iris",
"-m", "-m",
"TAN", "KDB",
"-s",
"271",
"-p", "-p",
"../../data/", "/Users/rmontanana/Code/discretizbench/datasets/",
"--tensors"
], ],
"cwd": "${workspaceFolder}/build/sample/", //"cwd": "${workspaceFolder}/build/sample/",
}, },
{ {
"type": "lldb", "type": "lldb",
@@ -24,17 +25,14 @@
"program": "${workspaceFolder}/build/src/Platform/main", "program": "${workspaceFolder}/build/src/Platform/main",
"args": [ "args": [
"-m", "-m",
"TAN", "SPODELd",
"-p", "-p",
"/Users/rmontanana/Code/discretizbench/datasets", "/Users/rmontanana/Code/discretizbench/datasets",
"--discretize",
"--stratified", "--stratified",
"--title",
"Debug test",
"-d", "-d",
"ionosphere" "iris"
], ],
"cwd": "${workspaceFolder}/build/src/Platform", "cwd": "/Users/rmontanana/Code/discretizbench",
}, },
{ {
"name": "Build & debug active file", "name": "Build & debug active file",

View File

@@ -7,6 +7,10 @@ project(BayesNet
LANGUAGES CXX LANGUAGES CXX
) )
if (CODE_COVERAGE AND NOT ENABLE_TESTING)
MESSAGE(FATAL_ERROR "Code coverage requires testing enabled")
endif (CODE_COVERAGE AND NOT ENABLE_TESTING)
find_package(Torch REQUIRED) find_package(Torch REQUIRED)
if (POLICY CMP0135) if (POLICY CMP0135)
@@ -24,24 +28,31 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
# Options # Options
# ------- # -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF) option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" ON) option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" ON) option(CODE_COVERAGE "Collect coverage from test library" OFF)
set(CMAKE_BUILD_TYPE "Debug")
# CMakes modules # CMakes modules
# -------------- # --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH}) set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
include(AddGitSubmodule) include(AddGitSubmodule)
include(StaticAnalyzers) # clang-tidy if (CODE_COVERAGE)
enable_testing()
include(CodeCoverage) include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
if (ENABLE_CLANG_TIDY)
include(StaticAnalyzers) # clang-tidy
endif (ENABLE_CLANG_TIDY)
# External libraries - dependencies of BayesNet # External libraries - dependencies of BayesNet
# --------------------------------------------- # ---------------------------------------------
# include(FetchContent) # include(FetchContent)
add_git_submodule("lib/mdlp") add_git_submodule("lib/mdlp")
add_git_submodule("lib/catch2")
add_git_submodule("lib/argparse") add_git_submodule("lib/argparse")
add_git_submodule("lib/json") add_git_submodule("lib/json")
@@ -59,18 +70,11 @@ file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform
# Testing # Testing
# ------- # -------
if (ENABLE_TESTING) if (ENABLE_TESTING)
MESSAGE("Testing enabled") MESSAGE("Testing enabled")
enable_testing() add_git_submodule("lib/catch2")
if (CODE_COVERAGE)
#include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
#find_package(Catch2 3 REQUIRED)
include(CTest) include(CTest)
#include(Catch)
add_subdirectory(tests) add_subdirectory(tests)
endif (ENABLE_TESTING) endif (ENABLE_TESTING)

View File

@@ -14,14 +14,28 @@ setup: ## Install dependencies for tests and coverage
dependency: ## Create a dependency graph diagram of the project (build/dependency.png) dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the project build: ## Build the main and BayesNetSample
@echo ">>> Building BayesNet ..."; cmake --build build -t main -t BayesNetSample -j 32
clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ...";
find . -name "*.gcda" -print0 | xargs -0 rm
@echo ">>> Done";
debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi @if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build; @mkdir build;
cmake -S . -B build; \ cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
cd build; \ cmake --build build -j 32;
make; \ @echo ">>> Done";
release: ## Build a Release version of the project
@echo ">>> Building Release BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
cmake --build build -t main -t BayesNetSample -j 32;
@echo ">>> Done"; @echo ">>> Done";
test: ## Run tests test: ## Run tests

12
TAN_iris.dot Normal file
View File

@@ -0,0 +1,12 @@
digraph BayesNet {
label=<BayesNet >
fontsize=30
fontcolor=blue
labelloc=t
layout=circo
class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ]
class -> sepallength class -> sepalwidth class -> petallength class -> petalwidth petallength [shape=circle]
petallength -> sepallength petalwidth [shape=circle]
sepallength [shape=circle]
sepallength -> sepalwidth sepalwidth [shape=circle]
sepalwidth -> petalwidth }

View File

@@ -1,5 +1,4 @@
filter = src/ filter = src/
exclude = external/ exclude-directories = build/lib/
exclude = tests/
print-summary = yes print-summary = yes
sort-percentage = yes sort-percentage = yes

View File

@@ -3,5 +3,5 @@ include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files) include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include) include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc) add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}") target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,19 +1,14 @@
#include <iostream> #include <iostream>
#include <torch/torch.h> #include <torch/torch.h>
#include <string> #include <string>
#include <thread>
#include <map> #include <map>
#include <argparse/argparse.hpp> #include <argparse/argparse.hpp>
#include "BaseClassifier.h"
#include "ArffFiles.h" #include "ArffFiles.h"
#include "Network.h"
#include "BayesMetrics.h" #include "BayesMetrics.h"
#include "CPPFImdlp.h" #include "CPPFImdlp.h"
#include "KDB.h"
#include "SPODE.h"
#include "AODE.h"
#include "TAN.h"
#include "Folding.h" #include "Folding.h"
#include "Models.h"
#include "modelRegister.h"
using namespace std; using namespace std;
@@ -46,7 +41,7 @@ bool file_exists(const std::string& name)
} }
pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y) pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y)
{ {
vector<vector<int>> Xr; vector<vector<int>> Xr; // nxm
vector<int> yr; vector<int> yr;
for (int col = 0; col < X.size(); ++col) { for (int col = 0; col < X.size(); ++col) {
Xr.push_back(vector<int>()); Xr.push_back(vector<int>());
@@ -73,9 +68,8 @@ int main(int argc, char** argv)
{"mfeat-factors", true}, {"mfeat-factors", true},
}; };
auto valid_datasets = vector<string>(); auto valid_datasets = vector<string>();
for (auto dataset : datasets) { transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
valid_datasets.push_back(dataset.first); [](const pair<string, bool>& pair) { return pair.first; });
}
argparse::ArgumentParser program("BayesNetSample"); argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset") program.add_argument("-d", "--dataset")
.help("Dataset file name") .help("Dataset file name")
@@ -91,16 +85,17 @@ int main(int argc, char** argv)
.default_value(string{ PATH } .default_value(string{ PATH }
); );
program.add_argument("-m", "--model") program.add_argument("-m", "--model")
.help("Model to use {AODE, KDB, SPODE, TAN}") .help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) { .action([](const std::string& value) {
static const vector<string> choices = { "AODE", "KDB", "SPODE", "TAN" }; static const vector<string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) { if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value; return value;
} }
throw runtime_error("Model must be one of {AODE, KDB, SPODE, TAN}"); throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
} }
); );
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true); program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true); program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true); program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) { program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
@@ -118,7 +113,7 @@ int main(int argc, char** argv)
throw runtime_error("Number of folds must be an integer"); throw runtime_error("Number of folds must be an integer");
}}); }});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>(); program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, stratified, tensors; bool class_last, stratified, tensors, dump_cpt;
string model_name, file_name, path, complete_file_name; string model_name, file_name, path, complete_file_name;
int nFolds, seed; int nFolds, seed;
try { try {
@@ -131,6 +126,7 @@ int main(int argc, char** argv)
tensors = program.get<bool>("tensors"); tensors = program.get<bool>("tensors");
nFolds = program.get<int>("folds"); nFolds = program.get<int>("folds");
seed = program.get<int>("seed"); seed = program.get<int>("seed");
dump_cpt = program.get<bool>("dumpcpt");
class_last = datasets[file_name]; class_last = datasets[file_name];
if (!file_exists(complete_file_name)) { if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist"); throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
@@ -153,9 +149,9 @@ int main(int argc, char** argv)
// Get className & Features // Get className & Features
auto className = handler.getClassName(); auto className = handler.getClassName();
vector<string> features; vector<string> features;
for (auto feature : handler.getAttributes()) { auto attributes = handler.getAttributes();
features.push_back(feature.first); transform(attributes.begin(), attributes.end(), back_inserter(features),
} [](const pair<string, string>& item) { return item.first; });
// Discretize Dataset // Discretize Dataset
auto [Xd, maxes] = discretize(X, y, features); auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1; maxes[className] = *max_element(y.begin(), y.end()) + 1;
@@ -164,68 +160,77 @@ int main(int argc, char** argv)
states[feature] = vector<int>(maxes[feature]); states[feature] = vector<int>(maxes[feature]);
} }
states[className] = vector<int>(maxes[className]); states[className] = vector<int>(maxes[className]);
auto classifiers = map<string, bayesnet::BaseClassifier*>({ auto clf = platform::Models::instance()->create(model_name);
{ "AODE", new bayesnet::AODE() }, { "KDB", new bayesnet::KDB(2) },
{ "SPODE", new bayesnet::SPODE(2) }, { "TAN", new bayesnet::TAN() }
}
);
bayesnet::BaseClassifier* clf = classifiers[model_name];
clf->fit(Xd, y, features, className, states); clf->fit(Xd, y, features, className, states);
auto score = clf->score(Xd, y); if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
auto lines = clf->show(); auto lines = clf->show();
auto graph = clf->graph();
for (auto line : lines) { for (auto line : lines) {
cout << line << endl; cout << line << endl;
} }
cout << "--- Topological Order ---" << endl;
auto order = clf->topological_order();
for (auto name : order) {
cout << name << ", ";
}
cout << "end." << endl;
auto score = clf->score(Xd, y);
cout << "Score: " << score << endl; cout << "Score: " << score << endl;
auto dot_file = model_name + "_" + file_name; // auto graph = clf->graph();
ofstream file(dot_file + ".dot"); // auto dot_file = model_name + "_" + file_name;
file << graph; // ofstream file(dot_file + ".dot");
file.close(); // file << graph;
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl; // file.close();
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl; // cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
string stratified_string = stratified ? " Stratified" : ""; // cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl; // string stratified_string = stratified ? " Stratified" : "";
cout << "==========================================" << endl; // cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32); // cout << "==========================================" << endl;
torch::Tensor yt = torch::tensor(y, torch::kInt32); // torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
for (int i = 0; i < features.size(); ++i) { // torch::Tensor yt = torch::tensor(y, torch::kInt32);
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32)); // for (int i = 0; i < features.size(); ++i) {
} // Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
float total_score = 0, total_score_train = 0, score_train, score_test; // }
Fold* fold; // float total_score = 0, total_score_train = 0, score_train, score_test;
if (stratified) // Fold* fold;
fold = new StratifiedKFold(nFolds, y, seed); // if (stratified)
else // fold = new StratifiedKFold(nFolds, y, seed);
fold = new KFold(nFolds, y.size(), seed); // else
for (auto i = 0; i < nFolds; ++i) { // fold = new KFold(nFolds, y.size(), seed);
auto [train, test] = fold->getFold(i); // for (auto i = 0; i < nFolds; ++i) {
cout << "Fold: " << i + 1 << endl; // auto [train, test] = fold->getFold(i);
if (tensors) { // cout << "Fold: " << i + 1 << endl;
auto ttrain = torch::tensor(train, torch::kInt64); // if (tensors) {
auto ttest = torch::tensor(test, torch::kInt64); // auto ttrain = torch::tensor(train, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain); // auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor ytraint = yt.index({ ttrain }); // torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest); // torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor ytestt = yt.index({ ttest }); // torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
clf->fit(Xtraint, ytraint, features, className, states); // torch::Tensor ytestt = yt.index({ ttest });
score_train = clf->score(Xtraint, ytraint); // clf->fit(Xtraint, ytraint, features, className, states);
score_test = clf->score(Xtestt, ytestt); // auto temp = clf->predict(Xtraint);
} else { // score_train = clf->score(Xtraint, ytraint);
auto [Xtrain, ytrain] = extract_indices(train, Xd, y); // score_test = clf->score(Xtestt, ytestt);
auto [Xtest, ytest] = extract_indices(test, Xd, y); // } else {
clf->fit(Xtrain, ytrain, features, className, states); // auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
score_train = clf->score(Xtrain, ytrain); // auto [Xtest, ytest] = extract_indices(test, Xd, y);
score_test = clf->score(Xtest, ytest); // clf->fit(Xtrain, ytrain, features, className, states);
} // score_train = clf->score(Xtrain, ytrain);
total_score_train += score_train; // score_test = clf->score(Xtest, ytest);
total_score += score_test; // }
cout << "Score Train: " << score_train << endl; // if (dump_cpt) {
cout << "Score Test : " << score_test << endl; // cout << "--- CPT Tables ---" << endl;
cout << "-------------------------------------------------------------------------------" << endl; // clf->dump_cpt();
} // }
cout << "**********************************************************************************" << endl; // total_score_train += score_train;
cout << "Average Score Train: " << total_score_train / nFolds << endl; // total_score += score_test;
cout << "Average Score Test : " << total_score / nFolds << endl; // cout << "Score Train: " << score_train << endl;
return 0; // cout << "Score Test : " << score_test << endl;
// cout << "-------------------------------------------------------------------------------" << endl;
// }
// cout << "**********************************************************************************" << endl;
// cout << "Average Score Train: " << total_score_train / nFolds << endl;
// cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
} }

View File

@@ -2,14 +2,14 @@
namespace bayesnet { namespace bayesnet {
AODE::AODE() : Ensemble() {} AODE::AODE() : Ensemble() {}
void AODE::train() void AODE::buildModel()
{ {
models.clear(); models.clear();
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i)); models.push_back(std::make_unique<SPODE>(i));
} }
} }
vector<string> AODE::graph(string title) vector<string> AODE::graph(const string& title) const
{ {
return Ensemble::graph(title); return Ensemble::graph(title);
} }

View File

@@ -5,11 +5,11 @@
namespace bayesnet { namespace bayesnet {
class AODE : public Ensemble { class AODE : public Ensemble {
protected: protected:
void train() override; void buildModel() override;
public: public:
AODE(); AODE();
virtual ~AODE() {}; virtual ~AODE() {};
vector<string> graph(string title = "AODE") override; vector<string> graph(const string& title = "AODE") const override;
}; };
} }
#endif #endif

40
src/BayesNet/AODELd.cc Normal file
View File

@@ -0,0 +1,40 @@
#include "AODELd.h"
#include "Models.h"
namespace bayesnet {
using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
Ensemble::fit(dataset, features, className, states);
return *this;
}
void AODELd::buildModel()
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODELd>(i));
}
n_models = models.size();
}
void AODELd::trainModel()
{
for (const auto& model : models) {
model->fit(Xf, y, features, className, states);
}
}
vector<string> AODELd::graph(const string& name) const
{
return Ensemble::graph(name);
}
}

21
src/BayesNet/AODELd.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef AODELD_H
#define AODELD_H
#include "Ensemble.h"
#include "Proposal.h"
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
class AODELd : public Ensemble, public Proposal {
protected:
void trainModel() override;
void buildModel() override;
public:
AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
virtual ~AODELd() = default;
vector<string> graph(const string& name = "AODE") const override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !AODELD_H

View File

@@ -5,19 +5,27 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
class BaseClassifier { class BaseClassifier {
protected:
virtual void trainModel() = 0;
public: public:
// X is nxm vector, y is nx1 vector
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0;
vector<int> virtual predict(vector<vector<int>>& X) = 0; vector<int> virtual predict(vector<vector<int>>& X) = 0;
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0; float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0; float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
int virtual getNumberOfNodes() = 0; int virtual getNumberOfNodes()const = 0;
int virtual getNumberOfEdges() = 0; int virtual getNumberOfEdges()const = 0;
int virtual getNumberOfStates() = 0; int virtual getNumberOfStates() const = 0;
vector<string> virtual show() = 0; vector<string> virtual show() const = 0;
vector<string> virtual graph(string title = "") = 0; vector<string> virtual graph(const string& title = "") const = 0;
virtual ~BaseClassifier() = default;
const string inline getVersion() const { return "0.1.0"; }; const string inline getVersion() const { return "0.1.0"; };
vector<string> virtual topological_order() = 0;
void virtual dump_cpt()const = 0;
}; };
} }
#endif #endif

View File

@@ -1,23 +1,25 @@
#include "BayesMetrics.h" #include "BayesMetrics.h"
#include "Mst.h" #include "Mst.h"
namespace bayesnet { namespace bayesnet {
Metrics::Metrics(torch::Tensor& samples, vector<string>& features, string& className, int classNumStates) //samples is nxm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
: samples(samples) : samples(samples)
, features(features) , features(features)
, className(className) , className(className)
, classNumStates(classNumStates) , classNumStates(classNumStates)
{ {
} }
//samples is nxm vector used to fit the model
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates) Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
: features(features) : features(features)
, className(className) , className(className)
, classNumStates(classNumStates) , classNumStates(classNumStates)
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
{ {
samples = torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32);
for (int i = 0; i < vsamples.size(); ++i) { for (int i = 0; i < vsamples.size(); ++i) {
samples.index_put_({ "...", i }, torch::tensor(vsamples[i], torch::kInt32)); samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
} }
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt32)); samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
} }
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source) vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
{ {
@@ -39,17 +41,17 @@ namespace bayesnet {
// Compute class prior // Compute class prior
auto margin = torch::zeros({ classNumStates }); auto margin = torch::zeros({ classNumStates });
for (int value = 0; value < classNumStates; ++value) { for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ "...", -1 }) == value; auto mask = samples.index({ -1, "..." }) == value;
margin[value] = mask.sum().item<float>() / samples.sizes()[0]; margin[value] = mask.sum().item<float>() / samples.size(1);
} }
for (auto [first, second] : combinations) { for (auto [first, second] : combinations) {
int index_first = find(features.begin(), features.end(), first) - features.begin(); int index_first = find(features.begin(), features.end(), first) - features.begin();
int index_second = find(features.begin(), features.end(), second) - features.begin(); int index_second = find(features.begin(), features.end(), second) - features.begin();
double accumulated = 0; double accumulated = 0;
for (int value = 0; value < classNumStates; ++value) { for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ "...", -1 }) == value; auto mask = samples.index({ -1, "..." }) == value;
auto first_dataset = samples.index({ mask, index_first }); auto first_dataset = samples.index({ index_first, mask });
auto second_dataset = samples.index({ mask, index_second }); auto second_dataset = samples.index({ index_second, mask });
auto mi = mutualInformation(first_dataset, second_dataset); auto mi = mutualInformation(first_dataset, second_dataset);
auto pb = margin[value].item<float>(); auto pb = margin[value].item<float>();
accumulated += pb * mi; accumulated += pb * mi;
@@ -67,13 +69,14 @@ namespace bayesnet {
} }
return matrix; return matrix;
} }
// To use in Python
vector<float> Metrics::conditionalEdgeWeights() vector<float> Metrics::conditionalEdgeWeights()
{ {
auto matrix = conditionalEdge(); auto matrix = conditionalEdge();
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel()); std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v; return v;
} }
double Metrics::entropy(torch::Tensor& feature) double Metrics::entropy(const torch::Tensor& feature)
{ {
torch::Tensor counts = feature.bincount(); torch::Tensor counts = feature.bincount();
int totalWeight = counts.sum().item<int>(); int totalWeight = counts.sum().item<int>();
@@ -83,7 +86,7 @@ namespace bayesnet {
return entropy.nansum().item<double>(); return entropy.nansum().item<double>();
} }
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x) // H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(torch::Tensor& firstFeature, torch::Tensor& secondFeature) double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
{ {
int numSamples = firstFeature.sizes()[0]; int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount(); torch::Tensor featureCounts = secondFeature.bincount();
@@ -112,7 +115,7 @@ namespace bayesnet {
return entropyValue; return entropyValue;
} }
// I(X;Y) = H(Y) - H(Y|X) // I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(torch::Tensor& firstFeature, torch::Tensor& secondFeature) double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
{ {
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature); return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
} }
@@ -121,9 +124,8 @@ namespace bayesnet {
and the indices of the weights as nodes of this square matrix using and the indices of the weights as nodes of this square matrix using
Kruskal algorithm Kruskal algorithm
*/ */
vector<pair<int, int>> Metrics::maximumSpanningTree(vector<string> features, Tensor& weights, int root) vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
{ {
auto result = vector<pair<int, int>>();
auto mst = MST(features, weights, root); auto mst = MST(features, weights, root);
return mst.maximumSpanningTree(); return mst.maximumSpanningTree();
} }

View File

@@ -8,21 +8,21 @@ namespace bayesnet {
using namespace torch; using namespace torch;
class Metrics { class Metrics {
private: private:
Tensor samples; Tensor samples; // nxm tensor used to fit the model
vector<string> features; vector<string> features;
string className; string className;
int classNumStates; int classNumStates = 0;
public: public:
Metrics() = default; Metrics() = default;
Metrics(Tensor&, vector<string>&, string&, int); Metrics(const Tensor&, const vector<string>&, const string&, const int);
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int); Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
double entropy(Tensor&); double entropy(const Tensor&);
double conditionalEntropy(Tensor&, Tensor&); double conditionalEntropy(const Tensor&, const Tensor&);
double mutualInformation(Tensor&, Tensor&); double mutualInformation(const Tensor&, const Tensor&);
vector<float> conditionalEdgeWeights(); vector<float> conditionalEdgeWeights(); // To use in Python
Tensor conditionalEdge(); Tensor conditionalEdge();
vector<pair<string, string>> doCombinations(const vector<string>&); vector<pair<string, string>> doCombinations(const vector<string>&);
vector<pair<int, int>> maximumSpanningTree(vector<string> features, Tensor& weights, int root); vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
}; };
} }
#endif #endif

View File

@@ -1,2 +1,7 @@
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc Mst.cc) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
target_link_libraries(BayesNet "${TORCH_LIBRARIES}") include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}")

View File

@@ -7,54 +7,65 @@ namespace bayesnet {
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {} Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
{ {
dataset = torch::cat({ X, y.view({y.size(0), 1}) }, 1);
this->features = features; this->features = features;
this->className = className; this->className = className;
this->states = states; this->states = states;
m = dataset.size(1);
n = dataset.size(0) - 1;
checkFitParameters(); checkFitParameters();
auto n_classes = states[className].size(); auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes); metrics = Metrics(dataset, features, className, n_classes);
train(); model.initialize();
if (Xv == vector<vector<int>>()) { buildModel();
// fit with tensors trainModel();
model.fit(X, y, features, className);
} else {
// fit with vectors
model.fit(Xv, yv, features, className);
}
fitted = true; fitted = true;
return *this; return *this;
} }
void Classifier::buildDataset(Tensor& ytmp)
{
try {
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
dataset = torch::cat({ dataset, yresized }, 0);
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
cout << "X dimensions: " << dataset.sizes() << "\n";
cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
}
}
void Classifier::trainModel()
{
model.fit(dataset, features, className, states);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{ {
this->X = torch::transpose(X, 0, 1); dataset = X;
this->y = y; buildDataset(y);
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
return build(features, className, states); return build(features, className, states);
} }
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{ {
this->X = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, kInt32); dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
Xv = X;
for (int i = 0; i < X.size(); ++i) { for (int i = 0; i < X.size(); ++i) {
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt32)); dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
} }
this->y = torch::tensor(y, kInt32); auto ytmp = torch::tensor(y, kInt32);
yv = y; buildDataset(ytmp);
return build(features, className, states);
}
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->dataset = dataset;
return build(features, className, states); return build(features, className, states);
} }
void Classifier::checkFitParameters() void Classifier::checkFitParameters()
{ {
auto sizes = X.sizes();
m = sizes[0];
n = sizes[1];
if (m != y.size(0)) {
throw invalid_argument("X and y must have the same number of samples");
}
if (n != features.size()) { if (n != features.size()) {
throw invalid_argument("X and features must have the same number of features"); throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
} }
if (states.find(className) == states.end()) { if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states"); throw invalid_argument("className not found in states");
@@ -65,23 +76,12 @@ namespace bayesnet {
} }
} }
} }
Tensor Classifier::predict(Tensor& X) Tensor Classifier::predict(Tensor& X)
{ {
if (!fitted) { if (!fitted) {
throw logic_error("Classifier has not been fitted"); throw logic_error("Classifier has not been fitted");
} }
auto m_ = X.size(0); return model.predict(X);
auto n_ = X.size(1);
//auto Xt = torch::transpose(X, 0, 1);
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
auto temp = X.index({ "...", i });
Xd[i] = vector<int>(temp.data_ptr<int>(), temp.data_ptr<int>() + temp.numel());
}
auto yp = model.predict(Xd);
auto ypred = torch::tensor(yp, torch::kInt32);
return ypred;
} }
vector<int> Classifier::predict(vector<vector<int>>& X) vector<int> Classifier::predict(vector<vector<int>>& X)
{ {
@@ -102,8 +102,7 @@ namespace bayesnet {
if (!fitted) { if (!fitted) {
throw logic_error("Classifier has not been fitted"); throw logic_error("Classifier has not been fitted");
} }
auto Xt = torch::transpose(X, 0, 1); Tensor y_pred = predict(X);
Tensor y_pred = predict(Xt);
return (y_pred == y).sum().item<float>() / y.size(0); return (y_pred == y).sum().item<float>() / y.size(0);
} }
float Classifier::score(vector<vector<int>>& X, vector<int>& y) float Classifier::score(vector<vector<int>>& X, vector<int>& y)
@@ -111,38 +110,39 @@ namespace bayesnet {
if (!fitted) { if (!fitted) {
throw logic_error("Classifier has not been fitted"); throw logic_error("Classifier has not been fitted");
} }
auto m_ = X[0].size(); return model.score(X, y);
auto n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
} }
return model.score(Xd, y); vector<string> Classifier::show() const
}
vector<string> Classifier::show()
{ {
return model.show(); return model.show();
} }
void Classifier::addNodes() void Classifier::addNodes()
{ {
auto test = model.getEdges();
// Add all nodes to the network // Add all nodes to the network
for (auto feature : features) { for (const auto& feature : features) {
model.addNode(feature, states[feature].size()); model.addNode(feature);
} }
model.addNode(className, states[className].size()); model.addNode(className);
} }
int Classifier::getNumberOfNodes() int Classifier::getNumberOfNodes() const
{ {
// Features does not include class // Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0; return fitted ? model.getFeatures().size() + 1 : 0;
} }
int Classifier::getNumberOfEdges() int Classifier::getNumberOfEdges() const
{ {
return fitted ? model.getEdges().size() : 0; return fitted ? model.getNumEdges() : 0;
} }
int Classifier::getNumberOfStates() int Classifier::getNumberOfStates() const
{ {
return fitted ? model.getStates() : 0; return fitted ? model.getStates() : 0;
} }
vector<string> Classifier::topological_order()
{
return model.topological_sort();
}
void Classifier::dump_cpt() const
{
model.dump_cpt();
}
} }

View File

@@ -10,36 +10,37 @@ using namespace torch;
namespace bayesnet { namespace bayesnet {
class Classifier : public BaseClassifier { class Classifier : public BaseClassifier {
private: private:
bool fitted; void buildDataset(torch::Tensor& y);
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states); Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected: protected:
bool fitted;
Network model; Network model;
int m, n; // m: number of samples, n: number of features int m, n; // m: number of samples, n: number of features
Tensor X; Tensor dataset; // (n+1)xm tensor
vector<vector<int>> Xv;
Tensor y;
vector<int> yv;
Tensor dataset;
Metrics metrics; Metrics metrics;
vector<string> features; vector<string> features;
string className; string className;
map<string, vector<int>> states; map<string, vector<int>> states;
void checkFitParameters(); void checkFitParameters();
virtual void train() = 0; virtual void buildModel() = 0;
void trainModel() override;
public: public:
Classifier(Network model); Classifier(Network model);
virtual ~Classifier() = default; virtual ~Classifier() = default;
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
void addNodes(); void addNodes();
int getNumberOfNodes() override; int getNumberOfNodes() const override;
int getNumberOfEdges() override; int getNumberOfEdges() const override;
int getNumberOfStates() override; int getNumberOfStates() const override;
Tensor predict(Tensor& X); Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override; vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override; float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override; float score(vector<vector<int>>& X, vector<int>& y) override;
vector<string> show() override; vector<string> show() const override;
vector<string> topological_order() override;
void dump_cpt() const override;
}; };
} }
#endif #endif

View File

@@ -3,69 +3,52 @@
namespace bayesnet { namespace bayesnet {
using namespace torch; using namespace torch;
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()), fitted(false) {} Ensemble::Ensemble() : Classifier(Network()) {}
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
void Ensemble::trainModel()
{ {
dataset = cat({ X, y.view({y.size(0), 1}) }, 1);
this->features = features;
this->className = className;
this->states = states;
auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes);
// Build models
train();
// Train models
n_models = models.size(); n_models = models.size();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
models[i]->fit(Xv, yv, features, className, states); // fit with vectors
models[i]->fit(dataset, features, className, states);
} }
fitted = true;
return *this;
}
Ensemble& Ensemble::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = X;
this->y = y;
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
return build(features, className, states);
}
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, kInt32);
Xv = X;
for (int i = 0; i < X.size(); ++i) {
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt32));
}
this->y = torch::tensor(y, kInt32);
yv = y;
return build(features, className, states);
}
Tensor Ensemble::predict(Tensor& X)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
Tensor y_pred = torch::zeros({ X.size(0), n_models }, kInt32);
for (auto i = 0; i < n_models; ++i) {
y_pred.index_put_({ "...", i }, models[i]->predict(X));
}
return torch::tensor(voting(y_pred));
} }
vector<int> Ensemble::voting(Tensor& y_pred) vector<int> Ensemble::voting(Tensor& y_pred)
{ {
auto y_pred_ = y_pred.accessor<int, 2>(); auto y_pred_ = y_pred.accessor<int, 2>();
vector<int> y_pred_final; vector<int> y_pred_final;
for (int i = 0; i < y_pred.size(0); ++i) { for (int i = 0; i < y_pred.size(0); ++i) {
vector<float> votes(states[className].size(), 0); vector<float> votes(y_pred.size(1), 0);
for (int j = 0; j < y_pred.size(1); ++j) { for (int j = 0; j < y_pred.size(1); ++j) {
votes[y_pred_[i][j]] += 1; votes[y_pred_[i][j]] += 1;
} }
// argsort in descending order
auto indices = argsort(votes); auto indices = argsort(votes);
y_pred_final.push_back(indices[0]); y_pred_final.push_back(indices[0]);
} }
return y_pred_final; return y_pred_final;
} }
Tensor Ensemble::predict(Tensor& X)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
//Create a threadpool
auto threads{ vector<thread>() };
mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(thread([&, i]() {
auto ypredict = models[i]->predict(X);
lock_guard<mutex> lock(mtx);
y_pred.index_put_({ "...", i }, ypredict);
}));
}
for (auto& thread : threads) {
thread.join();
}
return torch::tensor(voting(y_pred));
}
vector<int> Ensemble::predict(vector<vector<int>>& X) vector<int> Ensemble::predict(vector<vector<int>>& X)
{ {
if (!fitted) { if (!fitted) {
@@ -110,9 +93,8 @@ namespace bayesnet {
} }
} }
return (double)correct / y_pred.size(); return (double)correct / y_pred.size();
} }
vector<string> Ensemble::show() vector<string> Ensemble::show() const
{ {
auto result = vector<string>(); auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -121,7 +103,7 @@ namespace bayesnet {
} }
return result; return result;
} }
vector<string> Ensemble::graph(string title) vector<string> Ensemble::graph(const string& title) const
{ {
auto result = vector<string>(); auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -130,7 +112,7 @@ namespace bayesnet {
} }
return result; return result;
} }
int Ensemble::getNumberOfNodes() int Ensemble::getNumberOfNodes() const
{ {
int nodes = 0; int nodes = 0;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -138,7 +120,7 @@ namespace bayesnet {
} }
return nodes; return nodes;
} }
int Ensemble::getNumberOfEdges() int Ensemble::getNumberOfEdges() const
{ {
int edges = 0; int edges = 0;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -146,12 +128,12 @@ namespace bayesnet {
} }
return edges; return edges;
} }
int Ensemble::getNumberOfStates() int Ensemble::getNumberOfStates() const
{ {
int states = 0; int nstates = 0;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
states += models[i]->getNumberOfStates(); nstates += models[i]->getNumberOfStates();
} }
return states; return nstates;
} }
} }

View File

@@ -8,39 +8,33 @@ using namespace std;
using namespace torch; using namespace torch;
namespace bayesnet { namespace bayesnet {
class Ensemble : public BaseClassifier { class Ensemble : public Classifier {
private: private:
bool fitted;
long n_models;
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states); Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected: protected:
unsigned n_models;
vector<unique_ptr<Classifier>> models; vector<unique_ptr<Classifier>> models;
int m, n; // m: number of samples, n: number of features void trainModel() override;
Tensor X;
vector<vector<int>> Xv;
Tensor y;
vector<int> yv;
Tensor dataset;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void virtual train() = 0;
vector<int> voting(Tensor& y_pred); vector<int> voting(Tensor& y_pred);
public: public:
Ensemble(); Ensemble();
virtual ~Ensemble() = default; virtual ~Ensemble() = default;
Ensemble& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Tensor predict(Tensor& X) override;
Ensemble& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Tensor predict(Tensor& X);
vector<int> predict(vector<vector<int>>& X) override; vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override; float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override; float score(vector<vector<int>>& X, vector<int>& y) override;
int getNumberOfNodes() override; int getNumberOfNodes() const override;
int getNumberOfEdges() override; int getNumberOfEdges() const override;
int getNumberOfStates() override; int getNumberOfStates() const override;
vector<string> show() override; vector<string> show() const override;
vector<string> graph(string title) override; vector<string> graph(const string& title) const override;
vector<string> topological_order() override
{
return vector<string>();
}
void dump_cpt() const override
{
}
}; };
} }
#endif #endif

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
using namespace torch; using namespace torch;
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {} KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::train() void KDB::buildModel()
{ {
/* /*
1. For each feature Xi, compute mutual information, I(X;C), 1. For each feature Xi, compute mutual information, I(X;C),
@@ -27,9 +27,11 @@ namespace bayesnet {
*/ */
// 1. For each feature Xi, compute mutual information, I(X;C), // 1. For each feature Xi, compute mutual information, I(X;C),
// where C is the class. // where C is the class.
addNodes();
const Tensor& y = dataset.index({ -1, "..." });
vector <float> mi; vector <float> mi;
for (auto i = 0; i < features.size(); i++) { for (auto i = 0; i < features.size(); i++) {
Tensor firstFeature = X.index({ "...", i }); Tensor firstFeature = dataset.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y)); mi.push_back(metrics.mutualInformation(firstFeature, y));
} }
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each // 2. Compute class conditional mutual information I(Xi;XjIC), f or each
@@ -38,14 +40,12 @@ namespace bayesnet {
vector<int> S; vector<int> S;
// 4. Let the DAG network being constructed, BN, begin with a single // 4. Let the DAG network being constructed, BN, begin with a single
// class node, C. // class node, C.
model.addNode(className, states[className].size());
// 5. Repeat until S includes all domain features // 5. Repeat until S includes all domain features
// 5.1. Select feature Xmax which is not in S and has the largest value // 5.1. Select feature Xmax which is not in S and has the largest value
// I(Xmax;C). // I(Xmax;C).
auto order = argsort(mi); auto order = argsort(mi);
for (auto idx : order) { for (auto idx : order) {
// 5.2. Add a node to BN representing Xmax. // 5.2. Add a node to BN representing Xmax.
model.addNode(features[idx], states[features[idx]].size());
// 5.3. Add an arc from C to Xmax in BN. // 5.3. Add an arc from C to Xmax in BN.
model.addEdge(className, features[idx]); model.addEdge(className, features[idx]);
// 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with // 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with
@@ -79,11 +79,12 @@ namespace bayesnet {
exit_cond = num == n_edges || candidates.size(0) == 0; exit_cond = num == n_edges || candidates.size(0) == 0;
} }
} }
vector<string> KDB::graph(string title) vector<string> KDB::graph(const string& title) const
{ {
string header{ title };
if (title == "KDB") { if (title == "KDB") {
title += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")"; header += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
} }
return model.graph(title); return model.graph(header);
} }
} }

View File

@@ -11,11 +11,11 @@ namespace bayesnet {
float theta; float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights); void add_m_edges(int idx, vector<int>& S, Tensor& weights);
protected: protected:
void train() override; void buildModel() override;
public: public:
KDB(int k, float theta = 0.03); explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {}; virtual ~KDB() {};
vector<string> graph(string name = "KDB") override; vector<string> graph(const string& name = "KDB") const override;
}; };
} }
#endif #endif

30
src/BayesNet/KDBLd.cc Normal file
View File

@@ -0,0 +1,30 @@
#include "KDBLd.h"
namespace bayesnet {
using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
KDB::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor KDBLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return KDB::predict(Xt);
}
vector<string> KDBLd::graph(const string& name) const
{
return KDB::graph(name);
}
}

19
src/BayesNet/KDBLd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef KDBLD_H
#define KDBLD_H
#include "KDB.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class KDBLd : public KDB, public Proposal {
private:
public:
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !KDBLD_H

View File

@@ -7,9 +7,8 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
Graph::Graph(int V) Graph::Graph(int V) : V(V), parent(vector<int>(V))
{ {
parent = vector<int>(V);
for (int i = 0; i < V; i++) for (int i = 0; i < V; i++)
parent[i] = i; parent[i] = i;
G.clear(); G.clear();
@@ -34,10 +33,10 @@ namespace bayesnet {
} }
void Graph::kruskal_algorithm() void Graph::kruskal_algorithm()
{ {
int i, uSt, vEd;
// sort the edges ordered on decreasing weight // sort the edges ordered on decreasing weight
sort(G.begin(), G.end(), [](auto& left, auto& right) {return left.first > right.first;}); sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
for (i = 0; i < G.size(); i++) { for (int i = 0; i < G.size(); i++) {
int uSt, vEd;
uSt = find_set(G[i].second.first); uSt = find_set(G[i].second.first);
vEd = find_set(G[i].second.second); vEd = find_set(G[i].second.second);
if (uSt != vEd) { if (uSt != vEd) {
@@ -95,7 +94,7 @@ namespace bayesnet {
return result; return result;
} }
MST::MST(vector<string>& features, Tensor& weights, int root) : features(features), weights(weights), root(root) {} MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
vector<pair<int, int>> MST::maximumSpanningTree() vector<pair<int, int>> MST::maximumSpanningTree()
{ {
auto num_features = features.size(); auto num_features = features.size();

View File

@@ -10,10 +10,10 @@ namespace bayesnet {
private: private:
Tensor weights; Tensor weights;
vector<string> features; vector<string> features;
int root; int root = 0;
public: public:
MST() = default; MST() = default;
MST(vector<string>& features, Tensor& weights, int root); MST(const vector<string>& features, const Tensor& weights, const int root);
vector<pair<int, int>> maximumSpanningTree(); vector<pair<int, int>> maximumSpanningTree();
}; };
class Graph { class Graph {
@@ -23,7 +23,7 @@ namespace bayesnet {
vector <pair<float, pair<int, int>>> T; // vector for mst vector <pair<float, pair<int, int>>> T; // vector for mst
vector<int> parent; vector<int> parent;
public: public:
Graph(int V); explicit Graph(int V);
void addEdge(int u, int v, float wt); void addEdge(int u, int v, float wt);
int find_set(int i); int find_set(int i);
void union_set(int u, int v); void union_set(int u, int v);

View File

@@ -3,15 +3,25 @@
#include "Network.h" #include "Network.h"
#include "bayesnetUtils.h" #include "bayesnetUtils.h"
namespace bayesnet { namespace bayesnet {
Network::Network() : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(0.8), fitted(false) {} Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {}
Network::Network(float maxT) : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {} Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {} Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.getmaxThreads()), fitted(other.fitted) Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
getmaxThreads()), fitted(other.fitted)
{ {
for (auto& pair : other.nodes) { for (const auto& pair : other.nodes) {
nodes[pair.first] = std::make_unique<Node>(*pair.second); nodes[pair.first] = std::make_unique<Node>(*pair.second);
} }
} }
void Network::initialize()
{
features = vector<string>();
className = "";
classNumStates = 0;
fitted = false;
nodes.clear();
samples = torch::Tensor();
}
float Network::getmaxThreads() float Network::getmaxThreads()
{ {
return maxThreads; return maxThreads;
@@ -20,28 +30,28 @@ namespace bayesnet {
{ {
return samples; return samples;
} }
void Network::addNode(string name, int numStates) void Network::addNode(const string& name)
{ {
if (name == "") {
throw invalid_argument("Node name cannot be empty");
}
if (nodes.find(name) != nodes.end()) {
return;
}
if (find(features.begin(), features.end(), name) == features.end()) { if (find(features.begin(), features.end(), name) == features.end()) {
features.push_back(name); features.push_back(name);
} }
if (nodes.find(name) != nodes.end()) { nodes[name] = std::make_unique<Node>(name);
// if node exists update its number of states and remove parents, children and CPT
nodes[name]->clear();
nodes[name]->setNumStates(numStates);
return;
} }
nodes[name] = std::make_unique<Node>(name, numStates); vector<string> Network::getFeatures() const
}
vector<string> Network::getFeatures()
{ {
return features; return features;
} }
int Network::getClassNumStates() int Network::getClassNumStates() const
{ {
return classNumStates; return classNumStates;
} }
int Network::getStates() int Network::getStates() const
{ {
int result = 0; int result = 0;
for (auto& node : nodes) { for (auto& node : nodes) {
@@ -49,7 +59,7 @@ namespace bayesnet {
} }
return result; return result;
} }
string Network::getClassName() string Network::getClassName() const
{ {
return className; return className;
} }
@@ -69,7 +79,7 @@ namespace bayesnet {
recStack.erase(nodeId); // remove node from recursion stack before function ends recStack.erase(nodeId); // remove node from recursion stack before function ends
return false; return false;
} }
void Network::addEdge(const string parent, const string child) void Network::addEdge(const string& parent, const string& child)
{ {
if (nodes.find(parent) == nodes.end()) { if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist"); throw invalid_argument("Parent node " + parent + " does not exist");
@@ -94,45 +104,72 @@ namespace bayesnet {
{ {
return nodes; return nodes;
} }
void Network::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& featureNames, const string& className) void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{ {
features = featureNames; if (n_samples != n_samples_y) {
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
}
if (n_features != featureNames.size()) {
throw invalid_argument("X and features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(featureNames.size()) + ")");
}
if (n_features != features.size() - 1) {
throw invalid_argument("X and local features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(features.size() - 1) + ")");
}
if (find(features.begin(), features.end(), className) == features.end()) {
throw invalid_argument("className not found in Network::features");
}
for (auto& feature : featureNames) {
if (find(features.begin(), features.end(), feature) == features.end()) {
throw invalid_argument("Feature " + feature + " not found in Network::features");
}
if (states.find(feature) == states.end()) {
throw invalid_argument("Feature " + feature + " not found in states");
}
}
}
void Network::setStates(const map<string, vector<int>>& states)
{
// Set states to every Node in the network
for (int i = 0; i < features.size(); ++i) {
nodes[features[i]]->setNumStates(states.at(features[i]).size());
}
classNumStates = nodes[className]->getNumStates();
}
// X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states);
this->className = className; this->className = className;
dataset.clear(); Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
// Specific part samples = torch::cat({ X , ytmp }, 0);
classNumStates = torch::max(y).item<int>() + 1;
samples = torch::cat({ X, y.view({ y.size(0), 1 }) }, 1);
for (int i = 0; i < featureNames.size(); ++i) { for (int i = 0; i < featureNames.size(); ++i) {
auto column = torch::flatten(X.index({ "...", i })); auto row_feature = X.index({ i, "..." });
auto k = vector<int>();
for (auto i = 0; i < X.size(0); ++i) {
k.push_back(column[i].item<int>());
} }
dataset[featureNames[i]] = k; completeFit(states);
} }
dataset[className] = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0)); void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
completeFit();
}
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className)
{ {
features = featureNames; checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states);
this->className = className; this->className = className;
dataset.clear(); this->samples = samples;
// Specific part completeFit(states);
classNumStates = *max_element(labels.begin(), labels.end()) + 1;
// Build dataset & tensor of samples
samples = torch::zeros({ static_cast<int>(input_data[0].size()), static_cast<int>(input_data.size() + 1) }, torch::kInt32);
for (int i = 0; i < featureNames.size(); ++i) {
dataset[featureNames[i]] = input_data[i];
samples.index_put_({ "...", i }, torch::tensor(input_data[i], torch::kInt32));
} }
dataset[className] = labels; // input_data comes in nxm, where n is the number of features and m the number of samples
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt32)); void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
completeFit();
}
void Network::completeFit()
{ {
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states);
this->className = className;
// Build tensor of samples (nxm) (n+1 because of the class)
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
for (int i = 0; i < featureNames.size(); ++i) {
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
}
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
completeFit(states);
}
void Network::completeFit(const map<string, vector<int>>& states)
{
setStates(states);
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads); int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
if (maxThreadsRunning < 1) { if (maxThreadsRunning < 1) {
maxThreadsRunning = 1; maxThreadsRunning = 1;
@@ -145,9 +182,6 @@ namespace bayesnet {
while (nextNodeIndex < nodes.size()) { while (nextNodeIndex < nodes.size()) {
unique_lock<mutex> lock(mtx); unique_lock<mutex> lock(mtx);
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; }); cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
if (nextNodeIndex >= nodes.size()) {
break; // No more work remaining
}
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() { threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
while (true) { while (true) {
unique_lock<mutex> lock(mtx); unique_lock<mutex> lock(mtx);
@@ -157,7 +191,7 @@ namespace bayesnet {
auto& pair = *std::next(nodes.begin(), nextNodeIndex); auto& pair = *std::next(nodes.begin(), nextNodeIndex);
++nextNodeIndex; ++nextNodeIndex;
lock.unlock(); lock.unlock();
pair.second->computeCPT(dataset, laplaceSmoothing); pair.second->computeCPT(samples, features, laplaceSmoothing);
lock.lock(); lock.lock();
nodes[pair.first] = std::move(pair.second); nodes[pair.first] = std::move(pair.second);
lock.unlock(); lock.unlock();
@@ -173,7 +207,39 @@ namespace bayesnet {
} }
fitted = true; fitted = true;
} }
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict()");
}
torch::Tensor result;
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
for (int i = 0; i < samples.size(1); ++i) {
const Tensor sample = samples.index({ "...", i });
auto psample = predict_sample(sample);
auto temp = torch::tensor(psample, torch::kFloat64);
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
result.index_put_({ i, "..." }, temp);
}
if (proba)
return result;
else
return result.argmax(1);
}
// Return mxn tensor of probabilities
Tensor Network::predict_proba(const Tensor& samples)
{
return predict_tensor(samples, true);
}
// Return mxn tensor of probabilities
Tensor Network::predict(const Tensor& samples)
{
return predict_tensor(samples, false);
}
// Return mx1 vector of predictions
// tsamples is nxm vector of samples
vector<int> Network::predict(const vector<vector<int>>& tsamples) vector<int> Network::predict(const vector<vector<int>>& tsamples)
{ {
if (!fitted) { if (!fitted) {
@@ -194,6 +260,7 @@ namespace bayesnet {
} }
return predictions; return predictions;
} }
// Return mxn vector of probabilities
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples) vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
{ {
if (!fitted) { if (!fitted) {
@@ -221,12 +288,13 @@ namespace bayesnet {
} }
return (double)correct / y_pred.size(); return (double)correct / y_pred.size();
} }
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const vector<int>& sample) vector<double> Network::predict_sample(const vector<int>& sample)
{ {
// Ensure the sample size is equal to the number of features // Ensure the sample size is equal to the number of features
if (sample.size() != features.size()) { if (sample.size() != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size()) + throw invalid_argument("Sample size (" + to_string(sample.size()) +
") does not match the number of features (" + to_string(features.size()) + ")"); ") does not match the number of features (" + to_string(features.size() - 1) + ")");
} }
map<string, int> evidence; map<string, int> evidence;
for (int i = 0; i < sample.size(); ++i) { for (int i = 0; i < sample.size(); ++i) {
@@ -234,6 +302,20 @@ namespace bayesnet {
} }
return exactInference(evidence); return exactInference(evidence);
} }
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const Tensor& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size(0) != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size(0)) +
") does not match the number of features (" + to_string(features.size() - 1) + ")");
}
map<string, int> evidence;
for (int i = 0; i < sample.size(0); ++i) {
evidence[features[i]] = sample[i].item<int>();
}
return exactInference(evidence);
}
double Network::computeFactor(map<string, int>& completeEvidence) double Network::computeFactor(map<string, int>& completeEvidence)
{ {
double result = 1.0; double result = 1.0;
@@ -259,15 +341,12 @@ namespace bayesnet {
for (auto& thread : threads) { for (auto& thread : threads) {
thread.join(); thread.join();
} }
// Normalize result // Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0); double sum = accumulate(result.begin(), result.end(), 0.0);
for (double& value : result) { transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
value /= sum;
}
return result; return result;
} }
vector<string> Network::show() vector<string> Network::show() const
{ {
vector<string> result; vector<string> result;
// Draw the network // Draw the network
@@ -280,7 +359,7 @@ namespace bayesnet {
} }
return result; return result;
} }
vector<string> Network::graph(string title) vector<string> Network::graph(const string& title) const
{ {
auto output = vector<string>(); auto output = vector<string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet "; auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
@@ -294,7 +373,7 @@ namespace bayesnet {
output.push_back("}\n"); output.push_back("}\n");
return output; return output;
} }
vector<pair<string, string>> Network::getEdges() vector<pair<string, string>> Network::getEdges() const
{ {
auto edges = vector<pair<string, string>>(); auto edges = vector<pair<string, string>>();
for (const auto& node : nodes) { for (const auto& node : nodes) {
@@ -306,4 +385,52 @@ namespace bayesnet {
} }
return edges; return edges;
} }
int Network::getNumEdges() const
{
return getEdges().size();
}
vector<string> Network::topological_sort()
{
/* Check if al the fathers of every node are before the node */
auto result = features;
result.erase(remove(result.begin(), result.end(), className), result.end());
bool ending{ false };
int idx = 0;
while (!ending) {
ending = true;
for (auto feature : features) {
auto fathers = nodes[feature]->getParents();
for (const auto& father : fathers) {
auto fatherName = father->getName();
if (fatherName == className) {
continue;
}
// Check if father is placed before the actual feature
auto it = find(result.begin(), result.end(), fatherName);
if (it != result.end()) {
auto it2 = find(result.begin(), result.end(), feature);
if (it2 != result.end()) {
if (distance(it, it2) < 0) {
// if it is not, insert it before the feature
result.erase(remove(result.begin(), result.end(), fatherName), result.end());
result.insert(it2, fatherName);
ending = false;
}
} else {
throw logic_error("Error in topological sort because of node " + feature + " is not in result");
}
} else {
throw logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
}
}
}
}
return result;
}
void Network::dump_cpt() const
{
for (auto& node : nodes) {
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
}
}
} }

View File

@@ -8,47 +8,51 @@ namespace bayesnet {
class Network { class Network {
private: private:
map<string, unique_ptr<Node>> nodes; map<string, unique_ptr<Node>> nodes;
map<string, vector<int>> dataset;
bool fitted; bool fitted;
float maxThreads; float maxThreads = 0.95;
int classNumStates; int classNumStates;
vector<string> features; vector<string> features; // Including classname
string className; string className;
int laplaceSmoothing; int laplaceSmoothing = 1;
torch::Tensor samples; torch::Tensor samples; // nxm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&); bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
vector<double> predict_sample(const vector<int>&); vector<double> predict_sample(const vector<int>&);
vector<double> predict_sample(const torch::Tensor&);
vector<double> exactInference(map<string, int>&); vector<double> exactInference(map<string, int>&);
double computeFactor(map<string, int>&); double computeFactor(map<string, int>&);
double mutual_info(torch::Tensor&, torch::Tensor&); void completeFit(const map<string, vector<int>>&);
double entropy(torch::Tensor&); void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>&);
double conditionalEntropy(torch::Tensor&, torch::Tensor&); void setStates(const map<string, vector<int>>&);
double mutualInformation(torch::Tensor&, torch::Tensor&);
void completeFit();
public: public:
Network(); Network();
Network(float, int); explicit Network(float, int);
Network(float); explicit Network(float);
Network(Network&); explicit Network(Network&);
torch::Tensor& getSamples(); torch::Tensor& getSamples();
float getmaxThreads(); float getmaxThreads();
void addNode(string, int); void addNode(const string&);
void addEdge(const string, const string); void addEdge(const string&, const string&);
map<string, std::unique_ptr<Node>>& getNodes(); map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures(); vector<string> getFeatures() const;
int getStates(); int getStates() const;
vector<pair<string, string>> getEdges(); vector<pair<string, string>> getEdges() const;
int getClassNumStates(); int getNumEdges() const;
string getClassName(); int getClassNumStates() const;
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&); string getClassName() const;
void fit(torch::Tensor&, torch::Tensor&, const vector<string>&, const string&); void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const map<string, vector<int>>&);
vector<int> predict(const vector<vector<int>>&); void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
//Computes the conditional edge weight of variable index u and v conditioned on class_node void fit(const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
torch::Tensor conditionalEdgeWeight(); vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
vector<vector<double>> predict_proba(const vector<vector<int>>&); torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
double score(const vector<vector<int>>&, const vector<int>&); double score(const vector<vector<int>>&, const vector<int>&);
vector<string> show(); vector<string> topological_sort();
vector<string> graph(string title); // Returns a vector of strings representing the graph in graphviz format vector<string> show() const;
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
void initialize();
void dump_cpt() const;
inline string version() { return "0.1.0"; } inline string version() { return "0.1.0"; }
}; };
} }

View File

@@ -2,8 +2,8 @@
namespace bayesnet { namespace bayesnet {
Node::Node(const std::string& name, int numStates) Node::Node(const std::string& name)
: name(name), numStates(numStates), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>()) : name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
{ {
} }
void Node::clear() void Node::clear()
@@ -84,21 +84,31 @@ namespace bayesnet {
} }
return result; return result;
} }
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing) void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing)
{ {
dimensions.clear();
// Get dimensions of the CPT // Get dimensions of the CPT
dimensions.push_back(numStates); dimensions.push_back(numStates);
for (auto father : getParents()) { transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
dimensions.push_back(father->getNumStates());
}
// Create a tensor of zeros with the dimensions of the CPT // Create a tensor of zeros with the dimensions of the CPT
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing; cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts // Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) { auto pos = find(features.begin(), features.end(), name);
if (pos == features.end()) {
throw logic_error("Feature " + name + " not found in dataset");
}
int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates; torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample])); coordinates.push_back(dataset.index({ name_index, n_sample }));
for (auto father : getParents()) { for (auto parent : parents) {
coordinates.push_back(torch::tensor(dataset[father->getName()][n_sample])); pos = find(features.begin(), features.end(), parent->getName());
if (pos == features.end()) {
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
}
int parent_index = pos - features.begin();
coordinates.push_back(dataset.index({ parent_index, n_sample }));
} }
// Increment the count of the corresponding coordinate // Increment the count of the corresponding coordinate
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1); cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
@@ -111,19 +121,15 @@ namespace bayesnet {
torch::List<c10::optional<torch::Tensor>> coordinates; torch::List<c10::optional<torch::Tensor>> coordinates;
// following predetermined order of indices in the cpTable (see Node.h) // following predetermined order of indices in the cpTable (see Node.h)
coordinates.push_back(torch::tensor(evidence[name])); coordinates.push_back(torch::tensor(evidence[name]));
for (auto parent : getParents()) { transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return torch::tensor(evidence[parent->getName()]); });
coordinates.push_back(torch::tensor(evidence[parent->getName()]));
}
return cpTable.index({ coordinates }).item<float>(); return cpTable.index({ coordinates }).item<float>();
} }
vector<string> Node::graph(string className) vector<string> Node::graph(const string& className)
{ {
auto output = vector<string>(); auto output = vector<string>();
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : ""; auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
output.push_back(name + " [shape=circle" + suffix + "] \n"); output.push_back(name + " [shape=circle" + suffix + "] \n");
for (auto& child : children) { transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });
output.push_back(name + " -> " + child->getName());
}
return output; return output;
} }
} }

View File

@@ -16,7 +16,7 @@ namespace bayesnet {
vector<int64_t> dimensions; // dimensions of the cpTable vector<int64_t> dimensions; // dimensions of the cpTable
public: public:
vector<pair<string, string>> combinations(const vector<string>&); vector<pair<string, string>> combinations(const vector<string>&);
Node(const std::string&, int); explicit Node(const string&);
void clear(); void clear();
void addParent(Node*); void addParent(Node*);
void addChild(Node*); void addChild(Node*);
@@ -26,11 +26,11 @@ namespace bayesnet {
vector<Node*>& getParents(); vector<Node*>& getParents();
vector<Node*>& getChildren(); vector<Node*>& getChildren();
torch::Tensor& getCPT(); torch::Tensor& getCPT();
void computeCPT(map<string, vector<int>>&, const int); void computeCPT(const torch::Tensor&, const vector<string>&, const int);
int getNumStates() const; int getNumStates() const;
void setNumStates(int); void setNumStates(int);
unsigned minFill(); unsigned minFill();
vector<string> graph(string clasName); // Returns a vector of strings representing the graph in graphviz format vector<string> graph(const string& clasName); // Returns a vector of strings representing the graph in graphviz format
float getFactorValue(map<string, int>&); float getFactorValue(map<string, int>&);
}; };
} }

109
src/BayesNet/Proposal.cc Normal file
View File

@@ -0,0 +1,109 @@
#include "Proposal.h"
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal()
{
for (auto& [key, value] : discretizers) {
delete value;
}
}
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
{
// order of local discretization is important. no good 0, 1, 2...
// although we rediscretize features after the local discretization of every feature
auto order = model.topological_sort();
auto& nodes = model.getNodes();
map<string, vector<int>> states = oldStates;
vector<int> indicesToReDiscretize;
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
if (nodeParents.size() < 2) continue; // Only has class as parent
upgrade = true;
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
vector<string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents
vector<int> indices;
indices.push_back(-1); // Add class index
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents(Xf.size(1));
for (auto idx : indices) {
for (int i = 0; i < Xf.size(1); ++i) {
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
}
}
auto arff = ArffFiles();
auto yxv = arff.factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
//
//
//
// auto tmp = discretizers[feature]->transform(xvf);
// Xv[index] = tmp;
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
// iota(xStates.begin(), xStates.end(), 0);
// //Update new states of the feature/node
// states[feature] = xStates;
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node
states[pFeatures[index]] = xStates;
}
model.fit(pDataset, pFeatures, pClassName, states);
}
return states;
}
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
{
// Discretize the continuous input data and build pDataset (Classifier::dataset)
int m = Xf.size(1);
int n = Xf.size(0);
map<string, vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, kInt32);
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (auto i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
discretizers[pFeatures[i]] = discretizer;
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates;
pDataset.index_put_({ n, "..." }, y);
return states;
}
torch::Tensor Proposal::prepareX(torch::Tensor& X)
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}
return Xtd;
}
}

29
src/BayesNet/Proposal.h Normal file
View File

@@ -0,0 +1,29 @@
#ifndef PROPOSAL_H
#define PROPOSAL_H
#include <string>
#include <map>
#include <torch/torch.h>
#include "Network.h"
#include "CPPFImdlp.h"
#include "Classifier.h"
namespace bayesnet {
class Proposal {
public:
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
virtual ~Proposal();
protected:
torch::Tensor prepareX(torch::Tensor& X);
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<string, mdlp::CPPFImdlp*> discretizers;
private:
torch::Tensor& pDataset; // (n+1)xm tensor
vector<string>& pFeatures;
string& pClassName;
};
}
#endif

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
SPODE::SPODE(int root) : Classifier(Network()), root(root) {} SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
void SPODE::train() void SPODE::buildModel()
{ {
// 0. Add all nodes to the model // 0. Add all nodes to the model
addNodes(); addNodes();
@@ -17,7 +17,7 @@ namespace bayesnet {
} }
} }
} }
vector<string> SPODE::graph(string name ) vector<string> SPODE::graph(const string& name) const
{ {
return model.graph(name); return model.graph(name);
} }

View File

@@ -7,11 +7,11 @@ namespace bayesnet {
private: private:
int root; int root;
protected: protected:
void train() override; void buildModel() override;
public: public:
SPODE(int root); explicit SPODE(int root);
virtual ~SPODE() {}; virtual ~SPODE() {};
vector<string> graph(string name = "SPODE") override; vector<string> graph(const string& name = "SPODE") const override;
}; };
} }
#endif #endif

47
src/BayesNet/SPODELd.cc Normal file
View File

@@ -0,0 +1,47 @@
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
cout << "Xf " << Xf.sizes() << " dtype: " << Xf.dtype() << endl;
y = dataset.index({ -1, "..." }).clone();
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor SPODELd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return SPODE::predict(Xt);
}
vector<string> SPODELd::graph(const string& name) const
{
return SPODE::graph(name);
}
}

19
src/BayesNet/SPODELd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef SPODELD_H
#define SPODELD_H
#include "SPODE.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class SPODELd : public SPODE, public Proposal {
public:
explicit SPODELd(int root);
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !SPODELD_H

View File

@@ -5,20 +5,20 @@ namespace bayesnet {
TAN::TAN() : Classifier(Network()) {} TAN::TAN() : Classifier(Network()) {}
void TAN::train() void TAN::buildModel()
{ {
// 0. Add all nodes to the model // 0. Add all nodes to the model
addNodes(); addNodes();
// 1. Compute mutual information between each feature and the class and set the root node // 1. Compute mutual information between each feature and the class and set the root node
// as the highest mutual information with the class // as the highest mutual information with the class
auto mi = vector <pair<int, float >>(); auto mi = vector <pair<int, float >>();
Tensor class_dataset = dataset.index({ "...", -1 }); Tensor class_dataset = dataset.index({ -1, "..." });
for (int i = 0; i < static_cast<int>(features.size()); ++i) { for (int i = 0; i < static_cast<int>(features.size()); ++i) {
Tensor feature_dataset = dataset.index({ "...", i }); Tensor feature_dataset = dataset.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset); auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
mi.push_back({ i, mi_value }); mi.push_back({ i, mi_value });
} }
sort(mi.begin(), mi.end(), [](auto& left, auto& right) {return left.second < right.second;}); sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
auto root = mi[mi.size() - 1].first; auto root = mi[mi.size() - 1].first;
// 2. Compute mutual information between each feature and the class // 2. Compute mutual information between each feature and the class
auto weights = metrics.conditionalEdge(); auto weights = metrics.conditionalEdge();
@@ -34,7 +34,7 @@ namespace bayesnet {
model.addEdge(className, feature); model.addEdge(className, feature);
} }
} }
vector<string> TAN::graph(string title) vector<string> TAN::graph(const string& title) const
{ {
return model.graph(title); return model.graph(title);
} }

View File

@@ -7,11 +7,11 @@ namespace bayesnet {
class TAN : public Classifier { class TAN : public Classifier {
private: private:
protected: protected:
void train() override; void buildModel() override;
public: public:
TAN(); TAN();
virtual ~TAN() {}; virtual ~TAN() {};
vector<string> graph(string name = "TAN") override; vector<string> graph(const string& name = "TAN") const override;
}; };
} }
#endif #endif

31
src/BayesNet/TANLd.cc Normal file
View File

@@ -0,0 +1,31 @@
#include "TANLd.h"
namespace bayesnet {
using namespace std;
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
TAN::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor TANLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
vector<string> TANLd::graph(const string& name) const
{
return TAN::graph(name);
}
}

19
src/BayesNet/TANLd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef TANLD_H
#define TANLD_H
#include "TAN.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class TANLd : public TAN, public Proposal {
private:
public:
TANLd();
virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !TANLD_H

View File

@@ -3,6 +3,7 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
using namespace torch; using namespace torch;
// Return the indices in descending order
vector<int> argsort(vector<float>& nums) vector<int> argsort(vector<float>& nums)
{ {
int n = nums.size(); int n = nums.size();

View File

@@ -4,5 +4,5 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include) include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include) include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc) add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}") target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -4,9 +4,9 @@
namespace platform { namespace platform {
void Datasets::load() void Datasets::load()
{ {
string line;
ifstream catalog(path + "/all.txt"); ifstream catalog(path + "/all.txt");
if (catalog.is_open()) { if (catalog.is_open()) {
string line;
while (getline(catalog, line)) { while (getline(catalog, line)) {
vector<string> tokens = split(line, ','); vector<string> tokens = split(line, ',');
string name = tokens[0]; string name = tokens[0];
@@ -21,9 +21,7 @@ namespace platform {
vector<string> Datasets::getNames() vector<string> Datasets::getNames()
{ {
vector<string> result; vector<string> result;
for (auto& d : datasets) { transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
result.push_back(d.first);
}
return result; return result;
} }
vector<string> Datasets::getFeatures(string name) vector<string> Datasets::getFeatures(string name)
@@ -79,27 +77,12 @@ namespace platform {
} }
return datasets[name]->getTensors(); return datasets[name]->getTensors();
} }
bool Datasets::isDataset(string name) bool Datasets::isDataset(const string& name)
{ {
return datasets.find(name) != datasets.end(); return datasets.find(name) != datasets.end();
} }
Dataset::Dataset(Dataset& dataset) Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{ {
path = dataset.path;
name = dataset.name;
className = dataset.className;
n_samples = dataset.n_samples;
n_features = dataset.n_features;
features = dataset.features;
states = dataset.states;
loaded = dataset.loaded;
discretize = dataset.discretize;
X = dataset.X;
y = dataset.y;
Xv = dataset.Xv;
Xd = dataset.Xd;
yv = dataset.yv;
fileType = dataset.fileType;
} }
string Dataset::getName() string Dataset::getName()
{ {
@@ -168,9 +151,9 @@ namespace platform {
} }
void Dataset::load_csv() void Dataset::load_csv()
{ {
string line;
ifstream file(path + "/" + name + ".csv"); ifstream file(path + "/" + name + ".csv");
if (file.is_open()) { if (file.is_open()) {
string line;
getline(file, line); getline(file, line);
vector<string> tokens = split(line, ','); vector<string> tokens = split(line, ',');
features = vector<string>(tokens.begin(), tokens.end() - 1); features = vector<string>(tokens.begin(), tokens.end() - 1);
@@ -208,9 +191,8 @@ namespace platform {
yv = arff.getY(); yv = arff.getY();
// Get className & Features // Get className & Features
className = arff.getClassName(); className = arff.getClassName();
for (auto feature : arff.getAttributes()) { auto attributes = arff.getAttributes();
features.push_back(feature.first); transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
}
} }
void Dataset::load() void Dataset::load()
{ {
@@ -225,9 +207,9 @@ namespace platform {
if (discretize) { if (discretize) {
Xd = discretizeDataset(Xv, yv); Xd = discretizeDataset(Xv, yv);
computeStates(); computeStates();
n_samples = Xd[0].size();
n_features = Xd.size();
} }
n_samples = Xv[0].size();
n_features = Xv.size();
loaded = true; loaded = true;
} }
void Dataset::buildTensors() void Dataset::buildTensors()

View File

@@ -13,7 +13,7 @@ namespace platform {
string name; string name;
fileType_t fileType; fileType_t fileType;
string className; string className;
int n_samples, n_features; int n_samples{ 0 }, n_features{ 0 };
vector<string> features; vector<string> features;
map<string, vector<int>> states; map<string, vector<int>> states;
bool loaded; bool loaded;
@@ -27,8 +27,8 @@ namespace platform {
void load_arff(); void load_arff();
void computeStates(); void computeStates();
public: public:
Dataset(string path, string name, string className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {}; Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
Dataset(Dataset&); explicit Dataset(const Dataset&);
string getName(); string getName();
string getClassName(); string getClassName();
vector<string> getFeatures(); vector<string> getFeatures();
@@ -49,7 +49,7 @@ namespace platform {
bool discretize; bool discretize;
void load(); // Loads the list of datasets void load(); // Loads the list of datasets
public: public:
Datasets(string path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); }; explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
vector<string> getNames(); vector<string> getNames();
vector<string> getFeatures(string name); vector<string> getFeatures(string name);
int getNSamples(string name); int getNSamples(string name);
@@ -58,7 +58,7 @@ namespace platform {
pair<vector<vector<float>>&, vector<int>&> getVectors(string name); pair<vector<vector<float>>&, vector<int>&> getVectors(string name);
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(string name); pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(string name);
pair<torch::Tensor&, torch::Tensor&> getTensors(string name); pair<torch::Tensor&, torch::Tensor&> getTensors(string name);
bool isDataset(string name); bool isDataset(const string& name);
}; };
}; };

View File

@@ -52,9 +52,9 @@ namespace platform {
seeds_str = trim(seeds_str); seeds_str = trim(seeds_str);
seeds_str = seeds_str.substr(1, seeds_str.size() - 2); seeds_str = seeds_str.substr(1, seeds_str.size() - 2);
auto seeds_str_split = split(seeds_str, ','); auto seeds_str_split = split(seeds_str, ',');
for (auto seed_str : seeds_str_split) { transform(seeds_str_split.begin(), seeds_str_split.end(), back_inserter(seeds), [](const std::string& str) {
seeds.push_back(stoi(seed_str)); return stoi(str);
} });
return seeds; return seeds;
} }
}; };

View File

@@ -1,6 +1,7 @@
#include "Experiment.h" #include "Experiment.h"
#include "Datasets.h" #include "Datasets.h"
#include "Models.h" #include "Models.h"
#include "Report.h"
namespace platform { namespace platform {
using json = nlohmann::json; using json = nlohmann::json;
@@ -48,7 +49,7 @@ namespace platform {
result["seeds"] = randomSeeds; result["seeds"] = randomSeeds;
result["duration"] = duration; result["duration"] = duration;
result["results"] = json::array(); result["results"] = json::array();
for (auto& r : results) { for (const auto& r : results) {
json j; json j;
j["dataset"] = r.getDataset(); j["dataset"] = r.getDataset();
j["hyperparameters"] = r.getHyperparameters(); j["hyperparameters"] = r.getHyperparameters();
@@ -78,21 +79,40 @@ namespace platform {
} }
return result; return result;
} }
void Experiment::save(string path) void Experiment::save(const string& path)
{ {
json data = build_json(); json data = build_json();
ofstream file(path + "/" + get_file_name()); ofstream file(path + "/" + get_file_name());
file << data; file << data;
file.close(); file.close();
} }
void Experiment::report()
{
json data = build_json();
Report report(data);
report.show();
}
void Experiment::show() void Experiment::show()
{ {
json data = build_json(); json data = build_json();
cout << data.dump(4) << endl; cout << data.dump(4) << endl;
} }
Result Experiment::cross_validation(const string& path, const string& fileName)
void Experiment::go(vector<string> filesToProcess, const string& path)
{ {
auto datasets = platform::Datasets(path, true, platform::ARFF); cout << "*** Starting experiment: " << title << " ***" << endl;
for (auto fileName : filesToProcess) {
cout << "- " << setw(20) << left << fileName << " " << right << flush;
cross_validation(path, fileName);
cout << endl;
}
}
void Experiment::cross_validation(const string& path, const string& fileName)
{
auto datasets = platform::Datasets(path, discretized, platform::ARFF);
// Get dataset // Get dataset
auto [X, y] = datasets.getTensors(fileName); auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName); auto states = datasets.getStates(fileName);
@@ -102,7 +122,7 @@ namespace platform {
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush; cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
// Prepare Result // Prepare Result
auto result = Result(); auto result = Result();
auto [values, counts] = at::_unique(y);; auto [values, counts] = at::_unique(y);
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0)); result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
int nResults = nfolds * static_cast<int>(randomSeeds.size()); int nResults = nfolds * static_cast<int>(randomSeeds.size());
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64); auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
@@ -158,6 +178,7 @@ namespace platform {
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>()); result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>()); result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>()); result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
return result; result.setDataset(fileName);
addResult(result);
} }
} }

View File

@@ -30,14 +30,14 @@ namespace platform {
class Result { class Result {
private: private:
string dataset, hyperparameters, model_version; string dataset, hyperparameters, model_version;
int samples, features, classes; int samples{ 0 }, features{ 0 }, classes{ 0 };
double score_train, score_test, score_train_std, score_test_std, train_time, train_time_std, test_time, test_time_std; double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
float nodes, leaves, depth; float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
vector<double> scores_train, scores_test, times_train, times_test; vector<double> scores_train, scores_test, times_train, times_test;
public: public:
Result() = default; Result() = default;
Result& setDataset(string dataset) { this->dataset = dataset; return *this; } Result& setDataset(const string& dataset) { this->dataset = dataset; return *this; }
Result& setHyperparameters(string hyperparameters) { this->hyperparameters = hyperparameters; return *this; } Result& setHyperparameters(const string& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
Result& setSamples(int samples) { this->samples = samples; return *this; } Result& setSamples(int samples) { this->samples = samples; return *this; }
Result& setFeatures(int features) { this->features = features; return *this; } Result& setFeatures(int features) { this->features = features; return *this; }
Result& setClasses(int classes) { this->classes = classes; return *this; } Result& setClasses(int classes) { this->classes = classes; return *this; }
@@ -82,21 +82,21 @@ namespace platform {
class Experiment { class Experiment {
private: private:
string title, model, platform, score_name, model_version, language_version, language; string title, model, platform, score_name, model_version, language_version, language;
bool discretized, stratified; bool discretized{ false }, stratified{ false };
vector<Result> results; vector<Result> results;
vector<int> randomSeeds; vector<int> randomSeeds;
int nfolds; int nfolds{ 0 };
float duration; float duration{ 0 };
json build_json(); json build_json();
public: public:
Experiment() = default; Experiment() = default;
Experiment& setTitle(string title) { this->title = title; return *this; } Experiment& setTitle(const string& title) { this->title = title; return *this; }
Experiment& setModel(string model) { this->model = model; return *this; } Experiment& setModel(const string& model) { this->model = model; return *this; }
Experiment& setPlatform(string platform) { this->platform = platform; return *this; } Experiment& setPlatform(const string& platform) { this->platform = platform; return *this; }
Experiment& setScoreName(string score_name) { this->score_name = score_name; return *this; } Experiment& setScoreName(const string& score_name) { this->score_name = score_name; return *this; }
Experiment& setModelVersion(string model_version) { this->model_version = model_version; return *this; } Experiment& setModelVersion(const string& model_version) { this->model_version = model_version; return *this; }
Experiment& setLanguage(string language) { this->language = language; return *this; } Experiment& setLanguage(const string& language) { this->language = language; return *this; }
Experiment& setLanguageVersion(string language_version) { this->language_version = language_version; return *this; } Experiment& setLanguageVersion(const string& language_version) { this->language_version = language_version; return *this; }
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; } Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; }
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; } Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; } Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
@@ -104,9 +104,11 @@ namespace platform {
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; } Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
Experiment& setDuration(float duration) { this->duration = duration; return *this; } Experiment& setDuration(float duration) { this->duration = duration; return *this; }
string get_file_name(); string get_file_name();
void save(string path); void save(const string& path);
Result cross_validation(const string& path, const string& fileName); void cross_validation(const string& path, const string& fileName);
void go(vector<string> filesToProcess, const string& path);
void show(); void show();
void report();
}; };
} }
#endif #endif

View File

@@ -7,9 +7,8 @@ Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
random_seed = default_random_engine(seed == -1 ? rd() : seed); random_seed = default_random_engine(seed == -1 ? rd() : seed);
srand(seed == -1 ? time(0) : seed); srand(seed == -1 ? time(0) : seed);
} }
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed) KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(vector<int>(n))
{ {
indices = vector<int>(n);
iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1 iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
shuffle(indices.begin(), indices.end(), random_seed); shuffle(indices.begin(), indices.end(), random_seed);
} }

View File

@@ -22,7 +22,7 @@ private:
vector<int> indices; vector<int> indices;
public: public:
KFold(int k, int n, int seed = -1); KFold(int k, int n, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold); pair<vector<int>, vector<int>> getFold(int nFold) override;
}; };
class StratifiedKFold : public Fold { class StratifiedKFold : public Fold {
private: private:
@@ -32,6 +32,6 @@ private:
public: public:
StratifiedKFold(int k, const vector<int>& y, int seed = -1); StratifiedKFold(int k, const vector<int>& y, int seed = -1);
StratifiedKFold(int k, torch::Tensor& y, int seed = -1); StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
pair<vector<int>, vector<int>> getFold(int nFold); pair<vector<int>, vector<int>> getFold(int nFold) override;
}; };
#endif #endif

View File

@@ -2,25 +2,6 @@
namespace platform { namespace platform {
using namespace std; using namespace std;
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory // Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
// shared_ptr<bayesnet::BaseClassifier> Models::createInstance(const string& name)
// {
// bayesnet::BaseClassifier* instance = nullptr;
// if (name == "AODE") {
// instance = new bayesnet::AODE();
// } else if (name == "KDB") {
// instance = new bayesnet::KDB(2);
// } else if (name == "SPODE") {
// instance = new bayesnet::SPODE(2);
// } else if (name == "TAN") {
// instance = new bayesnet::TAN();
// } else {
// throw runtime_error("Model " + name + " not found");
// }
// if (instance != nullptr)
// return shared_ptr<bayesnet::BaseClassifier>(instance);
// else
// return nullptr;
// }
Models* Models::factory = nullptr;; Models* Models::factory = nullptr;;
Models* Models::instance() Models* Models::instance()
{ {
@@ -59,7 +40,7 @@ namespace platform {
string Models::toString() string Models::toString()
{ {
string result = ""; string result = "";
for (auto& pair : functionRegistry) { for (const auto& pair : functionRegistry) {
result += pair.first + ", "; result += pair.first + ", ";
} }
return "{" + result.substr(0, result.size() - 2) + "}"; return "{" + result.substr(0, result.size() - 2) + "}";

View File

@@ -6,6 +6,10 @@
#include "TAN.h" #include "TAN.h"
#include "KDB.h" #include "KDB.h"
#include "SPODE.h" #include "SPODE.h"
#include "TANLd.h"
#include "KDBLd.h"
#include "SPODELd.h"
#include "AODELd.h"
namespace platform { namespace platform {
class Models { class Models {
private: private:

67
src/Platform/Report.cc Normal file
View File

@@ -0,0 +1,67 @@
#include "Report.h"
namespace platform {
string headerLine(const string& text)
{
int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n;
return "* " + text + string(n, ' ') + "*\n";
}
string Report::fromVector(const string& key)
{
string result = "";
for (auto& item : data[key]) {
result += to_string(item) + ", ";
}
return "[" + result.substr(0, result.size() - 2) + "]";
}
string fVector(const json& data)
{
string result = "";
for (const auto& item : data) {
result += to_string(item) + ", ";
}
return "[" + result.substr(0, result.size() - 2) + "]";
}
void Report::show()
{
header();
body();
}
void Report::header()
{
cout << string(MAXL, '*') << endl;
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
cout << headerLine(data["title"].get<string>());
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
cout << headerLine("Execution took " + to_string(data["duration"].get<float>()) + " seconds, " + to_string(data["duration"].get<float>() / 3600) + " hours, on " + data["platform"].get<string>());
cout << headerLine("Score is " + data["score_name"].get<string>());
cout << string(MAXL, '*') << endl;
cout << endl;
}
void Report::body()
{
cout << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "============================== ====== ===== === ======= ======= ======= =============== ================= ===============" << endl;
for (const auto& r : data["results"]) {
cout << setw(30) << left << r["dataset"].get<string>() << " ";
cout << setw(6) << right << r["samples"].get<int>() << " ";
cout << setw(5) << right << r["features"].get<int>() << " ";
cout << setw(3) << right << r["classes"].get<int>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
cout << setw(8) << right << setprecision(6) << fixed << r["score_test"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_test_std"].get<double>() << " ";
cout << setw(10) << right << setprecision(6) << fixed << r["test_time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["test_time_std"].get<double>() << " ";
cout << " " << r["hyperparameters"].get<string>();
cout << endl;
cout << string(MAXL, '*') << endl;
cout << headerLine("Train scores: " + fVector(r["scores_train"]));
cout << headerLine("Test scores: " + fVector(r["scores_test"]));
cout << headerLine("Train times: " + fVector(r["times_train"]));
cout << headerLine("Test times: " + fVector(r["times_test"]));
cout << string(MAXL, '*') << endl;
}
}
}

23
src/Platform/Report.h Normal file
View File

@@ -0,0 +1,23 @@
#ifndef REPORT_H
#define REPORT_H
#include <string>
#include <iostream>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
const int MAXL = 121;
namespace platform {
using namespace std;
class Report {
public:
explicit Report(json data_) { data = data_; };
virtual ~Report() = default;
void show();
private:
void header();
void body();
string fromVector(const string& key);
json data;
};
};
#endif

View File

@@ -5,7 +5,7 @@
#include "Datasets.h" #include "Datasets.h"
#include "DotEnv.h" #include "DotEnv.h"
#include "Models.h" #include "Models.h"
#include "modelRegister.h"
using namespace std; using namespace std;
const string PATH_RESULTS = "results"; const string PATH_RESULTS = "results";
@@ -49,22 +49,17 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
}}); }});
auto seed_values = env.getSeeds(); auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values); program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
bool class_last, discretize_dataset, stratified;
int n_folds;
vector<int> seeds;
string model_name, file_name, path, complete_file_name, title;
try { try {
program.parse_args(argc, argv); program.parse_args(argc, argv);
file_name = program.get<string>("dataset"); auto file_name = program.get<string>("dataset");
path = program.get<string>("path"); auto path = program.get<string>("path");
model_name = program.get<string>("model"); auto model_name = program.get<string>("model");
discretize_dataset = program.get<bool>("discretize"); auto discretize_dataset = program.get<bool>("discretize");
stratified = program.get<bool>("stratified"); auto stratified = program.get<bool>("stratified");
n_folds = program.get<int>("folds"); auto n_folds = program.get<int>("folds");
seeds = program.get<vector<int>>("seeds"); auto seeds = program.get<vector<int>>("seeds");
complete_file_name = path + file_name + ".arff"; auto complete_file_name = path + file_name + ".arff";
class_last = false;//datasets[file_name]; auto title = program.get<string>("title");
title = program.get<string>("title");
if (title == "" && file_name == "") { if (title == "" && file_name == "") {
throw runtime_error("title is mandatory if dataset is not provided"); throw runtime_error("title is mandatory if dataset is not provided");
} }
@@ -76,21 +71,9 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
} }
return program; return program;
} }
void registerModels()
{
static platform::Registrar registrarT("TAN",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
static platform::Registrar registrarS("SPODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
static platform::Registrar registrarK("KDB",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
}
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
registerModels();
auto program = manageArguments(argc, argv); auto program = manageArguments(argc, argv);
bool saveResults = false; bool saveResults = false;
auto file_name = program.get<string>("dataset"); auto file_name = program.get<string>("dataset");
@@ -100,7 +83,7 @@ int main(int argc, char** argv)
auto stratified = program.get<bool>("stratified"); auto stratified = program.get<bool>("stratified");
auto n_folds = program.get<int>("folds"); auto n_folds = program.get<int>("folds");
auto seeds = program.get<vector<int>>("seeds"); auto seeds = program.get<vector<int>>("seeds");
vector<string> filesToProcess; vector<string> filesToTest;
auto datasets = platform::Datasets(path, true, platform::ARFF); auto datasets = platform::Datasets(path, true, platform::ARFF);
auto title = program.get<string>("title"); auto title = program.get<string>("title");
if (file_name != "") { if (file_name != "") {
@@ -111,37 +94,30 @@ int main(int argc, char** argv)
if (title == "") { if (title == "") {
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds"; title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
} }
filesToProcess.push_back(file_name); filesToTest.push_back(file_name);
} else { } else {
filesToProcess = platform::Datasets(path, true, platform::ARFF).getNames(); filesToTest = platform::Datasets(path, true, platform::ARFF).getNames();
saveResults = true; saveResults = true;
} }
/* /*
* Begin Processing * Begin Processing
*/ */
auto env = platform::DotEnv();
auto experiment = platform::Experiment(); auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0"); experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform("BayesNet"); experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy"); experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
for (auto seed : seeds) { for (auto seed : seeds) {
experiment.addRandomSeed(seed); experiment.addRandomSeed(seed);
} }
platform::Timer timer; platform::Timer timer;
cout << "*** Starting experiment: " << title << " ***" << endl;
timer.start(); timer.start();
for (auto fileName : filesToProcess) { experiment.go(filesToTest, path);
cout << "- " << setw(20) << left << fileName << " " << right << flush;
auto result = experiment.cross_validation(path, fileName);
result.setDataset(fileName);
experiment.addResult(result);
cout << endl;
}
experiment.setDuration(timer.getDuration()); experiment.setDuration(timer.getDuration());
if (saveResults) if (saveResults)
experiment.save(PATH_RESULTS); experiment.save(PATH_RESULTS);
else else
experiment.show(); experiment.report();
cout << "Done!" << endl; cout << "Done!" << endl;
return 0; return 0;
} }

View File

@@ -0,0 +1,19 @@
#ifndef MODEL_REGISTER_H
#define MODEL_REGISTER_H
static platform::Registrar registrarT("TAN",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
static platform::Registrar registrarTLD("TANLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
static platform::Registrar registrarS("SPODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
static platform::Registrar registrarSLD("SPODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
static platform::Registrar registrarK("KDB",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
static platform::Registrar registrarKLD("KDBLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
static platform::Registrar registrarALD("AODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
#endif

View File

@@ -2,7 +2,7 @@
using namespace torch; using namespace torch;
vector<string> split(string text, char delimiter) vector<string> split(const string& text, char delimiter)
{ {
vector<string> result; vector<string> result;
stringstream ss(text); stringstream ss(text);
@@ -39,7 +39,7 @@ vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::label
return Xd; return Xd;
} }
bool file_exists(const std::string& name) bool file_exists(const string& name)
{ {
if (FILE* file = fopen(name.c_str(), "r")) { if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file); fclose(file);
@@ -49,7 +49,7 @@ bool file_exists(const std::string& name)
} }
} }
tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(string path, string name, bool class_last, bool discretize_dataset) tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset)
{ {
auto handler = ArffFiles(); auto handler = ArffFiles();
handler.load(path + static_cast<string>(name) + ".arff", class_last); handler.load(path + static_cast<string>(name) + ".arff", class_last);
@@ -59,9 +59,8 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
// Get className & Features // Get className & Features
auto className = handler.getClassName(); auto className = handler.getClassName();
vector<string> features; vector<string> features;
for (auto feature : handler.getAttributes()) { auto attributes = handler.getAttributes();
features.push_back(feature.first); transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
}
Tensor Xd; Tensor Xd;
auto states = map<string, vector<int>>(); auto states = map<string, vector<int>>();
if (discretize_dataset) { if (discretize_dataset) {
@@ -83,7 +82,7 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
return { Xd, torch::tensor(y, torch::kInt32), features, className, states }; return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
} }
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(string name) tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
{ {
auto handler = ArffFiles(); auto handler = ArffFiles();
handler.load(PATH + static_cast<string>(name) + ".arff"); handler.load(PATH + static_cast<string>(name) + ".arff");
@@ -93,9 +92,8 @@ tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vect
// Get className & Features // Get className & Features
auto className = handler.getClassName(); auto className = handler.getClassName();
vector<string> features; vector<string> features;
for (auto feature : handler.getAttributes()) { auto attributes = handler.getAttributes();
features.push_back(feature.first); transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& pair) { return pair.first; });
}
// Discretize Dataset // Discretize Dataset
vector<mdlp::labels_t> Xd; vector<mdlp::labels_t> Xd;
map<string, int> maxes; map<string, int> maxes;

View File

@@ -11,11 +11,11 @@ using namespace std;
const string PATH = "../../data/"; const string PATH = "../../data/";
bool file_exists(const std::string& name); bool file_exists(const std::string& name);
vector<string> split(string text, char delimiter); vector<string> split(const string& text, char delimiter);
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features); pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features);
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y); vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
pair<torch::Tensor, map<string, vector<int>>> discretizeTorch(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className); pair<torch::Tensor, map<string, vector<int>>> discretizeTorch(torch::Tensor& X, torch::Tensor& y, vector<string>& features, const string& className);
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(string name); tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name);
tuple<torch::Tensor, torch::Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(string path, string name, bool class_last, bool discretize_dataset); tuple<torch::Tensor, torch::Tensor, vector<string>, string, map<string, vector<int>>> loadDataset(const string& path, const string& name, bool class_last, bool discretize_dataset);
map<string, vector<int>> get_states(vector<string>& features, string className, map<string, int>& maxes); map<string, vector<int>> get_states(vector<string>& features, string className, map<string, int>& maxes);
#endif //PLATFORM_UTILS_H #endif //PLATFORM_UTILS_H

View File

@@ -9,29 +9,21 @@ TEST_CASE("Test Bayesian Network")
{ {
auto [Xd, y, features, className, states] = loadFile("iris"); auto [Xd, y, features, className, states] = loadFile("iris");
SECTION("Test Update Nodes")
{
auto net = bayesnet::Network();
net.addNode("A", 3);
REQUIRE(net.getStates() == 3);
net.addNode("A", 5);
REQUIRE(net.getStates() == 5);
}
SECTION("Test get features") SECTION("Test get features")
{ {
auto net = bayesnet::Network(); auto net = bayesnet::Network();
net.addNode("A", 3); net.addNode("A");
net.addNode("B", 5); net.addNode("B");
REQUIRE(net.getFeatures() == vector<string>{"A", "B"}); REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
net.addNode("C", 2); net.addNode("C");
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"}); REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
} }
SECTION("Test get edges") SECTION("Test get edges")
{ {
auto net = bayesnet::Network(); auto net = bayesnet::Network();
net.addNode("A", 3); net.addNode("A");
net.addNode("B", 5); net.addNode("B");
net.addNode("C", 2); net.addNode("C");
net.addEdge("A", "B"); net.addEdge("A", "B");
net.addEdge("B", "C"); net.addEdge("B", "C");
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } }); REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });