Compare commits

...

190 Commits

Author SHA1 Message Date
538af0253b Fix test & sample issue 2024-03-09 12:45:03 +01:00
0b65e34772 Fix config.h location problem 2024-03-09 12:27:05 +01:00
635ef22520 Refactor library structure 2024-03-08 22:20:54 +01:00
1231f4522a Merge pull request 'Create installation process' (#23) from install_lib into main
Reviewed-on: #23
2024-03-08 11:51:59 +00:00
cc34f79b91 Update changelog and readme 2024-03-08 09:02:22 +01:00
6899033806 Change include of library headers 2024-03-08 01:13:30 +01:00
8e2d05e663 Refactor sample to be out of main CMakeLists 2024-03-08 01:09:39 +01:00
eba2095718 Create installation process 2024-03-08 00:37:36 +01:00
199ffc95d2 Update dates on changelog 2024-03-06 23:42:14 +01:00
cbe15e317d Fix FCBF in select_features 2024-03-06 18:24:27 +01:00
debd890519 Update version number in tests 2024-03-06 17:22:45 +01:00
46e929ff4d Merge pull request 'predict_single' (#22) from predict_single into main
Reviewed-on: #22

close #19
2024-03-06 16:16:15 +00:00
d858e26e4b Update version number and Changelog 2024-03-06 17:04:16 +01:00
0ee3eaed53 Update select features models significance 2024-03-05 12:10:58 +01:00
093c197f0a Replace constant strings in BoostAODE 2024-03-05 11:05:11 +01:00
78d7ea7c4d Add predict_single proposal detailed info 2024-03-03 22:56:01 +01:00
d6af1ffe8e Update gcovr config and fix some warnings 2024-02-28 11:51:37 +01:00
20669dd161 Translate BoostAODE.md to English 2024-02-27 20:29:01 +01:00
272dbad4f3 Update README and docs 2024-02-27 17:16:26 +01:00
8bccc3e4bc Update boostaode algorithm explain 2024-02-27 14:24:58 +01:00
903b143338 Refactor library structure and add sample 2024-02-27 13:06:13 +01:00
f10d0daf2e Update test 2024-02-27 10:16:20 +01:00
d39a17089e Begin implementing predict_single hyperparameter in BoostAODE 2024-02-26 20:29:08 +01:00
2e325cd114 Merge pull request 'change boostaode ascending hyperparameter to order {asc,desc,rand}' (#21) from baode_random into main
Reviewed-on: #21

This PR closes #18
2024-02-26 16:28:48 +00:00
fc3d63b7db change boostaode ascending hyperparameter to order {asc,desc,rand} 2024-02-26 17:07:57 +01:00
43dc79a345 Update version number in ChangeLog 2024-02-25 18:07:50 +01:00
b8589bcd0a Merge pull request 'Add the probabilities aggregation method to compute prediction with ensembles' (#16) from baode_proba into main
Reviewed-on: #16

As only the voting method was implemented, this approach computes the classifiers prediction using a weighted average of the probabilities computed by each model.
Added the predict_proba methods to BaseClassifier - Classifier and Ensemble classes.
Add a hyperparameter to decide the type of computation for ensembles voting - probability aggregation
2024-02-25 11:26:26 +00:00
3007e22a7d Add info to CHANGELOG
Update submodules
2024-02-24 21:33:28 +01:00
02e456befb Complete predict & predict_proba in ensemble 2024-02-24 18:36:09 +01:00
8477698d8d Complete predict & predict_proba with voting & probabilities 2024-02-23 23:11:14 +01:00
52abd2d670 Implement the proba branch and begin with the voting one 2024-02-23 20:36:11 +01:00
3116eaa763 Begin testing ensemble predict_proba 2024-02-22 18:44:40 +01:00
443e5cc882 Implement classifier.predict_proba & test 2024-02-22 11:45:40 +01:00
e1c4221c11 Add predict_voting and predict_prob to ensemble 2024-02-20 10:58:21 +01:00
a63a35df3f Fix epsilont early stopping in BoostAODE 2024-02-20 10:11:22 +01:00
c7555dac3f Add comments to BoostAODE algorithm 2024-02-19 22:58:15 +01:00
f3b8150e2c Add notes to Classifier & Changelog 2024-02-12 10:58:20 +01:00
03f8b8653b Add getNotes test 2024-02-09 12:06:19 +01:00
2163e95c4a add getNotes method 2024-02-09 10:57:19 +01:00
b33da34655 Add notes to Classifier & use them in BoostAODE 2024-02-08 18:01:09 +01:00
e17aee7bdb Remove argparse module 2024-01-09 18:02:17 +01:00
37c31ee4c2 Update libraries 2024-01-08 17:45:11 +01:00
80afdc06f7 Remove unneeded argparse module 2024-01-08 00:55:16 +01:00
Ricardo Montañana Gómez
666782217e Merge pull request #1 from rmontanana/library
Remove other projects' sources
2024-01-07 20:01:37 +01:00
55af0714cd Remove other projects' sources 2024-01-07 19:58:22 +01:00
6ef5ca541a Add app version to command line utils 2024-01-06 22:38:34 +01:00
4364317411 Merge pull request 'Refactor mpi grid search process using the producer consumer pattern' (#15) from producer_consumer into main
Reviewed-on: #15
2024-01-04 15:24:48 +00:00
65a96851ef Check min number of nested folds 2024-01-04 11:01:59 +01:00
722da7f781 Keep only mpi b_grid compute 2024-01-04 01:21:56 +01:00
b1833a5feb Add reset color to final progress bar 2024-01-03 22:45:16 +01:00
41a0bd4ddd fix dataset name mistakes 2024-01-03 17:15:57 +01:00
9ab4fc7d76 Fix some mistakes in methods 2024-01-03 11:53:46 +01:00
beadb7465f Complete first approach 2023-12-31 12:02:13 +01:00
652e5f623f Add todo comments 2023-12-28 23:32:24 +01:00
b7fef9a99d Remove kk file 2023-12-28 23:24:59 +01:00
343269d48c Fix syntax errors 2023-12-28 23:21:50 +01:00
21c4c6df51 Fix first mistakes in structure 2023-12-25 19:33:52 +01:00
702f086706 Update miniconda instructions 2023-12-23 19:54:00 +01:00
981bc8f98b Fix install message in readme 2023-12-23 01:00:55 +01:00
e0b7b2d316 Set structure & protocol of producer-consumer 2023-12-22 12:47:13 +01:00
9b9e91e856 Merge pull request 'mpi_grid' (#14) from mpi_grid into main
Reviewed-on: #14
2023-12-18 09:05:55 +00:00
18e8e84284 Add openmpi instructions for Oracle Linux 2023-12-17 12:19:50 +01:00
7de11b0e6d Fix format of duration 2023-12-17 01:45:04 +01:00
9b8db37a4b Fix duration of task not set 2023-12-16 19:31:45 +01:00
49b26bd04b fix duration output 2023-12-16 12:53:25 +01:00
b5b5b48864 Update grid progress bar output 2023-12-15 18:09:17 +01:00
19586a3a5a Fix pesky error allocating memory in workers 2023-12-15 01:54:13 +01:00
ffe6d37436 Add messages to control trace 2023-12-14 21:06:43 +01:00
b73f4be146 First try with complete algorithm 2023-12-14 15:55:08 +01:00
dbf2f35502 First compiling version 2023-12-12 18:57:57 +01:00
db9e80a70e Create build tasks 2023-12-12 12:15:22 +01:00
40ae4ad7f9 Include mpi in CMakeLists 2023-12-11 09:06:05 +01:00
234342f2de Add mpi parameter to b_grid 2023-12-10 22:33:17 +01:00
aa0936abd1 Add --exclude parameter to b_grid to exclude datasets 2023-12-08 12:09:08 +01:00
f0d6f0cc38 Fix sample building 2023-12-04 19:12:44 +01:00
cc316bb8d3 Add colors to results of gridsearch 2023-12-04 17:34:00 +01:00
0723564e66 Fix some output in gridsearch 2023-12-03 17:55:44 +01:00
2e95e8999d Complete nested gridsearch 2023-12-03 12:37:25 +01:00
fb9b395748 Begin output nested grid 2023-12-02 13:19:12 +01:00
03e4437fea refactor gridsearch to have only one go method 2023-12-02 10:59:05 +01:00
33cd32c639 Add header to grid output and report 2023-12-01 10:30:53 +01:00
c460ef46ed Refactor gridsearch method 2023-11-30 11:01:37 +01:00
dee9c674da Refactor grid input hyperparameter file 2023-11-29 18:24:34 +01:00
e3f6dc1e0b Fix tolerance hyperp error & gridsearch 2023-11-29 12:33:50 +01:00
460d20a402 Add reports to gridsearch 2023-11-29 00:26:48 +01:00
8dbbb65a2f Add only parameter to gridsearch 2023-11-28 10:08:40 +01:00
d06bf187b2 Implement Random Forest nodes/leaves/depth 2023-11-28 00:35:38 +01:00
4addaefb47 Implement sklearn version in PyWrap 2023-11-27 22:34:34 +01:00
82964190f6 Add nodes/leaves/depth to STree & ODTE 2023-11-27 10:57:57 +01:00
4fefe9a1d2 Add grid input info to grid output 2023-11-26 16:07:32 +01:00
7c12dd25e5 Fix upper case typo 2023-11-26 10:55:32 +01:00
c713c0b1df Add continue from parameter to gridsearch 2023-11-26 10:36:09 +01:00
64069a6cb7 Adapt b_main to the new hyperparam file format 2023-11-25 16:52:25 +01:00
ba2a3f9523 Merge pull request 'gridsearch' (#13) from gridsearch into main
Reviewed-on: #13
2023-11-25 11:16:13 +00:00
f94e2d6a27 Add quiet parameter 2023-11-24 21:16:20 +01:00
2121ba9b98 Refactor input grid parameters to json file 2023-11-24 09:57:29 +01:00
8b7b59d42b Complete first step 2023-11-23 12:59:21 +01:00
bbe5302ab1 Add info to output 2023-11-22 16:38:50 +01:00
c2eb727fc7 Complete output interface of gridsearch 2023-11-22 16:30:04 +01:00
fb347ed5b9 Begin gridsearch implementation 2023-11-22 12:22:30 +01:00
b657762c0c Generate combinations sample 2023-11-22 00:18:24 +01:00
495d8a8528 Begin implementing grid combinations 2023-11-21 13:11:14 +01:00
4628e48d3c Build gridsearch structure 2023-11-20 23:32:34 +01:00
5876be4b24 Add more install instructions of Boost to README 2023-11-20 20:39:22 +01:00
dc3400197f Add coment todo impelemt number of nodes 2023-11-20 01:14:13 +01:00
26d3a57782 Add info to invalid hyperparameter exception 2023-11-19 23:02:28 +01:00
4f3a04058f Refactor Hyperparameters management 2023-11-19 22:36:27 +01:00
89c4613591 Implement hyperparameters with json file 2023-11-18 11:56:10 +01:00
28f3d87e32 Add Python Classifiers
Add STree, Odte, SVC & RandomForest Classifiers
Remove using namespace ... in project
2023-11-17 11:11:05 +01:00
e8d2c9fc0b Set intolerant convergence 2023-11-17 10:26:25 +01:00
d3cb580387 Remove n_jobs from STree 2023-11-17 10:10:31 +01:00
f088df14fd Restore the Creation model position in experiment 2023-11-17 01:10:46 +01:00
e2249eace7 Disable Warning messages in python clfs
Disable removing Python env
2023-11-16 22:38:46 +01:00
64f5a7f14a Fix header in example 2023-11-16 17:03:40 +01:00
408db2aad5 Mark override fit funtcion 2023-11-14 18:59:41 +01:00
e03efb5f63 set tolerance=0 if feature selection in BoostAODE 2023-11-14 10:12:02 +01:00
f617886133 Add new models to example 2023-11-14 09:12:25 +01:00
69ad660040 Refactor version method in PyClassifier 2023-11-13 13:59:06 +01:00
431b3a3aa5 Fit PyWrap into BayesNet 2023-11-13 11:13:32 +01:00
6a23e2cc26 Add CMakelist integration 2023-11-12 22:14:29 +01:00
f6e00530be Add Pywrap sources 2023-11-12 21:43:07 +01:00
f9258e43b9 Remove using namespace from Library 2023-11-08 18:45:35 +01:00
92820555da Simple fix 2023-10-28 10:56:47 +02:00
5a3af51826 Activate best score in odte 2023-10-25 10:23:42 +02:00
a8f9800631 Fix mistake when no results in manage 2023-10-24 19:44:23 +02:00
84cec0c1e0 Add results files affected in best results excel 2023-10-24 16:18:52 +02:00
130139f644 Update formulas to use letters in ranges in excel 2023-10-24 13:06:31 +02:00
651f84b562 Fix mistake in conditional format in bestresults 2023-10-24 11:18:19 +02:00
553ab0fa22 Add conditional format to BestResults Excel 2023-10-24 10:56:41 +02:00
4975feabff Fix mistake in node count 2023-10-23 22:46:10 +02:00
32293af69f Fix header in manage 2023-10-23 17:04:59 +02:00
858664be2d Add total number of results in manage 2023-10-23 16:22:15 +02:00
1f705f6018 Refactor BestScore and add experiment to .env 2023-10-23 16:12:52 +02:00
7bcd2eed06 Add variable width of dataset name in reports 2023-10-22 22:58:52 +02:00
833acefbb3 Fix index limits mistake in manage 2023-10-22 20:21:50 +02:00
26b649ebae Refactor ManageResults and CommandParser 2023-10-22 20:03:34 +02:00
080eddf9cd Fix hyperparameters output in b_best 2023-10-20 22:52:48 +02:00
04e754b2f5 Adjust filename and hyperparameters in reports 2023-10-20 11:12:46 +02:00
38423048bd Add excel to best report of model 2023-10-19 18:12:55 +02:00
64fc97b892 Rename utilities sources to match final names 2023-10-19 09:57:04 +02:00
2c2159f192 Add quiet mode to b_main
Reduce output when --quiet is set, not showing fold info
2023-10-17 21:51:53 +02:00
6765552a7c Update submodule versions 2023-10-16 19:21:57 +02:00
f72aa5b9a6 Merge pull request 'Create Boost_CFS' (#11) from Boost_CFS into main
Add hyper parameter to BoostAODE. This hyper parameter decides if we select features with cfs/fcbf/iwss before start building models and build a Spode with the selected features.
The hyperparameter is select_features
2023-10-15 09:22:14 +00:00
fa7fe081ad Fix xlsx library finding 2023-10-15 11:19:58 +02:00
660e783517 Update validation for feature selection 2023-10-14 13:32:09 +02:00
b35532dd9e Implement IWSS and FCBF too for BoostAODE 2023-10-14 13:12:04 +02:00
6ef49385ea Remove unneeded method declaration FeatureSelect 2023-10-14 11:30:32 +02:00
6d5a25cdc8 Refactor CFS class creating abstract base class 2023-10-14 11:27:46 +02:00
d00b08cbe8 Fix Header for Linux 2023-10-13 14:26:47 +02:00
977ff6fddb Update CMakeLists for Linux 2023-10-13 14:01:52 +02:00
54b8939f35 Prepare BoostAODE first try 2023-10-13 13:46:22 +02:00
5022a4dc90 Complete CFS tested with Python mufs 2023-10-13 12:29:25 +02:00
40d1dad5d8 Begin CFS implementation 2023-10-11 21:17:26 +02:00
47e2b138c5 Complete first working cfs 2023-10-11 11:33:29 +02:00
e7ded68267 First cfs working version 2023-10-10 23:00:38 +02:00
ca833a34f5 try openssl sha256 2023-10-10 18:16:43 +02:00
df9b4c48d2 Begin CFS initialization 2023-10-10 13:39:11 +02:00
f288bbd6fa Begin adding cfs to BoostAODE 2023-10-10 11:52:39 +02:00
7d8aca4f59 Add Locale shared config to reports 2023-10-09 19:41:29 +02:00
8fdad78a8c Continue Test Network 2023-10-09 11:25:30 +02:00
e3ae073333 Continue test Network 2023-10-08 15:54:58 +02:00
4b732e76c2 MST change unordered_set to list 2023-10-07 19:08:13 +02:00
fe5fead27e Begin Fix Test MST 2023-10-07 01:43:26 +02:00
8c3864f3c8 Complete Folding Test 2023-10-07 01:23:36 +02:00
1287160c47 Refactor makefile to use variables 2023-10-07 00:16:25 +02:00
2f58807322 Begin refactor CMakeLists debug/release paths 2023-10-06 19:32:29 +02:00
17e079edd5 Begin Test Folding 2023-10-06 17:08:54 +02:00
b9e0028e9d Refactor Makefile 2023-10-06 01:28:27 +02:00
e0d39fe631 Fix BayesMetrics Test 2023-10-06 01:14:55 +02:00
36b0277576 Add Maximum Spanning Tree test 2023-10-05 15:45:36 +02:00
da8d018ec4 Refactor Makefile 2023-10-05 11:45:00 +02:00
5f0676691c Add First BayesMetrics Tests 2023-10-05 01:14:16 +02:00
3448fb1299 Refactor Tests and add BayesMetrics test 2023-10-04 23:19:23 +02:00
5e938d5cca Add ranks sheet to excel best results 2023-10-04 16:26:57 +02:00
55e742438f Add constant references to Statistics 2023-10-04 13:40:45 +02:00
c4ae3fe429 Add Control model rank info to report 2023-10-04 12:42:35 +02:00
93e4ff94db Add significance level as parameter in best 2023-10-02 15:46:40 +02:00
57c27f739c Remove unused code in BestResults 2023-10-02 15:31:02 +02:00
a434d7f1ae Add a Linux config in launch.json 2023-09-30 18:44:21 +02:00
294666c516 Fix a Linux problem in Datasets 2023-09-30 18:43:47 +02:00
fd04e78ad9 Restore sample.cc 2023-09-29 18:50:25 +02:00
66ec1b343b Remove platformUtils and split Datasets & Dataset 2023-09-29 18:20:46 +02:00
bb423da42f Add csv and R_dat files to platform 2023-09-29 13:52:50 +02:00
db17c14042 Change names of executables to b_... 2023-09-29 09:17:50 +02:00
a4401cb78f Linux CMakeLists.txt adjustment 2023-09-29 00:30:47 +02:00
9d3d9cc6c6 Complete Excel output for bestResults with Friedman test 2023-09-28 18:52:37 +02:00
cfcf3c16df Add best results Excel 2023-09-28 17:12:04 +02:00
85202260f3 Separate specific Excel methods to ExcelFile 2023-09-28 13:07:11 +02:00
82acb3cab5 Enhance output of Best results reports 2023-09-28 12:08:56 +02:00
623ceed396 Merge pull request 'Add Friedman Test & post hoc tests to BestResults' (#10) from boost into main
Reviewed-on: #10
2023-09-28 07:44:55 +00:00
201 changed files with 28108 additions and 7262 deletions

View File

@@ -5,11 +5,12 @@ Checks: '-*,
cppcoreguidelines-*,
modernize-*,
performance-*,
-modernize-use-nodiscard,
-cppcoreguidelines-pro-type-vararg,
-modernize-use-trailing-return-type,
-bugprone-exception-escape'
HeaderFilterRegex: 'src/*'
HeaderFilterRegex: 'bayesnet/*'
AnalyzeTemporaryDtors: false
WarningsAsErrors: ''
FormatStyle: file

View File

@@ -1,31 +0,0 @@
compilation_database_dir: build
output_directory: puml
diagrams:
BayesNet:
type: class
glob:
- src/BayesNet/*.cc
- src/Platform/*.cc
using_namespace: bayesnet
include:
namespaces:
- bayesnet
- platform
plantuml:
after:
- "note left of {{ alias(\"MyProjectMain\") }}: Main class of myproject library."
sequence:
type: sequence
glob:
- src/Platform/main.cc
combine_free_functions_into_file_participants: true
using_namespace:
- std
- bayesnet
- platform
include:
paths:
- src/BayesNet
- src/Platform
start_from:
- function: main(int,const char **)

5
.gitignore vendored
View File

@@ -31,9 +31,12 @@
*.exe
*.out
*.app
build/
build/**
build_*/**
*.dSYM/**
cmake-build*/**
.idea
puml/**
.vscode/settings.json
sample/build

17
.gitmodules vendored
View File

@@ -1,15 +1,20 @@
[submodule "lib/mdlp"]
path = lib/mdlp
url = https://github.com/rmontanana/mdlp
main = main
update = merge
[submodule "lib/catch2"]
path = lib/catch2
main = v2.x
update = merge
url = https://github.com/catchorg/Catch2.git
[submodule "lib/argparse"]
path = lib/argparse
url = https://github.com/p-ranav/argparse
[submodule "lib/json"]
path = lib/json
url = https://github.com/nlohmann/json.git
[submodule "lib/libxlsxwriter"]
path = lib/libxlsxwriter
url = https://github.com/jmcnamara/libxlsxwriter.git
master = master
update = merge
[submodule "lib/folding"]
path = lib/folding
url = https://github.com/rmontanana/folding
main = main
update = merge

18
.vscode/c_cpp_properties.json vendored Normal file
View File

@@ -0,0 +1,18 @@
{
"configurations": [
{
"name": "Mac",
"includePath": [
"${workspaceFolder}/**"
],
"defines": [],
"macFrameworkPath": [
"/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
],
"cStandard": "c17",
"cppStandard": "c++17",
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
}
],
"version": 4
}

76
.vscode/launch.json vendored
View File

@@ -5,83 +5,21 @@
"type": "lldb",
"request": "launch",
"name": "sample",
"program": "${workspaceFolder}/build/sample/BayesNetSample",
"program": "${workspaceFolder}/build_release/sample/bayesnet_sample",
"args": [
"-d",
"iris",
"-m",
"TANLd",
"-s",
"271",
"-p",
"/Users/rmontanana/Code/discretizbench/datasets/",
"${workspaceFolder}/tests/data/glass.arff"
],
//"cwd": "${workspaceFolder}/build/sample/",
},
{
"type": "lldb",
"request": "launch",
"name": "experiment",
"program": "${workspaceFolder}/build/src/Platform/main",
"name": "test",
"program": "${workspaceFolder}/build_debug/tests/unit_tests_bayesnet",
"args": [
"-m",
"BoostAODE",
"-p",
"/Users/rmontanana/Code/discretizbench/datasets",
"--stratified",
"-d",
"mfeat-morphological",
"--discretize"
// "--hyperparameters",
// "{\"repeatSparent\": true, \"maxModels\": 12}"
//"-c=\"Metrics Test\"",
// "-s",
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "best",
"program": "${workspaceFolder}/build/src/Platform/best",
"args": [
"-m",
"BoostAODE",
"-s",
"accuracy",
"--build",
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "manage",
"program": "${workspaceFolder}/build/src/Platform/manage",
"args": [
"-n",
"20"
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "list",
"program": "${workspaceFolder}/build/src/Platform/list",
"args": [],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"name": "Build & debug active file",
"type": "cppdbg",
"request": "launch",
"program": "${workspaceFolder}/build/bayesnet",
"args": [],
"stopAtEntry": false,
"cwd": "${workspaceFolder}",
"environment": [],
"externalConsole": false,
"MIMode": "lldb",
"preLaunchTask": "CMake: build"
"cwd": "${workspaceFolder}/build_debug/tests",
}
]
}

64
CHANGELOG.md Normal file
View File

@@ -0,0 +1,64 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [unreleased]
### Added
- Install command and instructions in README.md
### Changed
- Sample app now is a separate target in the Makefile and shows how to use the library with a sample dataset
## [1.0.4] 2024-03-06
### Added
- Change _ascending_ hyperparameter to _order_ with these possible values _{"asc", "desc", "rand"}_, Default is _"desc"_.
- Add the _predict_single_ hyperparameter to control if only the last model created is used to predict in boost training or the whole ensemble (all the models built so far). Default is true.
- sample app to show how to use the library (make sample)
### Changed
- Change the library structure adding folders for each group of classes (classifiers, ensembles, etc).
- The significances of the models generated under the feature selection algorithm are now computed after all the models have been generated and an &alpha;<sub>t</sub> value is computed and assigned to each model.
## [1.0.3] 2024-02-25
### Added
- Voting / probability aggregation in Ensemble classes
- predict_proba method in Classifier
- predict_proba method in BoostAODE
- predict_voting parameter in BoostAODE constructor to use voting or probability to predict (default is voting)
- hyperparameter predict_voting to AODE, AODELd and BoostAODE (Ensemble child classes)
- tests to check predict & predict_proba coherence
## [1.0.2] - 2024-02-20
### Fixed
- Fix bug in BoostAODE: do not include the model if epsilon sub t is greater than 0.5
- Fix bug in BoostAODE: compare accuracy with previous accuracy instead of the first of the ensemble if convergence true
## [1.0.1] - 2024-02-12
### Added
- Notes in Classifier class
- BoostAODE: Add note with used features in initialization with feature selection
- BoostAODE: Add note with the number of models
- BoostAODE: Add note with the number of features used to create models if not all features are used
- Test version number in TestBayesModels
- Add tests with feature_select and notes on BoostAODE
### Fixed
- Network predict test
- Network predict_proba test
- Network score test

View File

@@ -1,7 +1,7 @@
cmake_minimum_required(VERSION 3.20)
project(BayesNet
VERSION 0.2.0
VERSION 1.0.4
DESCRIPTION "Bayesian Network and basic classifiers Library."
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
LANGUAGES CXX
@@ -24,35 +24,32 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
# Options
# -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" OFF)
option(INSTALL_GTEST "Enable installation of googletest." OFF)
# Boost Library
set(Boost_USE_STATIC_LIBS OFF)
set(Boost_USE_MULTITHREADED ON)
set(Boost_USE_STATIC_RUNTIME OFF)
find_package(Boost 1.78.0 REQUIRED)
if(Boost_FOUND)
message("Boost_INCLUDE_DIRS=${Boost_INCLUDE_DIRS}")
include_directories(${Boost_INCLUDE_DIRS})
endif()
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
# CMakes modules
# --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
include(AddGitSubmodule)
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
MESSAGE("Debug mode")
set(ENABLE_TESTING ON)
set(CODE_COVERAGE ON)
endif (CMAKE_BUILD_TYPE STREQUAL "Debug")
if (CODE_COVERAGE)
enable_testing()
include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
enable_testing()
include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
if (ENABLE_CLANG_TIDY)
@@ -63,28 +60,28 @@ endif (ENABLE_CLANG_TIDY)
# ---------------------------------------------
# include(FetchContent)
add_git_submodule("lib/mdlp")
add_git_submodule("lib/argparse")
add_git_submodule("lib/json")
find_library(XLSXWRITER_LIB libxlsxwriter.dylib PATHS /usr/local/lib)
# Subdirectories
# --------------
add_subdirectory(config)
add_subdirectory(lib/Files)
add_subdirectory(src/BayesNet)
add_subdirectory(src/Platform)
add_subdirectory(sample)
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.hpp)
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform/*.cc ${BayesNet_SOURCE_DIR}/src/Platform/*.cpp)
add_subdirectory(bayesnet)
# Testing
# -------
if (ENABLE_TESTING)
MESSAGE("Testing enabled")
add_git_submodule("lib/catch2")
include(CTest)
add_subdirectory(tests)
endif (ENABLE_TESTING)
# Installation
# ------------
install(TARGETS BayesNet
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
CONFIGURATIONS Release)
install(DIRECTORY bayesnet/ DESTINATION include/bayesnet FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h")
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DESTINATION include/bayesnet CONFIGURATIONS Release)

118
Makefile
View File

@@ -1,6 +1,26 @@
SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: coverage setup help build test
.PHONY: coverage setup help buildr buildd test clean debug release sample
f_release = build_release
f_debug = build_debug
app_targets = BayesNet
test_targets = unit_tests_bayesnet
n_procs = -j 16
define ClearTests
@for t in $(test_targets); do \
if [ -f $(f_debug)/tests/$$t ]; then \
echo ">>> Cleaning $$t..." ; \
rm -f $(f_debug)/tests/$$t ; \
fi ; \
done
@nfiles="$(find . -name "*.gcda" -print0)" ; \
if test "${nfiles}" != "" ; then \
find . -name "*.gcda" -print0 | xargs -0 rm 2>/dev/null ;\
fi ;
endef
setup: ## Install dependencies for tests and coverage
@if [ "$(shell uname)" = "Darwin" ]; then \
@@ -11,63 +31,73 @@ setup: ## Install dependencies for tests and coverage
pip install gcovr; \
fi
dest ?= ../discretizbench
copy: ## Copy binary files to selected folder
@echo "Destination folder: $(dest)"
make build
@echo ">>> Copying files to $(dest)"
@cp build/src/Platform/main $(dest)
@cp build/src/Platform/list $(dest)
@cp build/src/Platform/manage $(dest)
@cp build/src/Platform/best $(dest)
@echo ">>> Done"
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
@echo ">>> Creating dependency graph diagram of the project...";
$(MAKE) debug
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the main and BayesNetSample
cmake --build build -t main -t BayesNetSample -t manage -t list -t best -j 32
buildd: ## Build the debug targets
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ...";
find . -name "*.gcda" -print0 | xargs -0 rm
buildr: ## Build the release targets
cmake --build $(f_release) -t $(app_targets) $(n_procs)
clean: ## Clean the tests info
@echo ">>> Cleaning Debug BayesNet tests...";
$(call ClearTests)
@echo ">>> Done";
clang-uml: ## Create uml class and sequence diagrams
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
uninstall: ## Uninstall library
@echo ">>> Uninstalling BayesNet...";
xargs rm < $(f_release)/install_manifest.txt
@echo ">>> Done";
install: ## Install library
@echo ">>> Installing BayesNet...";
@cmake --install $(f_release)
@echo ">>> Done";
debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
cmake --build build -t main -t BayesNetSample -t manage -t list -t best -t unit_tests -j 32;
@echo ">>> Building Debug BayesNet...";
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
@mkdir $(f_debug);
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON
@echo ">>> Done";
release: ## Build a Release version of the project
@echo ">>> Building Release BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
cmake --build build -t main -t BayesNetSample -t manage -t list -t best -j 32;
@echo ">>> Building Release BayesNet...";
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
@mkdir $(f_release);
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
@echo ">>> Done";
test: ## Run tests
@echo "* Running tests...";
find . -name "*.gcda" -print0 | xargs -0 rm
@cd build; \
cmake --build . --target unit_tests ;
@cd build/tests; \
./unit_tests;
fname = "tests/data/iris.arff"
sample: ## Build sample
@echo ">>> Building Sample...";
@if [ -d ./sample/build ]; then rm -rf ./sample/build; fi
@cd sample && cmake -B build -S . && cmake --build build -t bayesnet_sample
sample/build/bayesnet_sample $(fname)
@echo ">>> Done";
opt = ""
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running BayesNet & Platform tests...";
@$(MAKE) clean
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
@for t in $(test_targets); do \
if [ -f $(f_debug)/tests/$$t ]; then \
cd $(f_debug)/tests ; \
./$$t $(opt) ; \
fi ; \
done
@echo ">>> Done";
coverage: ## Run tests and generate coverage report (build/index.html)
@echo "*Building tests...";
find . -name "*.gcda" -print0 | xargs -0 rm
@cd build; \
cmake --build . --target unit_tests ;
@cd build/tests; \
./unit_tests;
gcovr ;
@echo ">>> Building tests with coverage..."
@$(MAKE) test
@gcovr $(f_debug)/tests
@echo ">>> Done";
help: ## Show help message
@IFS=$$'\n' ; \

View File

@@ -1,41 +1,36 @@
# BayesNet
Bayesian Network Classifier with libtorch from scratch
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
## 0. Setup
Bayesian Network Classifiers using libtorch from scratch
Before compiling BayesNet.
### boost library
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
### libxlswriter
```bash
cd lib/libxlsxwriter
make
sudo make install
```
It has to be installed in /usr/local/lib otherwise CMakeLists.txt has to be modified accordingly
Environment variable has to be set:
```bash
export LD_LIBRARY_PATH=/usr/local/lib
```
## Installation
### Release
```bash
make release
make buildr
sudo make install
```
### Debug & Tests
```bash
make debug
make test
make coverage
```
## 1. Introduction
### Sample app
After building and installing the release version, you can run the sample app with the following commands:
```bash
make sample
make sample fname=tests/data/glass.arff
```
## Models
### [BoostAODE](docs/BoostAODE.md)

41
bayesnet/BaseClassifier.h Normal file
View File

@@ -0,0 +1,41 @@
#ifndef BASE_H
#define BASE_H
#include <vector>
#include <torch/torch.h>
#include <nlohmann/json.hpp>
namespace bayesnet {
enum status_t { NORMAL, WARNING, ERROR };
class BaseClassifier {
public:
// X is nxm std::vector, y is nx1 std::vector
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) = 0;
virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0;
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
torch::Tensor virtual predict_proba(torch::Tensor& X) = 0;
std::vector<std::vector<double>> virtual predict_proba(std::vector<std::vector<int >>& X) = 0;
status_t virtual getStatus() const = 0;
float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
int virtual getNumberOfNodes()const = 0;
int virtual getNumberOfEdges()const = 0;
int virtual getNumberOfStates() const = 0;
int virtual getClassNumStates() const = 0;
std::vector<std::string> virtual show() const = 0;
std::vector<std::string> virtual graph(const std::string& title = "") const = 0;
virtual std::string getVersion() = 0;
std::vector<std::string> virtual topological_order() = 0;
std::vector<std::string> virtual getNotes() const = 0;
void virtual dump_cpt()const = 0;
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
protected:
virtual void trainModel(const torch::Tensor& weights) = 0;
std::vector<std::string> validHyperparameters;
};
}
#endif

13
bayesnet/CMakeLists.txt Normal file
View File

@@ -0,0 +1,13 @@
include_directories(
${BayesNet_SOURCE_DIR}/lib/mdlp
${BayesNet_SOURCE_DIR}/lib/Files
${BayesNet_SOURCE_DIR}/lib/folding
${BayesNet_SOURCE_DIR}/lib/json/include
${BayesNet_SOURCE_DIR}
${CMAKE_BINARY_DIR}/configured_files/include
)
file(GLOB_RECURSE Sources "*.cc")
add_library(BayesNet ${Sources})
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,11 +1,10 @@
#include "bayesnet/utils/bayesnetUtils.h"
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace torch;
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
this->features = features;
this->className = className;
@@ -21,7 +20,7 @@ namespace bayesnet {
fitted = true;
return *this;
}
void Classifier::buildDataset(Tensor& ytmp)
void Classifier::buildDataset(torch::Tensor& ytmp)
{
try {
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
@@ -29,8 +28,8 @@ namespace bayesnet {
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
cout << "X dimensions: " << dataset.sizes() << "\n";
cout << "y dimensions: " << ytmp.sizes() << "\n";
std::cout << "X dimensions: " << dataset.sizes() << "\n";
std::cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
}
}
@@ -39,7 +38,7 @@ namespace bayesnet {
model.fit(dataset, weights, features, className, states);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
dataset = X;
buildDataset(y);
@@ -47,24 +46,24 @@ namespace bayesnet {
return build(features, className, states, weights);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, const vector<string>& features, const string& className, map<string, vector<int>>& states)
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);
for (int i = 0; i < X.size(); ++i) {
dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
dataset.index_put_({ i, "..." }, torch::tensor(X[i], torch::kInt32));
}
auto ytmp = torch::tensor(y, kInt32);
auto ytmp = torch::tensor(y, torch::kInt32);
buildDataset(ytmp);
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states)
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
{
this->dataset = dataset;
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, const vector<string>& features, const string& className, map<string, vector<int>>& states, const torch::Tensor& weights)
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
this->dataset = dataset;
return build(features, className, states, weights);
@@ -72,57 +71,76 @@ namespace bayesnet {
void Classifier::checkFitParameters()
{
if (torch::is_floating_point(dataset)) {
throw invalid_argument("dataset (X, y) must be of type Integer");
throw std::invalid_argument("dataset (X, y) must be of type Integer");
}
if (n != features.size()) {
throw invalid_argument("Classifier: X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
throw std::invalid_argument("Classifier: X " + std::to_string(n) + " and features " + std::to_string(features.size()) + " must have the same number of features");
}
if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states");
throw std::invalid_argument("className not found in states");
}
for (auto feature : features) {
if (states.find(feature) == states.end()) {
throw invalid_argument("feature [" + feature + "] not found in states");
throw std::invalid_argument("feature [" + feature + "] not found in states");
}
}
}
Tensor Classifier::predict(Tensor& X)
torch::Tensor Classifier::predict(torch::Tensor& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.predict(X);
}
vector<int> Classifier::predict(vector<vector<int>>& X)
std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto m_ = X[0].size();
auto n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict(Xd);
return yp;
}
float Classifier::score(Tensor& X, Tensor& y)
torch::Tensor Classifier::predict_proba(torch::Tensor& X)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
Tensor y_pred = predict(X);
return model.predict_proba(X);
}
std::vector<std::vector<double>> Classifier::predict_proba(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
auto m_ = X[0].size();
auto n_ = X.size();
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
// Convert to nxm vector
for (auto i = 0; i < n_; i++) {
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
}
auto yp = model.predict_proba(Xd);
return yp;
}
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
{
torch::Tensor y_pred = predict(X);
return (y_pred == y).sum().item<float>() / y.size(0);
}
float Classifier::score(vector<vector<int>>& X, vector<int>& y)
float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
{
if (!fitted) {
throw logic_error("Classifier has not been fitted");
throw std::logic_error(CLASSIFIER_NOT_FITTED);
}
return model.score(X, y);
}
vector<string> Classifier::show() const
std::vector<std::string> Classifier::show() const
{
return model.show();
}
@@ -137,7 +155,7 @@ namespace bayesnet {
int Classifier::getNumberOfNodes() const
{
// Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0;
return fitted ? model.getFeatures().size() : 0;
}
int Classifier::getNumberOfEdges() const
{
@@ -147,7 +165,11 @@ namespace bayesnet {
{
return fitted ? model.getStates() : 0;
}
vector<string> Classifier::topological_order()
int Classifier::getClassNumStates() const
{
return fitted ? model.getClassNumStates() : 0;
}
std::vector<std::string> Classifier::topological_order()
{
return model.topological_sort();
}
@@ -155,18 +177,8 @@ namespace bayesnet {
{
model.dump_cpt();
}
void Classifier::checkHyperparameters(const vector<string>& validKeys, nlohmann::json& hyperparameters)
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
{
for (const auto& item : hyperparameters.items()) {
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
throw invalid_argument("Hyperparameter " + item.key() + " is not valid");
}
}
}
void Classifier::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid, default is no hyperparameters
const vector<string> validKeys = { };
checkHyperparameters(validKeys, hyperparameters);
//For classifiers that don't have hyperparameters
}
}

View File

@@ -0,0 +1,59 @@
#ifndef CLASSIFIER_H
#define CLASSIFIER_H
#include <torch/torch.h>
#include "bayesnet/utils/BayesMetrics.h"
#include "bayesnet/network/Network.h"
#include "bayesnet/BaseClassifier.h"
namespace bayesnet {
class Classifier : public BaseClassifier {
public:
Classifier(Network model);
virtual ~Classifier() = default;
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override;
void addNodes();
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
int getClassNumStates() const override;
torch::Tensor predict(torch::Tensor& X) override;
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
status_t getStatus() const override { return status; }
std::string getVersion() override { return { project_version.begin(), project_version.end() }; };
float score(torch::Tensor& X, torch::Tensor& y) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
std::vector<std::string> show() const override;
std::vector<std::string> topological_order() override;
std::vector<std::string> getNotes() const override { return notes; }
void dump_cpt() const override;
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
protected:
bool fitted;
unsigned int m, n; // m: number of samples, n: number of features
Network model;
Metrics metrics;
std::vector<std::string> features;
std::string className;
std::map<std::string, std::vector<int>> states;
torch::Tensor dataset; // (n+1)xm tensor
status_t status = NORMAL;
std::vector<std::string> notes; // Used to store messages occurred during the fit process
void checkFitParameters();
virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel(const torch::Tensor& weights) override;
void buildDataset(torch::Tensor& y);
private:
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
};
}
#endif

View File

@@ -1,14 +1,13 @@
#include "KDB.h"
namespace bayesnet {
using namespace torch;
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::setHyperparameters(nlohmann::json& hyperparameters)
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)
{
validHyperparameters = { "k", "theta" };
}
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const vector<string> validKeys = { "k", "theta" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("k")) {
k = hyperparameters["k"];
}
@@ -40,16 +39,16 @@ namespace bayesnet {
// 1. For each feature Xi, compute mutual information, I(X;C),
// where C is the class.
addNodes();
const Tensor& y = dataset.index({ -1, "..." });
vector<double> mi;
const torch::Tensor& y = dataset.index({ -1, "..." });
std::vector<double> mi;
for (auto i = 0; i < features.size(); i++) {
Tensor firstFeature = dataset.index({ i, "..." });
torch::Tensor firstFeature = dataset.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
}
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
// 3. Let the used variable list, S, be empty.
vector<int> S;
std::vector<int> S;
// 4. Let the DAG network being constructed, BN, begin with a single
// class node, C.
// 5. Repeat until S includes all domain features
@@ -67,9 +66,9 @@ namespace bayesnet {
S.push_back(idx);
}
}
void KDB::add_m_edges(int idx, vector<int>& S, Tensor& weights)
void KDB::add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights)
{
auto n_edges = min(k, static_cast<int>(S.size()));
auto n_edges = std::min(k, static_cast<int>(S.size()));
auto cond_w = clone(weights);
bool exit_cond = k == 0;
int num = 0;
@@ -81,7 +80,7 @@ namespace bayesnet {
model.addEdge(features[max_minfo], features[idx]);
num++;
}
catch (const invalid_argument& e) {
catch (const std::invalid_argument& e) {
// Loops are not allowed
}
}
@@ -91,11 +90,11 @@ namespace bayesnet {
exit_cond = num == n_edges || candidates.size(0) == 0;
}
}
vector<string> KDB::graph(const string& title) const
std::vector<std::string> KDB::graph(const std::string& title) const
{
string header{ title };
std::string header{ title };
if (title == "KDB") {
header += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
header += " (k=" + std::to_string(k) + ", theta=" + std::to_string(theta) + ")";
}
return model.graph(header);
}

View File

@@ -1,23 +1,21 @@
#ifndef KDB_H
#define KDB_H
#include <torch/torch.h>
#include "bayesnet/utils/bayesnetUtils.h"
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
using namespace std;
using namespace torch;
class KDB : public Classifier {
private:
int k;
float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
void add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights);
protected:
void buildModel(const torch::Tensor& weights) override;
public:
explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {};
void setHyperparameters(nlohmann::json& hyperparameters) override;
vector<string> graph(const string& name = "KDB") const override;
virtual ~KDB() = default;
void setHyperparameters(const nlohmann::json& hyperparameters) override;
std::vector<std::string> graph(const std::string& name = "KDB") const override;
};
}
#endif

View File

@@ -1,16 +1,15 @@
#include "KDBLd.h"
namespace bayesnet {
using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
@@ -18,12 +17,12 @@ namespace bayesnet {
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor KDBLd::predict(Tensor& X)
torch::Tensor KDBLd::predict(torch::Tensor& X)
{
auto Xt = prepareX(X);
return KDB::predict(Xt);
}
vector<string> KDBLd::graph(const string& name) const
std::vector<std::string> KDBLd::graph(const std::string& name) const
{
return KDB::graph(name);
}

View File

@@ -0,0 +1,18 @@
#ifndef KDBLD_H
#define KDBLD_H
#include "Proposal.h"
#include "KDB.h"
namespace bayesnet {
class KDBLd : public KDB, public Proposal {
private:
public:
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
std::vector<std::string> graph(const std::string& name = "KDB") const override;
torch::Tensor predict(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };
};
}
#endif // !KDBLD_H

View File

@@ -1,8 +1,8 @@
#include <ArffFiles.h>
#include "Proposal.h"
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal()
{
for (auto& [key, value] : discretizers) {
@@ -18,14 +18,14 @@ namespace bayesnet {
throw std::invalid_argument("y must be an integer tensor");
}
}
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
map<std::string, std::vector<int>> Proposal::localDiscretizationProposal(const map<std::string, std::vector<int>>& oldStates, Network& model)
{
// order of local discretization is important. no good 0, 1, 2...
// although we rediscretize features after the local discretization of every feature
auto order = model.topological_sort();
auto& nodes = model.getNodes();
map<string, vector<int>> states = oldStates;
vector<int> indicesToReDiscretize;
map<std::string, std::vector<int>> states = oldStates;
std::vector<int> indicesToReDiscretize;
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
@@ -33,16 +33,16 @@ namespace bayesnet {
upgrade = true;
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
vector<string> parents;
std::vector<std::string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents
vector<int> indices;
std::vector<int> indices;
indices.push_back(-1); // Add class index
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents(Xf.size(1));
std::vector<std::string> yJoinParents(Xf.size(1));
for (auto idx : indices) {
for (int i = 0; i < Xf.size(1); ++i) {
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
@@ -51,16 +51,16 @@ namespace bayesnet {
auto arff = ArffFiles();
auto yxv = arff.factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
auto xStates = std::vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node
states[pFeatures[index]] = xStates;
@@ -70,28 +70,28 @@ namespace bayesnet {
}
return states;
}
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
map<std::string, std::vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
{
// Discretize the continuous input data and build pDataset (Classifier::dataset)
int m = Xf.size(1);
int n = Xf.size(0);
map<string, vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, kInt32);
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
map<std::string, std::vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, torch::kInt32);
auto yv = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (auto i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
auto Xt = std::vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
auto xStates = std::vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
discretizers[pFeatures[i]] = discretizer;
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = vector<int>(n_classes);
auto yStates = std::vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates;
pDataset.index_put_({ n, "..." }, y);
@@ -101,7 +101,7 @@ namespace bayesnet {
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xt = std::vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}

View File

@@ -0,0 +1,30 @@
#ifndef PROPOSAL_H
#define PROPOSAL_H
#include <string>
#include <map>
#include <torch/torch.h>
#include <CPPFImdlp.h>
#include "bayesnet/network/Network.h"
#include "Classifier.h"
namespace bayesnet {
class Proposal {
public:
Proposal(torch::Tensor& pDataset, std::vector<std::string>& features_, std::string& className_);
virtual ~Proposal();
protected:
void checkInput(const torch::Tensor& X, const torch::Tensor& y);
torch::Tensor prepareX(torch::Tensor& X);
map<std::string, std::vector<int>> localDiscretizationProposal(const map<std::string, std::vector<int>>& states, Network& model);
map<std::string, std::vector<int>> fit_local_discretization(const torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<std::string, mdlp::CPPFImdlp*> discretizers;
private:
torch::Tensor& pDataset; // (n+1)xm tensor
std::vector<std::string>& pFeatures;
std::string& pClassName;
};
}
#endif

View File

@@ -17,7 +17,7 @@ namespace bayesnet {
}
}
}
vector<string> SPODE::graph(const string& name) const
std::vector<std::string> SPODE::graph(const std::string& name) const
{
return model.graph(name);
}

View File

@@ -10,8 +10,8 @@ namespace bayesnet {
void buildModel(const torch::Tensor& weights) override;
public:
explicit SPODE(int root);
virtual ~SPODE() {};
vector<string> graph(const string& name = "SPODE") const override;
virtual ~SPODE() = default;
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
};
}
#endif

View File

@@ -1,16 +1,15 @@
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
@@ -18,7 +17,7 @@ namespace bayesnet {
states = localDiscretizationProposal(states, model);
return *this;
}
SPODELd& SPODELd::fit(torch::Tensor& dataset, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
if (!torch::is_floating_point(dataset)) {
throw std::runtime_error("Dataset must be a floating point tensor");
@@ -27,7 +26,7 @@ namespace bayesnet {
y = dataset.index({ -1, "..." }).clone();
features = features_;
className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
@@ -36,12 +35,12 @@ namespace bayesnet {
return *this;
}
Tensor SPODELd::predict(Tensor& X)
torch::Tensor SPODELd::predict(torch::Tensor& X)
{
auto Xt = prepareX(X);
return SPODE::predict(Xt);
}
vector<string> SPODELd::graph(const string& name) const
std::vector<std::string> SPODELd::graph(const std::string& name) const
{
return SPODE::graph(name);
}

View File

@@ -0,0 +1,18 @@
#ifndef SPODELD_H
#define SPODELD_H
#include "SPODE.h"
#include "Proposal.h"
namespace bayesnet {
class SPODELd : public SPODE, public Proposal {
public:
explicit SPODELd(int root);
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
torch::Tensor predict(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };
};
}
#endif // !SPODELD_H

View File

@@ -1,8 +1,6 @@
#include "TAN.h"
namespace bayesnet {
using namespace torch;
TAN::TAN() : Classifier(Network()) {}
void TAN::buildModel(const torch::Tensor& weights)
@@ -11,10 +9,10 @@ namespace bayesnet {
addNodes();
// 1. Compute mutual information between each feature and the class and set the root node
// as the highest mutual information with the class
auto mi = vector <pair<int, float >>();
Tensor class_dataset = dataset.index({ -1, "..." });
auto mi = std::vector <std::pair<int, float >>();
torch::Tensor class_dataset = dataset.index({ -1, "..." });
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
Tensor feature_dataset = dataset.index({ i, "..." });
torch::Tensor feature_dataset = dataset.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
mi.push_back({ i, mi_value });
}
@@ -34,7 +32,7 @@ namespace bayesnet {
model.addEdge(className, feature);
}
}
vector<string> TAN::graph(const string& title) const
std::vector<std::string> TAN::graph(const std::string& title) const
{
return model.graph(title);
}

View File

@@ -2,15 +2,14 @@
#define TAN_H
#include "Classifier.h"
namespace bayesnet {
using namespace std;
class TAN : public Classifier {
private:
protected:
void buildModel(const torch::Tensor& weights) override;
public:
TAN();
virtual ~TAN() {};
vector<string> graph(const string& name = "TAN") const override;
virtual ~TAN() = default;
std::vector<std::string> graph(const std::string& name = "TAN") const override;
};
}
#endif

View File

@@ -1,16 +1,15 @@
#include "TANLd.h"
namespace bayesnet {
using namespace std;
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
@@ -19,12 +18,12 @@ namespace bayesnet {
return *this;
}
Tensor TANLd::predict(Tensor& X)
torch::Tensor TANLd::predict(torch::Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
vector<string> TANLd::graph(const string& name) const
std::vector<std::string> TANLd::graph(const std::string& name) const
{
return TAN::graph(name);
}

View File

@@ -0,0 +1,18 @@
#ifndef TANLD_H
#define TANLD_H
#include "TAN.h"
#include "Proposal.h"
namespace bayesnet {
class TANLd : public TAN, public Proposal {
private:
public:
TANLd();
virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
std::vector<std::string> graph(const std::string& name = "TAN") const override;
torch::Tensor predict(torch::Tensor& X) override;
static inline std::string version() { return "0.0.1"; };
};
}
#endif // !TANLD_H

View File

@@ -0,0 +1,34 @@
#include "AODE.h"
namespace bayesnet {
AODE::AODE(bool predict_voting) : Ensemble(predict_voting)
{
validHyperparameters = { "predict_voting" };
}
void AODE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
}
}
void AODE::buildModel(const torch::Tensor& weights)
{
models.clear();
significanceModels.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i));
}
n_models = models.size();
significanceModels = std::vector<double>(n_models, 1.0);
}
std::vector<std::string> AODE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}
}

16
bayesnet/ensembles/AODE.h Normal file
View File

@@ -0,0 +1,16 @@
#ifndef AODE_H
#define AODE_H
#include "bayesnet/classifiers/SPODE.h"
#include "Ensemble.h"
namespace bayesnet {
class AODE : public Ensemble {
public:
AODE(bool predict_voting = true);
virtual ~AODE() {};
void setHyperparameters(const nlohmann::json& hyperparameters) override;
std::vector<std::string> graph(const std::string& title = "AODE") const override;
protected:
void buildModel(const torch::Tensor& weights) override;
};
}
#endif

View File

@@ -1,17 +1,30 @@
#include "AODELd.h"
#include "Models.h"
namespace bayesnet {
using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const vector<string>& features_, const string& className_, map<string, vector<int>>& states_)
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
{
validHyperparameters = { "predict_voting" };
}
void AODELd::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
}
}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
{
checkInput(X_, y_);
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
@@ -26,7 +39,7 @@ namespace bayesnet {
models.push_back(std::make_unique<SPODELd>(i));
}
n_models = models.size();
significanceModels = vector<double>(n_models, 1.0);
significanceModels = std::vector<double>(n_models, 1.0);
}
void AODELd::trainModel(const torch::Tensor& weights)
{
@@ -34,7 +47,7 @@ namespace bayesnet {
model->fit(Xf, y, features, className, states);
}
}
vector<string> AODELd::graph(const string& name) const
std::vector<std::string> AODELd::graph(const std::string& name) const
{
return Ensemble::graph(name);
}

View File

@@ -0,0 +1,20 @@
#ifndef AODELD_H
#define AODELD_H
#include "bayesnet/classifiers/Proposal.h"
#include "bayesnet/classifiers/SPODELd.h"
#include "Ensemble.h"
namespace bayesnet {
class AODELd : public Ensemble, public Proposal {
public:
AODELd(bool predict_voting = true);
virtual ~AODELd() = default;
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
void setHyperparameters(const nlohmann::json& hyperparameters) override;
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
protected:
void trainModel(const torch::Tensor& weights) override;
void buildModel(const torch::Tensor& weights) override;
};
}
#endif // !AODELD_H

View File

@@ -0,0 +1,296 @@
#include <set>
#include <functional>
#include <limits.h>
#include <tuple>
#include <folding.hpp>
#include "bayesnet/feature_selection/CFS.h"
#include "bayesnet/feature_selection/FCBF.h"
#include "bayesnet/feature_selection/IWSS.h"
#include "BoostAODE.h"
namespace bayesnet {
struct {
std::string CFS = "CFS";
std::string FCBF = "FCBF";
std::string IWSS = "IWSS";
}SelectFeatures;
struct {
std::string ASC = "asc";
std::string DESC = "desc";
std::string RAND = "rand";
}Orders;
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
{
validHyperparameters = {
"repeatSparent", "maxModels", "order", "convergence", "threshold",
"select_features", "tolerance", "predict_voting", "predict_single"
};
}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
models.clear();
significanceModels.clear();
n_models = 0;
// Prepare the validation dataset
auto y_ = dataset.index({ -1, "..." });
if (convergence) {
// Prepare train & validation sets from train data
auto fold = folding::StratifiedKFold(5, y_, 271);
dataset_ = torch::clone(dataset);
// save input dataset
auto [train, test] = fold.getFold(0);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
// Get train and validation sets
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
y_train = dataset.index({ -1, train_t });
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
y_test = dataset.index({ -1, test_t });
dataset = X_train;
m = X_train.size(1);
auto n_classes = states.at(className).size();
metrics = Metrics(dataset, features, className, n_classes);
// Build dataset with train data
buildDataset(y_train);
} else {
// Use all data to train
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
y_train = y_;
}
}
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("repeatSparent")) {
repeatSparent = hyperparameters["repeatSparent"];
hyperparameters.erase("repeatSparent");
}
if (hyperparameters.contains("maxModels")) {
maxModels = hyperparameters["maxModels"];
hyperparameters.erase("maxModels");
}
if (hyperparameters.contains("order")) {
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
order_algorithm = hyperparameters["order"];
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
}
hyperparameters.erase("order");
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
hyperparameters.erase("convergence");
}
if (hyperparameters.contains("predict_single")) {
predict_single = hyperparameters["predict_single"];
hyperparameters.erase("predict_single");
}
if (hyperparameters.contains("threshold")) {
threshold = hyperparameters["threshold"];
hyperparameters.erase("threshold");
}
if (hyperparameters.contains("tolerance")) {
tolerance = hyperparameters["tolerance"];
hyperparameters.erase("tolerance");
}
if (hyperparameters.contains("predict_voting")) {
predict_voting = hyperparameters["predict_voting"];
hyperparameters.erase("predict_voting");
}
if (hyperparameters.contains("select_features")) {
auto selectedAlgorithm = hyperparameters["select_features"];
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
selectFeatures = true;
select_features_algorithm = selectedAlgorithm;
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
}
hyperparameters.erase("select_features");
}
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
}
}
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
{
bool terminate = false;
double alpha_t = 0;
auto mask_wrong = ypred != ytrain;
auto mask_right = ypred == ytrain;
auto masked_weights = weights * mask_wrong.to(weights.dtype());
double epsilon_t = masked_weights.sum().item<double>();
if (epsilon_t > 0.5) {
// Inverse the weights policy (plot ln(wt))
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
terminate = true;
} else {
double wt = (1 - epsilon_t) / epsilon_t;
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
// Step 3.2: Update weights for next classifier
// Step 3.2.1: Update weights of wrong samples
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
// Step 3.2.2: Update weights of right samples
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
// Step 3.3: Normalise the weights
double totalWeights = torch::sum(weights).item<double>();
weights = weights / totalWeights;
}
return { weights, alpha_t, terminate };
}
std::unordered_set<int> BoostAODE::initializeModels()
{
std::unordered_set<int> featuresUsed;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
int maxFeatures = 0;
if (select_features_algorithm == SelectFeatures.CFS) {
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
} else if (select_features_algorithm == SelectFeatures.IWSS) {
if (threshold < 0 || threshold >0.5) {
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
}
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
} else if (select_features_algorithm == SelectFeatures.FCBF) {
if (threshold < 1e-7 || threshold > 1) {
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
}
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
}
featureSelector->fit();
auto cfsFeatures = featureSelector->getFeatures();
for (const int& feature : cfsFeatures) {
featuresUsed.insert(feature);
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
models.push_back(std::move(model));
significanceModels.push_back(1.0);
n_models++;
}
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
delete featureSelector;
return featuresUsed;
}
torch::Tensor BoostAODE::ensemble_predict(torch::Tensor& X, SPODE* model)
{
if (initialize_prob_table) {
initialize_prob_table = false;
prob_table = model->predict_proba(X) * 1.0;
} else {
prob_table += model->predict_proba(X) * 1.0;
}
// prob_table doesn't store probabilities but the sum of them
// to have them we need to divide by the sum of the "weights" used to
// consider the results obtanined in the model's predict_proba.
return prob_table.argmax(1);
}
void BoostAODE::trainModel(const torch::Tensor& weights)
{
// Algorithm based on the adaboost algorithm for classification
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
initialize_prob_table = true;
fitted = true;
double alpha_t = 0;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
bool exitCondition = false;
std::unordered_set<int> featuresUsed;
if (selectFeatures) {
featuresUsed = initializeModels();
auto ypred = predict(X_train);
std::tie(weights_, alpha_t, exitCondition) = update_weights(y_train, ypred, weights_);
// Update significance of the models
for (int i = 0; i < n_models; ++i) {
significanceModels[i] = alpha_t;
}
if (exitCondition) {
return;
}
}
bool resetMaxModels = false;
if (maxModels == 0) {
maxModels = .1 * n > 10 ? .1 * n : n;
resetMaxModels = true; // Flag to unset maxModels
}
// Variables to control the accuracy finish condition
double priorAccuracy = 0.0;
double delta = 1.0;
double convergence_threshold = 1e-4;
int count = 0; // number of times the accuracy is lower than the convergence_threshold
// Step 0: Set the finish condition
// if not repeatSparent a finish condition is run out of features
// n_models == maxModels
// epsilon sub t > 0.5 => inverse the weights policy
// validation error is not decreasing
bool ascending = order_algorithm == Orders.ASC;
std::mt19937 g{ 173 };
while (!exitCondition) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
if (order_algorithm == Orders.RAND) {
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
}
auto feature = featureSelection[0];
if (!repeatSparent || featuresUsed.size() < featureSelection.size()) {
bool used = true;
for (const auto& feat : featureSelection) {
if (std::find(featuresUsed.begin(), featuresUsed.end(), feat) != featuresUsed.end()) {
continue;
}
used = false;
feature = feat;
break;
}
if (used) {
exitCondition = true;
continue;
}
}
std::unique_ptr<Classifier> model;
model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
torch::Tensor ypred;
if (predict_single) {
ypred = model->predict(X_train);
} else {
ypred = ensemble_predict(X_train, dynamic_cast<SPODE*>(model.get()));
}
// Step 3.1: Compute the classifier amout of say
std::tie(weights_, alpha_t, exitCondition) = update_weights(y_train, ypred, weights_);
if (exitCondition) {
break;
}
// Step 3.4: Store classifier and its accuracy to weigh its future vote
featuresUsed.insert(feature);
models.push_back(std::move(model));
significanceModels.push_back(alpha_t);
n_models++;
if (convergence) {
auto y_val_predict = predict(X_test);
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
if (priorAccuracy == 0) {
priorAccuracy = accuracy;
} else {
delta = accuracy - priorAccuracy;
}
if (delta < convergence_threshold) {
count++;
}
priorAccuracy = accuracy;
}
exitCondition = n_models >= maxModels && repeatSparent || count > tolerance;
}
if (featuresUsed.size() != features.size()) {
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
status = WARNING;
}
notes.push_back("Number of models: " + std::to_string(n_models));
if (resetMaxModels) {
maxModels = 0;
}
}
std::vector<std::string> BoostAODE::graph(const std::string& title) const
{
return Ensemble::graph(title);
}
}

View File

@@ -0,0 +1,37 @@
#ifndef BOOSTAODE_H
#define BOOSTAODE_H
#include <map>
#include "bayesnet/classifiers/SPODE.h"
#include "bayesnet/feature_selection/FeatureSelect.h"
#include "Ensemble.h"
namespace bayesnet {
class BoostAODE : public Ensemble {
public:
BoostAODE(bool predict_voting = true);
virtual ~BoostAODE() = default;
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
void setHyperparameters(const nlohmann::json& hyperparameters) override;
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights) override;
private:
std::unordered_set<int> initializeModels();
torch::Tensor ensemble_predict(torch::Tensor& X, SPODE* model);
torch::Tensor dataset_;
torch::Tensor X_train, y_train, X_test, y_test;
// Hyperparameters
bool repeatSparent = false; // if true, a feature can be selected more than once
int maxModels = 0;
int tolerance = 0;
bool predict_single = true; // wether the last model is used to predict in training or the whole ensemble
std::string order_algorithm; // order to process the KBest features asc, desc, rand
bool convergence = false; //if true, stop when the model does not improve
bool selectFeatures = false; // if true, use feature selection
std::string select_features_algorithm = "desc"; // Selected feature selection algorithm
bool initialize_prob_table; // if true, initialize the prob_table with the first model (used in train)
torch::Tensor prob_table; // Table of probabilities for ensemble predicting if predict_single is false
FeatureSelect* featureSelector = nullptr;
double threshold = -1;
};
}
#endif

View File

@@ -0,0 +1,216 @@
#include "Ensemble.h"
namespace bayesnet {
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
{
};
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
void Ensemble::trainModel(const torch::Tensor& weights)
{
n_models = models.size();
for (auto i = 0; i < n_models; ++i) {
// fit with std::vectors
models[i]->fit(dataset, features, className, states);
}
}
std::vector<int> Ensemble::compute_arg_max(std::vector<std::vector<double>>& X)
{
std::vector<int> y_pred;
for (auto i = 0; i < X.size(); ++i) {
auto max = std::max_element(X[i].begin(), X[i].end());
y_pred.push_back(std::distance(X[i].begin(), max));
}
return y_pred;
}
torch::Tensor Ensemble::compute_arg_max(torch::Tensor& X)
{
auto y_pred = torch::argmax(X, 1);
return y_pred;
}
torch::Tensor Ensemble::voting(torch::Tensor& votes)
{
// Convert m x n_models tensor to a m x n_class_states with voting probabilities
auto y_pred_ = votes.accessor<int, 2>();
std::vector<int> y_pred_final;
int numClasses = states.at(className).size();
// votes is m x n_models with the prediction of every model for each sample
auto result = torch::zeros({ votes.size(0), numClasses }, torch::kFloat32);
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
for (int i = 0; i < votes.size(0); ++i) {
// n_votes store in each index (value of class) the significance added by each model
// i.e. n_votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
std::vector<double> n_votes(numClasses, 0.0);
for (int j = 0; j < n_models; ++j) {
n_votes[y_pred_[i][j]] += significanceModels.at(j);
}
result[i] = torch::tensor(n_votes);
}
// To only do one division and gain precision
result /= sum;
return result;
}
std::vector<std::vector<double>> Ensemble::predict_proba(std::vector<std::vector<int>>& X)
{
if (!fitted) {
throw std::logic_error(ENSEMBLE_NOT_FITTED);
}
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
}
torch::Tensor Ensemble::predict_proba(torch::Tensor& X)
{
if (!fitted) {
throw std::logic_error(ENSEMBLE_NOT_FITTED);
}
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
}
std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
{
auto res = predict_proba(X);
return compute_arg_max(res);
}
torch::Tensor Ensemble::predict(torch::Tensor& X)
{
auto res = predict_proba(X);
return compute_arg_max(res);
}
torch::Tensor Ensemble::predict_average_proba(torch::Tensor& X)
{
auto n_states = models[0]->getClassNumStates();
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
auto threads{ std::vector<std::thread>() };
std::mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(std::thread([&, i]() {
auto ypredict = models[i]->predict_proba(X);
std::lock_guard<std::mutex> lock(mtx);
y_pred += ypredict * significanceModels[i];
}));
}
for (auto& thread : threads) {
thread.join();
}
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
y_pred /= sum;
return y_pred;
}
std::vector<std::vector<double>> Ensemble::predict_average_proba(std::vector<std::vector<int>>& X)
{
auto n_states = models[0]->getClassNumStates();
std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
auto threads{ std::vector<std::thread>() };
std::mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(std::thread([&, i]() {
auto ypredict = models[i]->predict_proba(X);
assert(ypredict.size() == y_pred.size());
assert(ypredict[0].size() == y_pred[0].size());
std::lock_guard<std::mutex> lock(mtx);
// Multiply each prediction by the significance of the model and then add it to the final prediction
for (auto j = 0; j < ypredict.size(); ++j) {
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
}
}));
}
for (auto& thread : threads) {
thread.join();
}
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
//Divide each element of the prediction by the sum of the significances
for (auto j = 0; j < y_pred.size(); ++j) {
std::transform(y_pred[j].begin(), y_pred[j].end(), y_pred[j].begin(), [sum](double x) { return x / sum; });
}
return y_pred;
}
std::vector<std::vector<double>> Ensemble::predict_average_voting(std::vector<std::vector<int>>& X)
{
torch::Tensor Xt = bayesnet::vectorToTensor(X, false);
auto y_pred = predict_average_voting(Xt);
std::vector<std::vector<double>> result = tensorToVectorDouble(y_pred);
return result;
}
torch::Tensor Ensemble::predict_average_voting(torch::Tensor& X)
{
// Build a m x n_models tensor with the predictions of each model
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
auto threads{ std::vector<std::thread>() };
std::mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(std::thread([&, i]() {
auto ypredict = models[i]->predict(X);
std::lock_guard<std::mutex> lock(mtx);
y_pred.index_put_({ "...", i }, ypredict);
}));
}
for (auto& thread : threads) {
thread.join();
}
return voting(y_pred);
}
float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
{
auto y_pred = predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(0); ++i) {
if (y_pred[i].item<int>() == y[i].item<int>()) {
correct++;
}
}
return (double)correct / y_pred.size(0);
}
float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
{
auto y_pred = predict(X);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == y[i]) {
correct++;
}
}
return (double)correct / y_pred.size();
}
std::vector<std::string> Ensemble::show() const
{
auto result = std::vector<std::string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->show();
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
std::vector<std::string> Ensemble::graph(const std::string& title) const
{
auto result = std::vector<std::string>();
for (auto i = 0; i < n_models; ++i) {
auto res = models[i]->graph(title + "_" + std::to_string(i));
result.insert(result.end(), res.begin(), res.end());
}
return result;
}
int Ensemble::getNumberOfNodes() const
{
int nodes = 0;
for (auto i = 0; i < n_models; ++i) {
nodes += models[i]->getNumberOfNodes();
}
return nodes;
}
int Ensemble::getNumberOfEdges() const
{
int edges = 0;
for (auto i = 0; i < n_models; ++i) {
edges += models[i]->getNumberOfEdges();
}
return edges;
}
int Ensemble::getNumberOfStates() const
{
int nstates = 0;
for (auto i = 0; i < n_models; ++i) {
nstates += models[i]->getNumberOfStates();
}
return nstates;
}
}

View File

@@ -0,0 +1,46 @@
#ifndef ENSEMBLE_H
#define ENSEMBLE_H
#include <torch/torch.h>
#include "bayesnet/utils/BayesMetrics.h"
#include "bayesnet/utils/bayesnetUtils.h"
#include "bayesnet/classifiers/Classifier.h"
namespace bayesnet {
class Ensemble : public Classifier {
public:
Ensemble(bool predict_voting = true);
virtual ~Ensemble() = default;
torch::Tensor predict(torch::Tensor& X) override;
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
torch::Tensor predict_proba(torch::Tensor& X) override;
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
float score(torch::Tensor& X, torch::Tensor& y) override;
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
std::vector<std::string> show() const override;
std::vector<std::string> graph(const std::string& title) const override;
std::vector<std::string> topological_order() override
{
return std::vector<std::string>();
}
void dump_cpt() const override
{
}
protected:
torch::Tensor predict_average_voting(torch::Tensor& X);
std::vector<std::vector<double>> predict_average_voting(std::vector<std::vector<int>>& X);
torch::Tensor predict_average_proba(torch::Tensor& X);
std::vector<std::vector<double>> predict_average_proba(std::vector<std::vector<int>>& X);
torch::Tensor compute_arg_max(torch::Tensor& X);
std::vector<int> compute_arg_max(std::vector<std::vector<double>>& X);
torch::Tensor voting(torch::Tensor& votes);
unsigned n_models;
std::vector<std::unique_ptr<Classifier>> models;
std::vector<double> significanceModels;
void trainModel(const torch::Tensor& weights) override;
bool predict_voting;
};
}
#endif

View File

@@ -0,0 +1,72 @@
#include <limits>
#include "bayesnet/utils/bayesnetUtils.h"
#include "CFS.h"
namespace bayesnet {
void CFS::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto continueCondition = true;
auto feature = featureOrder[0];
selectedFeatures.push_back(feature);
selectedScores.push_back(suLabels[feature]);
selectedFeatures.erase(selectedFeatures.begin());
while (continueCondition) {
double merit = std::numeric_limits<double>::lowest();
int bestFeature = -1;
for (auto feature : featureOrder) {
selectedFeatures.push_back(feature);
// Compute merit with selectedFeatures
auto meritNew = computeMeritCFS();
if (meritNew > merit) {
merit = meritNew;
bestFeature = feature;
}
selectedFeatures.pop_back();
}
if (bestFeature == -1) {
// meritNew has to be nan due to constant features
break;
}
selectedFeatures.push_back(bestFeature);
selectedScores.push_back(merit);
featureOrder.erase(remove(featureOrder.begin(), featureOrder.end(), bestFeature), featureOrder.end());
continueCondition = computeContinueCondition(featureOrder);
}
fitted = true;
}
bool CFS::computeContinueCondition(const std::vector<int>& featureOrder)
{
if (selectedFeatures.size() == maxFeatures || featureOrder.size() == 0) {
return false;
}
if (selectedScores.size() >= 5) {
/*
"To prevent the best first search from exploring the entire
feature subset search space, a stopping criterion is imposed.
The search will terminate if five consecutive fully expanded
subsets show no improvement over the current best subset."
as stated in Mark A.Hall Thesis
*/
double item_ant = std::numeric_limits<double>::lowest();
int num = 0;
std::vector<double> lastFive(selectedScores.end() - 5, selectedScores.end());
for (auto item : lastFive) {
if (item_ant == std::numeric_limits<double>::lowest()) {
item_ant = item;
}
if (item > item_ant) {
break;
} else {
num++;
item_ant = item;
}
}
if (num == 5) {
return false;
}
}
return true;
}
}

View File

@@ -0,0 +1,20 @@
#ifndef CFS_H
#define CFS_H
#include <torch/torch.h>
#include <vector>
#include "bayesnet/feature_selection/FeatureSelect.h"
namespace bayesnet {
class CFS : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
CFS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights)
{
}
virtual ~CFS() {};
void fit() override;
private:
bool computeContinueCondition(const std::vector<int>& featureOrder);
};
}
#endif

View File

@@ -0,0 +1,44 @@
#include "bayesnet/utils/bayesnetUtils.h"
#include "FCBF.h"
namespace bayesnet {
FCBF::FCBF(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
{
if (threshold < 1e-7) {
throw std::invalid_argument("Threshold cannot be less than 1e-7");
}
}
void FCBF::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto featureOrderCopy = featureOrder;
for (const auto& feature : featureOrder) {
// Don't self compare
featureOrderCopy.erase(featureOrderCopy.begin());
if (suLabels.at(feature) == 0.0) {
// The feature has been removed from the list
continue;
}
if (suLabels.at(feature) < threshold) {
break;
}
// Remove redundant features
for (const auto& featureCopy : featureOrderCopy) {
double value = computeSuFeatures(feature, featureCopy);
if (value >= suLabels.at(featureCopy)) {
// Remove feature from list
suLabels[featureCopy] = 0.0;
}
}
selectedFeatures.push_back(feature);
selectedScores.push_back(suLabels[feature]);
if (selectedFeatures.size() == maxFeatures) {
break;
}
}
fitted = true;
}
}

View File

@@ -0,0 +1,17 @@
#ifndef FCBF_H
#define FCBF_H
#include <torch/torch.h>
#include <vector>
#include "bayesnet/feature_selection/FeatureSelect.h"
namespace bayesnet {
class FCBF : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
FCBF(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
virtual ~FCBF() {};
void fit() override;
private:
double threshold = -1;
};
}
#endif

View File

@@ -0,0 +1,78 @@
#include <limits>
#include "bayesnet/utils/bayesnetUtils.h"
#include "FeatureSelect.h"
namespace bayesnet {
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
{
}
void FeatureSelect::initialize()
{
selectedFeatures.clear();
selectedScores.clear();
}
double FeatureSelect::symmetricalUncertainty(int a, int b)
{
/*
Compute symmetrical uncertainty. Normalize* information gain (mutual
information) with the entropies of the features in order to compensate
the bias due to high cardinality features. *Range [0, 1]
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
*/
auto x = samples.index({ a, "..." });
auto y = samples.index({ b, "..." });
auto mu = mutualInformation(x, y, weights);
auto hx = entropy(x, weights);
auto hy = entropy(y, weights);
return 2.0 * mu / (hx + hy);
}
void FeatureSelect::computeSuLabels()
{
// Compute Simmetrical Uncertainty between features and labels
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
for (int i = 0; i < features.size(); ++i) {
suLabels.push_back(symmetricalUncertainty(i, -1));
}
}
double FeatureSelect::computeSuFeatures(const int firstFeature, const int secondFeature)
{
// Compute Simmetrical Uncertainty between features
// https://en.wikipedia.org/wiki/Symmetric_uncertainty
try {
return suFeatures.at({ firstFeature, secondFeature });
}
catch (const std::out_of_range& e) {
double result = symmetricalUncertainty(firstFeature, secondFeature);
suFeatures[{firstFeature, secondFeature}] = result;
return result;
}
}
double FeatureSelect::computeMeritCFS()
{
double rcf = 0;
for (auto feature : selectedFeatures) {
rcf += suLabels[feature];
}
double rff = 0;
int n = selectedFeatures.size();
for (const auto& item : doCombinations(selectedFeatures)) {
rff += computeSuFeatures(item.first, item.second);
}
return rcf / sqrt(n + (n * n - n) * rff);
}
std::vector<int> FeatureSelect::getFeatures() const
{
if (!fitted) {
throw std::runtime_error("FeatureSelect not fitted");
}
return selectedFeatures;
}
std::vector<double> FeatureSelect::getScores() const
{
if (!fitted) {
throw std::runtime_error("FeatureSelect not fitted");
}
return selectedScores;
}
}

View File

@@ -0,0 +1,30 @@
#ifndef FEATURE_SELECT_H
#define FEATURE_SELECT_H
#include <torch/torch.h>
#include <vector>
#include "bayesnet/utils/BayesMetrics.h"
namespace bayesnet {
class FeatureSelect : public Metrics {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights);
virtual ~FeatureSelect() {};
virtual void fit() = 0;
std::vector<int> getFeatures() const;
std::vector<double> getScores() const;
protected:
void initialize();
void computeSuLabels();
double computeSuFeatures(const int a, const int b);
double symmetricalUncertainty(int a, int b);
double computeMeritCFS();
const torch::Tensor& weights;
int maxFeatures;
std::vector<int> selectedFeatures;
std::vector<double> selectedScores;
std::vector<double> suLabels;
std::map<std::pair<int, int>, double> suFeatures;
bool fitted = false;
};
}
#endif

View File

@@ -0,0 +1,47 @@
#include <limits>
#include "bayesnet/utils/bayesnetUtils.h"
#include "IWSS.h"
namespace bayesnet {
IWSS::IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
{
if (threshold < 0 || threshold > .5) {
throw std::invalid_argument("Threshold has to be in [0, 0.5]");
}
}
void IWSS::fit()
{
initialize();
computeSuLabels();
auto featureOrder = argsort(suLabels); // sort descending order
auto featureOrderCopy = featureOrder;
// Add first and second features to result
// First with its own score
auto first_feature = pop_first(featureOrderCopy);
selectedFeatures.push_back(first_feature);
selectedScores.push_back(suLabels.at(first_feature));
// Second with the score of the candidates
selectedFeatures.push_back(pop_first(featureOrderCopy));
auto merit = computeMeritCFS();
selectedScores.push_back(merit);
for (const auto feature : featureOrderCopy) {
selectedFeatures.push_back(feature);
// Compute merit with selectedFeatures
auto meritNew = computeMeritCFS();
double delta = merit != 0.0 ? std::abs(merit - meritNew) / merit : 0.0;
if (meritNew > merit || delta < threshold) {
if (meritNew > merit) {
merit = meritNew;
}
selectedScores.push_back(meritNew);
} else {
selectedFeatures.pop_back();
break;
}
if (selectedFeatures.size() == maxFeatures) {
break;
}
}
fitted = true;
}
}

View File

@@ -0,0 +1,17 @@
#ifndef IWSS_H
#define IWSS_H
#include <vector>
#include <torch/torch.h>
#include "FeatureSelect.h"
namespace bayesnet {
class IWSS : public FeatureSelect {
public:
// dataset is a n+1xm tensor of integers where dataset[-1] is the y std::vector
IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold);
virtual ~IWSS() {};
void fit() override;
private:
double threshold = -1;
};
}
#endif

View File

@@ -1,20 +1,20 @@
#include <thread>
#include <mutex>
#include "Network.h"
#include "bayesnetUtils.h"
#include "bayesnet/utils/bayesnetUtils.h"
namespace bayesnet {
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
Network::Network() : features(std::vector<std::string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
Network::Network(float maxT) : features(std::vector<std::string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
getmaxThreads()), fitted(other.fitted)
{
for (const auto& pair : other.nodes) {
nodes[pair.first] = std::make_unique<Node>(*pair.second);
for (const auto& node : other.nodes) {
nodes[node.first] = std::make_unique<Node>(*node.second);
}
}
void Network::initialize()
{
features = vector<string>();
features = std::vector<std::string>();
className = "";
classNumStates = 0;
fitted = false;
@@ -29,10 +29,10 @@ namespace bayesnet {
{
return samples;
}
void Network::addNode(const string& name)
void Network::addNode(const std::string& name)
{
if (name == "") {
throw invalid_argument("Node name cannot be empty");
throw std::invalid_argument("Node name cannot be empty");
}
if (nodes.find(name) != nodes.end()) {
return;
@@ -42,7 +42,7 @@ namespace bayesnet {
}
nodes[name] = std::make_unique<Node>(name);
}
vector<string> Network::getFeatures() const
std::vector<std::string> Network::getFeatures() const
{
return features;
}
@@ -58,11 +58,11 @@ namespace bayesnet {
}
return result;
}
string Network::getClassName() const
std::string Network::getClassName() const
{
return className;
}
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
bool Network::isCyclic(const std::string& nodeId, std::unordered_set<std::string>& visited, std::unordered_set<std::string>& recStack)
{
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
{
@@ -71,85 +71,85 @@ namespace bayesnet {
for (Node* child : nodes[nodeId]->getChildren()) {
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
return true;
else if (recStack.find(child->getName()) != recStack.end())
if (recStack.find(child->getName()) != recStack.end())
return true;
}
}
recStack.erase(nodeId); // remove node from recursion stack before function ends
return false;
}
void Network::addEdge(const string& parent, const string& child)
void Network::addEdge(const std::string& parent, const std::string& child)
{
if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist");
throw std::invalid_argument("Parent node " + parent + " does not exist");
}
if (nodes.find(child) == nodes.end()) {
throw invalid_argument("Child node " + child + " does not exist");
throw std::invalid_argument("Child node " + child + " does not exist");
}
// Temporarily add edge to check for cycles
nodes[parent]->addChild(nodes[child].get());
nodes[child]->addParent(nodes[parent].get());
unordered_set<string> visited;
unordered_set<string> recStack;
std::unordered_set<std::string> visited;
std::unordered_set<std::string> recStack;
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
{
// remove problematic edge
nodes[parent]->removeChild(nodes[child].get());
nodes[child]->removeParent(nodes[parent].get());
throw invalid_argument("Adding this edge forms a cycle in the graph.");
throw std::invalid_argument("Adding this edge forms a cycle in the graph.");
}
}
map<string, std::unique_ptr<Node>>& Network::getNodes()
std::map<std::string, std::unique_ptr<Node>>& Network::getNodes()
{
return nodes;
}
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
if (weights.size(0) != n_samples) {
throw invalid_argument("Weights (" + to_string(weights.size(0)) + ") must have the same number of elements as samples (" + to_string(n_samples) + ") in Network::fit");
throw std::invalid_argument("Weights (" + std::to_string(weights.size(0)) + ") must have the same number of elements as samples (" + std::to_string(n_samples) + ") in Network::fit");
}
if (n_samples != n_samples_y) {
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
throw std::invalid_argument("X and y must have the same number of samples in Network::fit (" + std::to_string(n_samples) + " != " + std::to_string(n_samples_y) + ")");
}
if (n_features != featureNames.size()) {
throw invalid_argument("X and features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(featureNames.size()) + ")");
throw std::invalid_argument("X and features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(featureNames.size()) + ")");
}
if (n_features != features.size() - 1) {
throw invalid_argument("X and local features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(features.size() - 1) + ")");
throw std::invalid_argument("X and local features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(features.size() - 1) + ")");
}
if (find(features.begin(), features.end(), className) == features.end()) {
throw invalid_argument("className not found in Network::features");
throw std::invalid_argument("className not found in Network::features");
}
for (auto& feature : featureNames) {
if (find(features.begin(), features.end(), feature) == features.end()) {
throw invalid_argument("Feature " + feature + " not found in Network::features");
throw std::invalid_argument("Feature " + feature + " not found in Network::features");
}
if (states.find(feature) == states.end()) {
throw invalid_argument("Feature " + feature + " not found in states");
throw std::invalid_argument("Feature " + feature + " not found in states");
}
}
}
void Network::setStates(const map<string, vector<int>>& states)
void Network::setStates(const std::map<std::string, std::vector<int>>& states)
{
// Set states to every Node in the network
for_each(features.begin(), features.end(), [this, &states](const string& feature) {
for_each(features.begin(), features.end(), [this, &states](const std::string& feature) {
nodes.at(feature)->setNumStates(states.at(feature).size());
});
classNumStates = nodes.at(className)->getNumStates();
}
// X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
{
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
this->className = className;
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
torch::Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X , ytmp }, 0);
for (int i = 0; i < featureNames.size(); ++i) {
auto row_feature = X.index({ i, "..." });
}
completeFit(states, weights);
}
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
{
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
this->className = className;
@@ -157,7 +157,7 @@ namespace bayesnet {
completeFit(states, weights);
}
// input_data comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
{
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
@@ -170,11 +170,11 @@ namespace bayesnet {
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
completeFit(states, weights);
}
void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
{
setStates(states);
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
vector<thread> threads;
std::vector<std::thread> threads;
for (auto& node : nodes) {
threads.emplace_back([this, &node, &weights]() {
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
@@ -188,12 +188,12 @@ namespace bayesnet {
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict()");
throw std::logic_error("You must call fit() before calling predict()");
}
torch::Tensor result;
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
for (int i = 0; i < samples.size(1); ++i) {
const Tensor sample = samples.index({ "...", i });
const torch::Tensor sample = samples.index({ "...", i });
auto psample = predict_sample(sample);
auto temp = torch::tensor(psample, torch::kFloat64);
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
@@ -201,36 +201,35 @@ namespace bayesnet {
}
if (proba)
return result;
else
return result.argmax(1);
return result.argmax(1);
}
// Return mxn tensor of probabilities
Tensor Network::predict_proba(const Tensor& samples)
torch::Tensor Network::predict_proba(const torch::Tensor& samples)
{
return predict_tensor(samples, true);
}
// Return mxn tensor of probabilities
Tensor Network::predict(const Tensor& samples)
torch::Tensor Network::predict(const torch::Tensor& samples)
{
return predict_tensor(samples, false);
}
// Return mx1 vector of predictions
// tsamples is nxm vector of samples
vector<int> Network::predict(const vector<vector<int>>& tsamples)
// Return mx1 std::vector of predictions
// tsamples is nxm std::vector of samples
std::vector<int> Network::predict(const std::vector<std::vector<int>>& tsamples)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict()");
throw std::logic_error("You must call fit() before calling predict()");
}
vector<int> predictions;
vector<int> sample;
std::vector<int> predictions;
std::vector<int> sample;
for (int row = 0; row < tsamples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < tsamples.size(); ++col) {
sample.push_back(tsamples[col][row]);
}
vector<double> classProbabilities = predict_sample(sample);
std::vector<double> classProbabilities = predict_sample(sample);
// Find the class with the maximum posterior probability
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
int predictedClass = distance(classProbabilities.begin(), maxElem);
@@ -238,14 +237,15 @@ namespace bayesnet {
}
return predictions;
}
// Return mxn vector of probabilities
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
// Return mxn std::vector of probabilities
// tsamples is nxm std::vector of samples
std::vector<std::vector<double>> Network::predict_proba(const std::vector<std::vector<int>>& tsamples)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict_proba()");
throw std::logic_error("You must call fit() before calling predict_proba()");
}
vector<vector<double>> predictions;
vector<int> sample;
std::vector<std::vector<double>> predictions;
std::vector<int> sample;
for (int row = 0; row < tsamples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < tsamples.size(); ++col) {
@@ -255,9 +255,9 @@ namespace bayesnet {
}
return predictions;
}
double Network::score(const vector<vector<int>>& tsamples, const vector<int>& labels)
double Network::score(const std::vector<std::vector<int>>& tsamples, const std::vector<int>& labels)
{
vector<int> y_pred = predict(tsamples);
std::vector<int> y_pred = predict(tsamples);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == labels[i]) {
@@ -266,35 +266,35 @@ namespace bayesnet {
}
return (double)correct / y_pred.size();
}
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const vector<int>& sample)
// Return 1xn std::vector of probabilities
std::vector<double> Network::predict_sample(const std::vector<int>& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size() != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size()) +
") does not match the number of features (" + to_string(features.size() - 1) + ")");
throw std::invalid_argument("Sample size (" + std::to_string(sample.size()) +
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
}
map<string, int> evidence;
std::map<std::string, int> evidence;
for (int i = 0; i < sample.size(); ++i) {
evidence[features[i]] = sample[i];
}
return exactInference(evidence);
}
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const Tensor& sample)
// Return 1xn std::vector of probabilities
std::vector<double> Network::predict_sample(const torch::Tensor& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size(0) != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size(0)) +
") does not match the number of features (" + to_string(features.size() - 1) + ")");
throw std::invalid_argument("Sample size (" + std::to_string(sample.size(0)) +
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
}
map<string, int> evidence;
std::map<std::string, int> evidence;
for (int i = 0; i < sample.size(0); ++i) {
evidence[features[i]] = sample[i].item<int>();
}
return exactInference(evidence);
}
double Network::computeFactor(map<string, int>& completeEvidence)
double Network::computeFactor(std::map<std::string, int>& completeEvidence)
{
double result = 1.0;
for (auto& node : getNodes()) {
@@ -302,17 +302,17 @@ namespace bayesnet {
}
return result;
}
vector<double> Network::exactInference(map<string, int>& evidence)
std::vector<double> Network::exactInference(std::map<std::string, int>& evidence)
{
vector<double> result(classNumStates, 0.0);
vector<thread> threads;
mutex mtx;
std::vector<double> result(classNumStates, 0.0);
std::vector<std::thread> threads;
std::mutex mtx;
for (int i = 0; i < classNumStates; ++i) {
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
auto completeEvidence = map<string, int>(evidence);
auto completeEvidence = std::map<std::string, int>(evidence);
completeEvidence[getClassName()] = i;
double factor = computeFactor(completeEvidence);
lock_guard<mutex> lock(mtx);
std::lock_guard<std::mutex> lock(mtx);
result[i] = factor;
});
}
@@ -324,12 +324,12 @@ namespace bayesnet {
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
return result;
}
vector<string> Network::show() const
std::vector<std::string> Network::show() const
{
vector<string> result;
std::vector<std::string> result;
// Draw the network
for (auto& node : nodes) {
string line = node.first + " -> ";
std::string line = node.first + " -> ";
for (auto child : node.second->getChildren()) {
line += child->getName() + ", ";
}
@@ -337,12 +337,12 @@ namespace bayesnet {
}
return result;
}
vector<string> Network::graph(const string& title) const
std::vector<std::string> Network::graph(const std::string& title) const
{
auto output = vector<string>();
auto output = std::vector<std::string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
auto suffix = ">\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n";
string header = prefix + title + suffix;
std::string header = prefix + title + suffix;
output.push_back(header);
for (auto& node : nodes) {
auto result = node.second->graph(className);
@@ -351,9 +351,9 @@ namespace bayesnet {
output.push_back("}\n");
return output;
}
vector<pair<string, string>> Network::getEdges() const
std::vector<std::pair<std::string, std::string>> Network::getEdges() const
{
auto edges = vector<pair<string, string>>();
auto edges = std::vector<std::pair<std::string, std::string>>();
for (const auto& node : nodes) {
auto head = node.first;
for (const auto& child : node.second->getChildren()) {
@@ -367,7 +367,7 @@ namespace bayesnet {
{
return getEdges().size();
}
vector<string> Network::topological_sort()
std::vector<std::string> Network::topological_sort()
{
/* Check if al the fathers of every node are before the node */
auto result = features;
@@ -394,10 +394,10 @@ namespace bayesnet {
ending = false;
}
} else {
throw logic_error("Error in topological sort because of node " + feature + " is not in result");
throw std::logic_error("Error in topological sort because of node " + feature + " is not in result");
}
} else {
throw logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
throw std::logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
}
}
}
@@ -407,8 +407,8 @@ namespace bayesnet {
void Network::dump_cpt() const
{
for (auto& node : nodes) {
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
cout << node.second->getCPT() << endl;
std::cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << std::endl;
std::cout << node.second->getCPT() << std::endl;
}
}
}

View File

@@ -0,0 +1,63 @@
#ifndef NETWORK_H
#define NETWORK_H
#include <map>
#include <vector>
#include "bayesnet/config.h"
#include "Node.h"
namespace bayesnet {
class Network {
public:
Network();
explicit Network(float);
explicit Network(Network&);
~Network() = default;
torch::Tensor& getSamples();
float getmaxThreads();
void addNode(const std::string&);
void addEdge(const std::string&, const std::string&);
std::map<std::string, std::unique_ptr<Node>>& getNodes();
std::vector<std::string> getFeatures() const;
int getStates() const;
std::vector<std::pair<std::string, std::string>> getEdges() const;
int getNumEdges() const;
int getClassNumStates() const;
std::string getClassName() const;
/*
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
*/
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
std::vector<int> predict(const std::vector<std::vector<int>>&); // Return mx1 std::vector of predictions
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
std::vector<std::vector<double>> predict_proba(const std::vector<std::vector<int>>&); // Return mxn std::vector of probabilities
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
double score(const std::vector<std::vector<int>>&, const std::vector<int>&);
std::vector<std::string> topological_sort();
std::vector<std::string> show() const;
std::vector<std::string> graph(const std::string& title) const; // Returns a std::vector of std::strings representing the graph in graphviz format
void initialize();
void dump_cpt() const;
inline std::string version() { return { project_version.begin(), project_version.end() }; }
private:
std::map<std::string, std::unique_ptr<Node>> nodes;
bool fitted;
float maxThreads = 0.95;
int classNumStates;
std::vector<std::string> features; // Including classname
std::string className;
double laplaceSmoothing;
torch::Tensor samples; // nxm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
std::vector<double> predict_sample(const std::vector<int>&);
std::vector<double> predict_sample(const torch::Tensor&);
std::vector<double> exactInference(std::map<std::string, int>&);
double computeFactor(std::map<std::string, int>&);
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void setStates(const std::map<std::string, std::vector<int>>&);
};
}
#endif

View File

@@ -3,7 +3,7 @@
namespace bayesnet {
Node::Node(const std::string& name)
: name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
: name(name), numStates(0), cpTable(torch::Tensor()), parents(std::vector<Node*>()), children(std::vector<Node*>())
{
}
void Node::clear()
@@ -14,7 +14,7 @@ namespace bayesnet {
dimensions.clear();
numStates = 0;
}
string Node::getName() const
std::string Node::getName() const
{
return name;
}
@@ -34,11 +34,11 @@ namespace bayesnet {
{
children.push_back(child);
}
vector<Node*>& Node::getParents()
std::vector<Node*>& Node::getParents()
{
return parents;
}
vector<Node*>& Node::getChildren()
std::vector<Node*>& Node::getChildren()
{
return children;
}
@@ -63,28 +63,28 @@ namespace bayesnet {
*/
unsigned Node::minFill()
{
unordered_set<string> neighbors;
std::unordered_set<std::string> neighbors;
for (auto child : children) {
neighbors.emplace(child->getName());
}
for (auto parent : parents) {
neighbors.emplace(parent->getName());
}
auto source = vector<string>(neighbors.begin(), neighbors.end());
auto source = std::vector<std::string>(neighbors.begin(), neighbors.end());
return combinations(source).size();
}
vector<pair<string, string>> Node::combinations(const vector<string>& source)
std::vector<std::pair<std::string, std::string>> Node::combinations(const std::vector<std::string>& source)
{
vector<pair<string, string>> result;
std::vector<std::pair<std::string, std::string>> result;
for (int i = 0; i < source.size(); ++i) {
string temp = source[i];
std::string temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
{
dimensions.clear();
// Get dimensions of the CPT
@@ -96,7 +96,7 @@ namespace bayesnet {
// Fill table with counts
auto pos = find(features.begin(), features.end(), name);
if (pos == features.end()) {
throw logic_error("Feature " + name + " not found in dataset");
throw std::logic_error("Feature " + name + " not found in dataset");
}
int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
@@ -105,7 +105,7 @@ namespace bayesnet {
for (auto parent : parents) {
pos = find(features.begin(), features.end(), parent->getName());
if (pos == features.end()) {
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset");
}
int parent_index = pos - features.begin();
coordinates.push_back(dataset.index({ parent_index, n_sample }));
@@ -116,17 +116,17 @@ namespace bayesnet {
// Normalize the counts
cpTable = cpTable / cpTable.sum(0);
}
float Node::getFactorValue(map<string, int>& evidence)
float Node::getFactorValue(std::map<std::string, int>& evidence)
{
c10::List<c10::optional<at::Tensor>> coordinates;
// following predetermined order of indices in the cpTable (see Node.h)
coordinates.push_back(at::tensor(evidence[name]));
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
return cpTable.index({ coordinates }).item<float>();
}
vector<string> Node::graph(const string& className)
std::vector<std::string> Node::graph(const std::string& className)
{
auto output = vector<string>();
auto output = std::vector<std::string>();
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
output.push_back(name + " [shape=circle" + suffix + "] \n");
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });

36
bayesnet/network/Node.h Normal file
View File

@@ -0,0 +1,36 @@
#ifndef NODE_H
#define NODE_H
#include <unordered_set>
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class Node {
private:
std::string name;
std::vector<Node*> parents;
std::vector<Node*> children;
int numStates; // number of states of the variable
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
std::vector<int64_t> dimensions; // dimensions of the cpTable
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
public:
explicit Node(const std::string&);
void clear();
void addParent(Node*);
void addChild(Node*);
void removeParent(Node*);
void removeChild(Node*);
std::string getName() const;
std::vector<Node*>& getParents();
std::vector<Node*>& getChildren();
torch::Tensor& getCPT();
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
int getNumStates() const;
void setNumStates(int);
unsigned minFill();
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
float getFactorValue(std::map<std::string, int>&);
};
}
#endif

View File

@@ -1,16 +1,16 @@
#include "BayesMetrics.h"
#include "Mst.h"
#include "BayesMetrics.h"
namespace bayesnet {
//samples is nxm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
//samples is n+1xm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
: samples(samples)
, features(features)
, className(className)
, classNumStates(classNumStates)
{
}
//samples is nxm vector used to fit the model
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
//samples is nxm std::vector used to fit the model
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
: features(features)
, className(className)
, classNumStates(classNumStates)
@@ -21,7 +21,7 @@ namespace bayesnet {
}
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
}
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
{
// Return the K Best features
auto n = samples.size(0) - 1;
@@ -56,25 +56,15 @@ namespace bayesnet {
}
return featuresKBest;
}
vector<double> Metrics::getScoresKBest() const
std::vector<double> Metrics::getScoresKBest() const
{
return scoresKBest;
}
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
{
vector<pair<string, string>> result;
for (int i = 0; i < source.size(); ++i) {
string temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
{
auto result = vector<double>();
auto source = vector<string>(features);
auto result = std::vector<double>();
auto source = std::vector<std::string>(features);
source.push_back(className);
auto combinations = doCombinations(source);
// Compute class prior
@@ -110,7 +100,7 @@ namespace bayesnet {
return matrix;
}
// To use in Python
vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
std::vector<float> Metrics::conditionalEdgeWeights(std::vector<float>& weights_)
{
const torch::Tensor weights = torch::tensor(weights_);
auto matrix = conditionalEdge(weights);
@@ -131,7 +121,7 @@ namespace bayesnet {
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount(weights);
unordered_map<int, unordered_map<int, double>> jointCounts;
std::unordered_map<int, std::unordered_map<int, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
@@ -165,7 +155,7 @@ namespace bayesnet {
and the indices of the weights as nodes of this square matrix using
Kruskal algorithm
*/
vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
std::vector<std::pair<int, int>> Metrics::maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root)
{
auto mst = MST(features, weights, root);
return mst.maximumSpanningTree();

View File

@@ -0,0 +1,49 @@
#ifndef BAYESNET_METRICS_H
#define BAYESNET_METRICS_H
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class Metrics {
private:
int classNumStates = 0;
std::vector<double> scoresKBest;
std::vector<int> featuresKBest; // sorted indices of the features
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
protected:
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
std::string className;
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
std::vector<std::string> features;
template <class T>
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
{
std::vector<std::pair<T, T>> result;
for (int i = 0; i < source.size(); ++i) {
T temp = source[i];
for (int j = i + 1; j < source.size(); ++j) {
result.push_back({ temp, source[j] });
}
}
return result;
}
template <class T>
T pop_first(std::vector<T>& v)
{
T temp = v[0];
v.erase(v.begin());
return temp;
}
public:
Metrics() = default;
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
std::vector<double> getScoresKBest() const;
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
torch::Tensor conditionalEdge(const torch::Tensor& weights);
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
};
}
#endif

View File

@@ -1,13 +1,13 @@
#include "Mst.h"
#include <vector>
#include <list>
#include "Mst.h"
/*
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
*/
namespace bayesnet {
using namespace std;
Graph::Graph(int V) : V(V), parent(vector<int>(V))
Graph::Graph(int V) : V(V), parent(std::vector<int>(V))
{
for (int i = 0; i < V; i++)
parent[i] = i;
@@ -34,36 +34,45 @@ namespace bayesnet {
void Graph::kruskal_algorithm()
{
// sort the edges ordered on decreasing weight
sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
stable_sort(G.begin(), G.end(), [](const auto& left, const auto& right) {return left.first > right.first;});
for (int i = 0; i < G.size(); i++) {
int uSt, vEd;
uSt = find_set(G[i].second.first);
vEd = find_set(G[i].second.second);
if (uSt != vEd) {
T.push_back(G[i]); // add to mst vector
T.push_back(G[i]); // add to mst std::vector
union_set(uSt, vEd);
}
}
}
void Graph::display_mst()
{
cout << "Edge :" << " Weight" << endl;
std::cout << "Edge :" << " Weight" << std::endl;
for (int i = 0; i < T.size(); i++) {
cout << T[i].second.first << " - " << T[i].second.second << " : "
std::cout << T[i].second.first << " - " << T[i].second.second << " : "
<< T[i].first;
cout << endl;
std::cout << std::endl;
}
}
vector<pair<int, int>> reorder(vector<pair<float, pair<int, int>>> T, int root_original)
void insertElement(std::list<int>& variables, int variable)
{
auto result = vector<pair<int, int>>();
auto visited = vector<int>();
auto nextVariables = unordered_set<int>();
nextVariables.emplace(root_original);
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
variables.push_front(variable);
}
}
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
{
// Create the edges of a DAG from the MST
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
auto result = std::vector<std::pair<int, int>>();
auto visited = std::vector<int>();
auto nextVariables = std::list<int>();
nextVariables.push_front(root_original);
while (nextVariables.size() > 0) {
int root = *nextVariables.begin();
nextVariables.erase(nextVariables.begin());
int root = nextVariables.front();
nextVariables.pop_front();
for (int i = 0; i < T.size(); ++i) {
auto [weight, edge] = T[i];
auto [from, to] = edge;
@@ -71,10 +80,10 @@ namespace bayesnet {
visited.insert(visited.begin(), i);
if (from == root) {
result.push_back({ from, to });
nextVariables.emplace(to);
insertElement(nextVariables, to);
} else {
result.push_back({ to, from });
nextVariables.emplace(from);
insertElement(nextVariables, from);
}
}
}
@@ -94,12 +103,11 @@ namespace bayesnet {
return result;
}
MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
vector<pair<int, int>> MST::maximumSpanningTree()
MST::MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
std::vector<std::pair<int, int>> MST::maximumSpanningTree()
{
auto num_features = features.size();
Graph g(num_features);
// Make a complete graph
for (int i = 0; i < num_features - 1; ++i) {
for (int j = i + 1; j < num_features; ++j) {

33
bayesnet/utils/Mst.h Normal file
View File

@@ -0,0 +1,33 @@
#ifndef MST_H
#define MST_H
#include <vector>
#include <string>
#include <torch/torch.h>
namespace bayesnet {
class MST {
private:
torch::Tensor weights;
std::vector<std::string> features;
int root = 0;
public:
MST() = default;
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
std::vector<std::pair<int, int>> maximumSpanningTree();
};
class Graph {
private:
int V; // number of nodes in graph
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
std::vector<int> parent;
public:
explicit Graph(int V);
void addEdge(int u, int v, float wt);
int find_set(int i);
void union_set(int u, int v);
void kruskal_algorithm();
void display_mst();
std::vector <std::pair<float, std::pair<int, int>>> get_mst() { return T; }
};
}
#endif

View File

@@ -0,0 +1,50 @@
#include "bayesnetUtils.h"
namespace bayesnet {
// Return the indices in descending order
std::vector<int> argsort(std::vector<double>& nums)
{
int n = nums.size();
std::vector<int> indices(n);
iota(indices.begin(), indices.end(), 0);
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
return indices;
}
std::vector<std::vector<int>> tensorToVector(torch::Tensor& dtensor)
{
// convert mxn tensor to nxm std::vector
std::vector<std::vector<int>> result;
// Iterate over cols
for (int i = 0; i < dtensor.size(1); ++i) {
auto col_tensor = dtensor.index({ "...", i });
auto col = std::vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + dtensor.size(0));
result.push_back(col);
}
return result;
}
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor)
{
// convert mxn tensor to mxn std::vector
std::vector<std::vector<double>> result;
// Iterate over cols
for (int i = 0; i < dtensor.size(0); ++i) {
auto col_tensor = dtensor.index({ i, "..." });
auto col = std::vector<double>(col_tensor.data_ptr<float>(), col_tensor.data_ptr<float>() + dtensor.size(1));
result.push_back(col);
}
return result;
}
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose)
{
// convert nxm std::vector to mxn tensor if transpose
long int m = transpose ? vector[0].size() : vector.size();
long int n = transpose ? vector.size() : vector[0].size();
auto tensor = torch::zeros({ m, n }, torch::kInt32);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
tensor[i][j] = transpose ? vector[j][i] : vector[i][j];
}
}
return tensor;
}
}

View File

@@ -0,0 +1,11 @@
#ifndef BAYESNET_UTILS_H
#define BAYESNET_UTILS_H
#include <vector>
#include <torch/torch.h>
namespace bayesnet {
std::vector<int> argsort(std::vector<double>& nums);
std::vector<std::vector<int>> tensorToVector(torch::Tensor& dtensor);
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor);
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose = true);
}
#endif //BAYESNET_UTILS_H

View File

@@ -1,4 +1,4 @@
configure_file(
"config.h.in"
"${CMAKE_BINARY_DIR}/configured_files/include/config.h" ESCAPE_QUOTES
"${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h" ESCAPE_QUOTES
)

View File

@@ -7,7 +7,8 @@
#define PROJECT_VERSION_MINOR @PROJECT_VERSION_MINOR @
#define PROJECT_VERSION_PATCH @PROJECT_VERSION_PATCH @
static constexpr std::string_view project_name = " @PROJECT_NAME@ ";
static constexpr std::string_view project_name = "@PROJECT_NAME@";
static constexpr std::string_view project_version = "@PROJECT_VERSION@";
static constexpr std::string_view project_description = "@PROJECT_DESCRIPTION@";
static constexpr std::string_view git_sha = "@GIT_SHA@";
static constexpr std::string_view data_path = "@BayesNet_SOURCE_DIR@/tests/data/";

View File

@@ -1,25 +0,0 @@
Type Si
Type Fe
Type RI
Type Na
Type Ba
Type Ca
Type Al
Type K
Type Mg
Fe RI
Fe Ba
Fe Ca
RI Na
RI Ba
RI Ca
RI Al
RI K
RI Mg
Ba Ca
Ba Al
Ca Al
Ca K
Ca Mg
Al K
K Mg

View File

@@ -1,645 +0,0 @@
class att215
class att25
class att131
class att95
class att122
class att17
class att28
class att5
class att121
class att214
class att197
class att116
class att182
class att60
class att168
class att178
class att206
class att89
class att77
class att209
class att73
class att126
class att16
class att74
class att27
class att61
class att20
class att101
class att85
class att76
class att137
class att211
class att143
class att14
class att40
class att210
class att155
class att170
class att160
class att23
class att162
class att203
class att164
class att107
class att62
class att42
class att71
class att128
class att138
class att83
class att171
class att92
class att163
class att49
class att161
class att158
class att176
class att11
class att145
class att4
class att172
class att196
class att58
class att68
class att169
class att80
class att32
class att175
class att87
class att88
class att159
class att18
class att52
class att98
class att136
class att150
class att156
class att110
class att100
class att63
class att148
class att90
class att167
class att35
class att205
class att51
class att21
class att142
class att46
class att134
class att39
class att102
class att208
class att130
class att149
class att96
class att75
class att118
class att78
class att213
class att112
class att38
class att174
class att189
class att70
class att179
class att59
class att79
class att15
class att47
class att124
class att34
class att54
class att191
class att86
class att56
class att151
class att66
class att173
class att44
class att198
class att139
class att216
class att129
class att152
class att69
class att81
class att50
class att153
class att41
class att204
class att188
class att26
class att13
class att117
class att114
class att10
class att64
class att200
class att9
class att3
class att119
class att45
class att104
class att140
class att30
class att183
class att146
class att141
class att202
class att194
class att24
class att147
class att8
class att212
class att123
class att166
class att187
class att127
class att190
class att105
class att106
class att184
class att82
class att2
class att135
class att154
class att111
class att115
class att99
class att22
class att84
class att207
class att94
class att177
class att103
class att93
class att201
class att43
class att36
class att12
class att125
class att165
class att180
class att195
class att157
class att48
class att6
class att113
class att193
class att91
class att72
class att31
class att132
class att33
class att57
class att144
class att192
class att185
class att37
class att53
class att120
class att186
class att199
class att65
class att108
class att133
class att29
class att19
class att7
class att97
class att67
class att55
class att1
class att109
class att181
att215 att25
att215 att131
att215 att95
att25 att131
att25 att121
att25 att73
att25 att61
att25 att85
att25 att169
att25 att13
att131 att95
att131 att122
att131 att17
att131 att28
att131 att121
att131 att214
att131 att116
att131 att126
att131 att143
att95 att122
att95 att17
att95 att28
att95 att5
att95 att214
att95 att116
att95 att60
att95 att143
att95 att155
att95 att71
att122 att182
att122 att170
att17 att5
att17 att197
att17 att89
att17 att77
att17 att161
att28 att206
att28 att16
att28 att76
att28 att172
att28 att124
att28 att64
att5 att197
att5 att89
att5 att209
att121 att73
att214 att178
att214 att58
att214 att142
att197 att209
att197 att101
att116 att182
att116 att60
att116 att168
att116 att178
att116 att206
att116 att126
att116 att16
att116 att27
att116 att20
att116 att211
att116 att164
att116 att128
att182 att27
att182 att14
att60 att168
att60 att156
att168 att156
att168 att96
att178 att20
att178 att58
att178 att142
att178 att130
att206 att74
att206 att170
att206 att158
att89 att77
att89 att137
att89 att149
att89 att173
att77 att137
att77 att161
att209 att101
att209 att41
att73 att61
att73 att157
att126 att162
att126 att138
att126 att150
att16 att74
att16 att76
att16 att40
att16 att4
att74 att14
att74 att62
att27 att171
att61 att85
att61 att169
att20 att211
att20 att210
att20 att164
att20 att176
att101 att41
att85 att13
att76 att40
att76 att160
att137 att149
att211 att210
att211 att162
att211 att171
att211 att163
att211 att175
att211 att79
att143 att155
att143 att23
att143 att71
att143 att83
att143 att11
att14 att98
att40 att160
att40 att4
att40 att196
att40 att52
att210 att42
att210 att114
att155 att23
att155 att203
att155 att107
att155 att11
att170 att158
att160 att52
att23 att203
att162 att138
att162 att18
att162 att150
att162 att90
att162 att174
att203 att107
att203 att49
att203 att59
att203 att191
att203 att119
att164 att62
att164 att42
att164 att128
att164 att92
att164 att163
att164 att176
att164 att145
att164 att68
att164 att80
att164 att98
att164 att110
att164 att205
att164 att21
att164 att213
att164 att112
att164 att38
att164 att56
att164 att44
att107 att59
att107 att47
att107 att191
att71 att83
att71 att167
att71 att35
att128 att92
att138 att18
att83 att167
att171 att87
att171 att159
att171 att63
att171 att51
att171 att39
att171 att75
att163 att49
att163 att175
att163 att87
att163 att79
att163 att151
att163 att139
att163 att187
att163 att91
att161 att173
att176 att145
att176 att172
att176 att68
att176 att80
att176 att32
att176 att110
att176 att205
att176 att21
att176 att134
att176 att56
att4 att196
att4 att88
att4 att136
att4 att100
att4 att148
att4 att208
att172 att112
att172 att184
att196 att88
att196 att136
att196 att100
att196 att208
att58 att46
att68 att32
att32 att200
att87 att159
att87 att63
att87 att75
att87 att15
att87 att99
att159 att195
att18 att90
att18 att102
att18 att78
att18 att198
att52 att124
att98 att86
att150 att174
att150 att66
att156 att96
att156 att216
att156 att204
att156 att24
att156 att84
att100 att148
att63 att51
att63 att3
att63 att183
att90 att102
att90 att78
att167 att35
att167 att179
att35 att179
att51 att39
att51 att3
att21 att134
att21 att213
att21 att38
att21 att189
att21 att129
att21 att81
att21 att117
att21 att9
att142 att46
att142 att130
att142 att118
att142 att10
att142 att202
att142 att190
att142 att106
att46 att70
att46 att34
att46 att166
att134 att2
att102 att54
att130 att118
att130 att10
att130 att202
att149 att125
att96 att216
att96 att24
att75 att15
att75 att99
att118 att70
att78 att198
att213 att189
att38 att50
att38 att26
att174 att54
att174 att66
att174 att30
att189 att86
att189 att129
att189 att69
att189 att81
att189 att153
att189 att117
att189 att9
att189 att45
att189 att105
att70 att34
att59 att47
att79 att151
att79 att139
att79 att187
att79 att127
att79 att103
att79 att43
att79 att91
att79 att19
att124 att64
att54 att114
att54 att30
att191 att119
att86 att194
att56 att44
att56 att152
att56 att50
att56 att188
att56 att26
att56 att104
att56 att140
att56 att146
att56 att194
att56 att8
att56 att2
att56 att133
att56 att1
att173 att125
att173 att113
att44 att152
att44 att188
att44 att200
att44 att212
att44 att1
att139 att103
att139 att43
att139 att31
att139 att199
att139 att7
att216 att204
att216 att36
att216 att12
att216 att180
att216 att108
att129 att69
att152 att140
att69 att153
att81 att45
att153 att141
att41 att53
att204 att12
att13 att157
att114 att6
att114 att186
att10 att190
att64 att184
att200 att104
att9 att146
att9 att141
att9 att177
att9 att37
att9 att133
att9 att109
att9 att181
att3 att183
att3 att147
att3 att123
att3 att135
att3 att111
att45 att105
att45 att177
att45 att93
att45 att201
att45 att193
att45 att37
att45 att97
att140 att8
att30 att6
att183 att147
att183 att123
att202 att166
att202 att106
att202 att82
att24 att84
att24 att36
att147 att135
att8 att212
att166 att82
att187 att127
att187 att115
att127 att115
att105 att93
att106 att154
att82 att154
att82 att22
att135 att111
att135 att207
att154 att22
att154 att94
att111 att207
att22 att94
att84 att48
att177 att165
att103 att195
att103 att109
att93 att201
att93 att165
att93 att193
att93 att33
att201 att33
att201 att57
att36 att180
att36 att72
att36 att132
att36 att144
att125 att113
att125 att185
att125 att65
att125 att29
att180 att48
att180 att72
att180 att192
att180 att108
att6 att186
att113 att185
att113 att53
att193 att97
att91 att31
att91 att19
att72 att132
att72 att192
att31 att199
att31 att67
att132 att144
att132 att120
att33 att57
att144 att120
att185 att65
att199 att7
att199 att67
att199 att55
att65 att29
att67 att55
att109 att181

View File

@@ -1,859 +0,0 @@
class att215
class att25
class att131
class att95
class att122
class att17
class att28
class att5
class att121
class att214
class att197
class att116
class att182
class att60
class att168
class att178
class att206
class att89
class att77
class att209
class att73
class att126
class att16
class att74
class att27
class att61
class att20
class att101
class att85
class att76
class att137
class att211
class att143
class att14
class att40
class att210
class att155
class att170
class att160
class att23
class att162
class att203
class att164
class att107
class att62
class att42
class att71
class att128
class att138
class att83
class att171
class att92
class att163
class att49
class att161
class att158
class att176
class att11
class att145
class att4
class att172
class att196
class att58
class att68
class att169
class att80
class att32
class att175
class att87
class att88
class att159
class att18
class att52
class att98
class att136
class att150
class att156
class att110
class att100
class att63
class att148
class att90
class att167
class att35
class att205
class att51
class att21
class att142
class att46
class att134
class att39
class att102
class att208
class att130
class att149
class att96
class att75
class att118
class att78
class att213
class att112
class att38
class att174
class att189
class att70
class att179
class att59
class att79
class att15
class att47
class att124
class att34
class att54
class att191
class att86
class att56
class att151
class att66
class att173
class att44
class att198
class att139
class att216
class att129
class att152
class att69
class att81
class att50
class att153
class att41
class att204
class att188
class att26
class att13
class att117
class att114
class att10
class att64
class att200
class att9
class att3
class att119
class att45
class att104
class att140
class att30
class att183
class att146
class att141
class att202
class att194
class att24
class att147
class att8
class att212
class att123
class att166
class att187
class att127
class att190
class att105
class att106
class att184
class att82
class att2
class att135
class att154
class att111
class att115
class att99
class att22
class att84
class att207
class att94
class att177
class att103
class att93
class att201
class att43
class att36
class att12
class att125
class att165
class att180
class att195
class att157
class att48
class att6
class att113
class att193
class att91
class att72
class att31
class att132
class att33
class att57
class att144
class att192
class att185
class att37
class att53
class att120
class att186
class att199
class att65
class att108
class att133
class att29
class att19
class att7
class att97
class att67
class att55
class att1
class att109
class att181
att215 att25
att215 att131
att215 att95
att215 att17
att215 att214
att215 att143
att25 att131
att25 att95
att25 att122
att25 att121
att25 att73
att25 att61
att25 att85
att25 att169
att25 att13
att25 att157
att131 att95
att131 att122
att131 att17
att131 att28
att131 att5
att131 att121
att131 att214
att131 att116
att131 att182
att131 att60
att131 att126
att131 att16
att131 att27
att131 att20
att131 att143
att131 att155
att95 att122
att95 att17
att95 att28
att95 att5
att95 att121
att95 att214
att95 att197
att95 att116
att95 att60
att95 att168
att95 att178
att95 att143
att95 att155
att95 att23
att95 att71
att95 att167
att122 att28
att122 att182
att122 att170
att17 att5
att17 att197
att17 att89
att17 att77
att17 att209
att17 att137
att17 att161
att17 att41
att28 att206
att28 att16
att28 att76
att28 att40
att28 att210
att28 att160
att28 att172
att28 att124
att28 att64
att5 att197
att5 att89
att5 att77
att5 att209
att5 att101
att121 att73
att121 att61
att214 att116
att214 att178
att214 att206
att214 att58
att214 att142
att214 att46
att197 att89
att197 att209
att197 att101
att116 att182
att116 att60
att116 att168
att116 att178
att116 att206
att116 att73
att116 att126
att116 att16
att116 att74
att116 att27
att116 att20
att116 att211
att116 att164
att116 att128
att116 att92
att116 att176
att116 att68
att182 att27
att182 att14
att60 att168
att60 att156
att60 att96
att168 att126
att168 att156
att168 att96
att168 att216
att178 att20
att178 att211
att178 att58
att178 att142
att178 att130
att178 att166
att206 att74
att206 att170
att206 att158
att89 att77
att89 att137
att89 att149
att89 att173
att77 att137
att77 att161
att77 att149
att209 att101
att209 att41
att73 att61
att73 att85
att73 att13
att73 att157
att126 att162
att126 att138
att126 att18
att126 att150
att16 att74
att16 att76
att16 att40
att16 att4
att16 att196
att16 att136
att74 att14
att74 att62
att27 att171
att27 att63
att61 att85
att61 att169
att20 att76
att20 att211
att20 att210
att20 att170
att20 att164
att20 att128
att20 att176
att20 att80
att101 att41
att85 att169
att85 att13
att76 att14
att76 att40
att76 att160
att76 att4
att76 att52
att137 att161
att137 att149
att137 att173
att137 att125
att211 att210
att211 att162
att211 att164
att211 att62
att211 att42
att211 att171
att211 att163
att211 att175
att211 att79
att211 att151
att211 att43
att143 att155
att143 att23
att143 att203
att143 att71
att143 att83
att143 att11
att14 att98
att40 att160
att40 att4
att40 att196
att40 att88
att40 att52
att210 att162
att210 att42
att210 att114
att155 att23
att155 att203
att155 att107
att155 att11
att170 att158
att160 att52
att160 att124
att23 att203
att23 att107
att23 att71
att23 att11
att162 att138
att162 att18
att162 att150
att162 att90
att162 att102
att162 att174
att162 att66
att203 att107
att203 att49
att203 att59
att203 att47
att203 att191
att203 att119
att164 att62
att164 att42
att164 att128
att164 att171
att164 att92
att164 att163
att164 att158
att164 att176
att164 att145
att164 att172
att164 att58
att164 att68
att164 att80
att164 att32
att164 att98
att164 att156
att164 att110
att164 att205
att164 att21
att164 att134
att164 att213
att164 att112
att164 att38
att164 att189
att164 att56
att164 att44
att164 att152
att164 att8
att107 att83
att107 att49
att107 att59
att107 att47
att107 att191
att42 att138
att42 att54
att42 att114
att71 att83
att71 att167
att71 att35
att71 att179
att128 att92
att128 att112
att138 att18
att138 att150
att83 att167
att83 att35
att171 att87
att171 att159
att171 att63
att171 att51
att171 att39
att171 att75
att92 att163
att92 att145
att92 att56
att163 att49
att163 att175
att163 att87
att163 att79
att163 att151
att163 att139
att163 att187
att163 att127
att163 att103
att163 att91
att49 att37
att161 att173
att161 att113
att176 att145
att176 att172
att176 att68
att176 att80
att176 att32
att176 att175
att176 att98
att176 att110
att176 att205
att176 att21
att176 att134
att176 att213
att176 att56
att4 att196
att4 att88
att4 att136
att4 att100
att4 att148
att4 att208
att172 att112
att172 att184
att196 att88
att196 att136
att196 att100
att196 att148
att196 att208
att58 att142
att58 att46
att58 att34
att68 att32
att80 att38
att32 att110
att32 att21
att32 att44
att32 att200
att175 att87
att175 att159
att175 att79
att175 att187
att175 att115
att87 att159
att87 att63
att87 att51
att87 att75
att87 att15
att87 att99
att159 att75
att159 att15
att159 att195
att18 att90
att18 att102
att18 att78
att18 att198
att52 att124
att52 att64
att98 att86
att136 att100
att136 att208
att150 att90
att150 att174
att150 att66
att156 att205
att156 att96
att156 att216
att156 att204
att156 att24
att156 att84
att156 att36
att156 att12
att156 att108
att100 att148
att63 att51
att63 att39
att63 att3
att63 att183
att63 att147
att90 att102
att90 att78
att167 att35
att167 att179
att35 att179
att51 att39
att51 att3
att51 att183
att21 att134
att21 att213
att21 att38
att21 att189
att21 att129
att21 att81
att21 att153
att21 att117
att21 att9
att142 att46
att142 att130
att142 att118
att142 att70
att142 att10
att142 att202
att142 att190
att142 att106
att46 att130
att46 att118
att46 att70
att46 att34
att46 att166
att46 att82
att134 att2
att39 att3
att102 att78
att102 att174
att102 att54
att102 att198
att130 att118
att130 att10
att130 att202
att130 att190
att130 att106
att149 att125
att96 att216
att96 att204
att96 att24
att75 att15
att75 att99
att118 att70
att118 att10
att118 att202
att78 att198
att213 att189
att213 att129
att213 att69
att213 att81
att38 att50
att38 att26
att174 att54
att174 att66
att174 att30
att189 att86
att189 att129
att189 att69
att189 att81
att189 att153
att189 att117
att189 att9
att189 att45
att189 att141
att189 att105
att70 att34
att70 att154
att179 att59
att59 att47
att59 att191
att59 att119
att79 att86
att79 att151
att79 att139
att79 att187
att79 att127
att79 att103
att79 att43
att79 att193
att79 att91
att79 att19
att124 att64
att54 att114
att54 att30
att54 att6
att191 att119
att86 att194
att56 att44
att56 att152
att56 att50
att56 att188
att56 att26
att56 att200
att56 att104
att56 att140
att56 att146
att56 att194
att56 att8
att56 att2
att56 att133
att56 att1
att151 att139
att66 att30
att173 att125
att173 att113
att173 att185
att44 att152
att44 att50
att44 att188
att44 att200
att44 att104
att44 att140
att44 att194
att44 att212
att44 att1
att139 att26
att139 att99
att139 att103
att139 att43
att139 att91
att139 att31
att139 att199
att139 att7
att216 att204
att216 att24
att216 att84
att216 att36
att216 att12
att216 att180
att216 att108
att129 att69
att152 att188
att152 att140
att69 att153
att69 att9
att69 att177
att81 att45
att81 att105
att153 att117
att153 att141
att41 att53
att204 att12
att204 att180
att188 att146
att188 att212
att13 att157
att114 att6
att114 att186
att10 att190
att64 att184
att200 att104
att9 att45
att9 att146
att9 att141
att9 att177
att9 att37
att9 att133
att9 att109
att9 att181
att3 att183
att3 att147
att3 att123
att3 att135
att3 att111
att45 att105
att45 att177
att45 att93
att45 att201
att45 att165
att45 att193
att45 att33
att45 att37
att45 att133
att45 att97
att140 att8
att30 att6
att30 att186
att183 att147
att183 att123
att183 att135
att146 att2
att202 att166
att202 att106
att202 att82
att24 att84
att24 att36
att24 att132
att147 att123
att147 att135
att147 att111
att147 att207
att8 att212
att166 att82
att166 att22
att166 att94
att187 att127
att187 att115
att127 att115
att105 att184
att105 att93
att105 att201
att106 att154
att82 att154
att82 att22
att135 att111
att135 att207
att154 att22
att154 att94
att111 att207
att99 att195
att22 att94
att84 att48
att177 att93
att177 att165
att177 att181
att103 att195
att103 att97
att103 att109
att93 att201
att93 att165
att93 att193
att93 att33
att93 att57
att201 att33
att201 att57
att43 att31
att36 att180
att36 att48
att36 att72
att36 att132
att36 att144
att125 att113
att125 att185
att125 att65
att125 att29
att180 att48
att180 att72
att180 att192
att180 att108
att48 att72
att6 att186
att113 att185
att113 att53
att113 att65
att193 att97
att91 att31
att91 att199
att91 att19
att72 att132
att72 att144
att72 att192
att72 att120
att31 att199
att31 att7
att31 att67
att31 att55
att31 att1
att132 att144
att132 att120
att33 att57
att144 att192
att144 att120
att185 att53
att185 att65
att185 att29
att199 att19
att199 att7
att199 att67
att199 att55
att199 att109
att65 att29
att7 att67
att67 att55
att109 att181

View File

@@ -1,859 +0,0 @@
class att215
class att25
class att131
class att95
class att122
class att17
class att28
class att5
class att121
class att214
class att197
class att116
class att182
class att60
class att168
class att178
class att206
class att89
class att77
class att209
class att73
class att126
class att16
class att74
class att27
class att61
class att20
class att101
class att85
class att76
class att137
class att211
class att143
class att14
class att40
class att210
class att155
class att170
class att160
class att23
class att162
class att203
class att164
class att107
class att62
class att42
class att71
class att128
class att138
class att83
class att171
class att92
class att163
class att49
class att161
class att158
class att176
class att11
class att145
class att4
class att172
class att196
class att58
class att68
class att169
class att80
class att32
class att175
class att87
class att88
class att159
class att18
class att52
class att98
class att136
class att150
class att156
class att110
class att100
class att63
class att148
class att90
class att167
class att35
class att205
class att51
class att21
class att142
class att46
class att134
class att39
class att102
class att208
class att130
class att149
class att96
class att75
class att118
class att78
class att213
class att112
class att38
class att174
class att189
class att70
class att179
class att59
class att79
class att15
class att47
class att124
class att34
class att54
class att191
class att86
class att56
class att151
class att66
class att173
class att44
class att198
class att139
class att216
class att129
class att152
class att69
class att81
class att50
class att153
class att41
class att204
class att188
class att26
class att13
class att117
class att114
class att10
class att64
class att200
class att9
class att3
class att119
class att45
class att104
class att140
class att30
class att183
class att146
class att141
class att202
class att194
class att24
class att147
class att8
class att212
class att123
class att166
class att187
class att127
class att190
class att105
class att106
class att184
class att82
class att2
class att135
class att154
class att111
class att115
class att99
class att22
class att84
class att207
class att94
class att177
class att103
class att93
class att201
class att43
class att36
class att12
class att125
class att165
class att180
class att195
class att157
class att48
class att6
class att113
class att193
class att91
class att72
class att31
class att132
class att33
class att57
class att144
class att192
class att185
class att37
class att53
class att120
class att186
class att199
class att65
class att108
class att133
class att29
class att19
class att7
class att97
class att67
class att55
class att1
class att109
class att181
att215 att25
att215 att131
att215 att95
att215 att17
att215 att214
att215 att143
att25 att131
att25 att95
att25 att122
att25 att121
att25 att73
att25 att61
att25 att85
att25 att169
att25 att13
att25 att157
att131 att95
att131 att122
att131 att17
att131 att28
att131 att5
att131 att121
att131 att214
att131 att116
att131 att182
att131 att60
att131 att126
att131 att16
att131 att27
att131 att20
att131 att143
att131 att155
att95 att122
att95 att17
att95 att28
att95 att5
att95 att121
att95 att214
att95 att197
att95 att116
att95 att60
att95 att168
att95 att178
att95 att143
att95 att155
att95 att23
att95 att71
att95 att167
att122 att28
att122 att182
att122 att170
att17 att5
att17 att197
att17 att89
att17 att77
att17 att209
att17 att137
att17 att161
att17 att41
att28 att206
att28 att16
att28 att76
att28 att40
att28 att210
att28 att160
att28 att172
att28 att124
att28 att64
att5 att197
att5 att89
att5 att77
att5 att209
att5 att101
att121 att73
att121 att61
att214 att116
att214 att178
att214 att206
att214 att58
att214 att142
att214 att46
att197 att89
att197 att209
att197 att101
att116 att182
att116 att60
att116 att168
att116 att178
att116 att206
att116 att73
att116 att126
att116 att16
att116 att74
att116 att27
att116 att20
att116 att211
att116 att164
att116 att128
att116 att92
att116 att176
att116 att68
att182 att27
att182 att14
att60 att168
att60 att156
att60 att96
att168 att126
att168 att156
att168 att96
att168 att216
att178 att20
att178 att211
att178 att58
att178 att142
att178 att130
att178 att166
att206 att74
att206 att170
att206 att158
att89 att77
att89 att137
att89 att149
att89 att173
att77 att137
att77 att161
att77 att149
att209 att101
att209 att41
att73 att61
att73 att85
att73 att13
att73 att157
att126 att162
att126 att138
att126 att18
att126 att150
att16 att74
att16 att76
att16 att40
att16 att4
att16 att196
att16 att136
att74 att14
att74 att62
att27 att171
att27 att63
att61 att85
att61 att169
att20 att76
att20 att211
att20 att210
att20 att170
att20 att164
att20 att128
att20 att176
att20 att80
att101 att41
att85 att169
att85 att13
att76 att14
att76 att40
att76 att160
att76 att4
att76 att52
att137 att161
att137 att149
att137 att173
att137 att125
att211 att210
att211 att162
att211 att164
att211 att62
att211 att42
att211 att171
att211 att163
att211 att175
att211 att79
att211 att151
att211 att43
att143 att155
att143 att23
att143 att203
att143 att71
att143 att83
att143 att11
att14 att98
att40 att160
att40 att4
att40 att196
att40 att88
att40 att52
att210 att162
att210 att42
att210 att114
att155 att23
att155 att203
att155 att107
att155 att11
att170 att158
att160 att52
att160 att124
att23 att203
att23 att107
att23 att71
att23 att11
att162 att138
att162 att18
att162 att150
att162 att90
att162 att102
att162 att174
att162 att66
att203 att107
att203 att49
att203 att59
att203 att47
att203 att191
att203 att119
att164 att62
att164 att42
att164 att128
att164 att171
att164 att92
att164 att163
att164 att158
att164 att176
att164 att145
att164 att172
att164 att58
att164 att68
att164 att80
att164 att32
att164 att98
att164 att156
att164 att110
att164 att205
att164 att21
att164 att134
att164 att213
att164 att112
att164 att38
att164 att189
att164 att56
att164 att44
att164 att152
att164 att8
att107 att83
att107 att49
att107 att59
att107 att47
att107 att191
att42 att138
att42 att54
att42 att114
att71 att83
att71 att167
att71 att35
att71 att179
att128 att92
att128 att112
att138 att18
att138 att150
att83 att167
att83 att35
att171 att87
att171 att159
att171 att63
att171 att51
att171 att39
att171 att75
att92 att163
att92 att145
att92 att56
att163 att49
att163 att175
att163 att87
att163 att79
att163 att151
att163 att139
att163 att187
att163 att127
att163 att103
att163 att91
att49 att37
att161 att173
att161 att113
att176 att145
att176 att172
att176 att68
att176 att80
att176 att32
att176 att175
att176 att98
att176 att110
att176 att205
att176 att21
att176 att134
att176 att213
att176 att56
att4 att196
att4 att88
att4 att136
att4 att100
att4 att148
att4 att208
att172 att112
att172 att184
att196 att88
att196 att136
att196 att100
att196 att148
att196 att208
att58 att142
att58 att46
att58 att34
att68 att32
att80 att38
att32 att110
att32 att21
att32 att44
att32 att200
att175 att87
att175 att159
att175 att79
att175 att187
att175 att115
att87 att159
att87 att63
att87 att51
att87 att75
att87 att15
att87 att99
att159 att75
att159 att15
att159 att195
att18 att90
att18 att102
att18 att78
att18 att198
att52 att124
att52 att64
att98 att86
att136 att100
att136 att208
att150 att90
att150 att174
att150 att66
att156 att205
att156 att96
att156 att216
att156 att204
att156 att24
att156 att84
att156 att36
att156 att12
att156 att108
att100 att148
att63 att51
att63 att39
att63 att3
att63 att183
att63 att147
att90 att102
att90 att78
att167 att35
att167 att179
att35 att179
att51 att39
att51 att3
att51 att183
att21 att134
att21 att213
att21 att38
att21 att189
att21 att129
att21 att81
att21 att153
att21 att117
att21 att9
att142 att46
att142 att130
att142 att118
att142 att70
att142 att10
att142 att202
att142 att190
att142 att106
att46 att130
att46 att118
att46 att70
att46 att34
att46 att166
att46 att82
att134 att2
att39 att3
att102 att78
att102 att174
att102 att54
att102 att198
att130 att118
att130 att10
att130 att202
att130 att190
att130 att106
att149 att125
att96 att216
att96 att204
att96 att24
att75 att15
att75 att99
att118 att70
att118 att10
att118 att202
att78 att198
att213 att189
att213 att129
att213 att69
att213 att81
att38 att50
att38 att26
att174 att54
att174 att66
att174 att30
att189 att86
att189 att129
att189 att69
att189 att81
att189 att153
att189 att117
att189 att9
att189 att45
att189 att141
att189 att105
att70 att34
att70 att154
att179 att59
att59 att47
att59 att191
att59 att119
att79 att86
att79 att151
att79 att139
att79 att187
att79 att127
att79 att103
att79 att43
att79 att193
att79 att91
att79 att19
att124 att64
att54 att114
att54 att30
att54 att6
att191 att119
att86 att194
att56 att44
att56 att152
att56 att50
att56 att188
att56 att26
att56 att200
att56 att104
att56 att140
att56 att146
att56 att194
att56 att8
att56 att2
att56 att133
att56 att1
att151 att139
att66 att30
att173 att125
att173 att113
att173 att185
att44 att152
att44 att50
att44 att188
att44 att200
att44 att104
att44 att140
att44 att194
att44 att212
att44 att1
att139 att26
att139 att99
att139 att103
att139 att43
att139 att91
att139 att31
att139 att199
att139 att7
att216 att204
att216 att24
att216 att84
att216 att36
att216 att12
att216 att180
att216 att108
att129 att69
att152 att188
att152 att140
att69 att153
att69 att9
att69 att177
att81 att45
att81 att105
att153 att117
att153 att141
att41 att53
att204 att12
att204 att180
att188 att146
att188 att212
att13 att157
att114 att6
att114 att186
att10 att190
att64 att184
att200 att104
att9 att45
att9 att146
att9 att141
att9 att177
att9 att37
att9 att133
att9 att109
att9 att181
att3 att183
att3 att147
att3 att123
att3 att135
att3 att111
att45 att105
att45 att177
att45 att93
att45 att201
att45 att165
att45 att193
att45 att33
att45 att37
att45 att133
att45 att97
att140 att8
att30 att6
att30 att186
att183 att147
att183 att123
att183 att135
att146 att2
att202 att166
att202 att106
att202 att82
att24 att84
att24 att36
att24 att132
att147 att123
att147 att135
att147 att111
att147 att207
att8 att212
att166 att82
att166 att22
att166 att94
att187 att127
att187 att115
att127 att115
att105 att184
att105 att93
att105 att201
att106 att154
att82 att154
att82 att22
att135 att111
att135 att207
att154 att22
att154 att94
att111 att207
att99 att195
att22 att94
att84 att48
att177 att93
att177 att165
att177 att181
att103 att195
att103 att97
att103 att109
att93 att201
att93 att165
att93 att193
att93 att33
att93 att57
att201 att33
att201 att57
att43 att31
att36 att180
att36 att48
att36 att72
att36 att132
att36 att144
att125 att113
att125 att185
att125 att65
att125 att29
att180 att48
att180 att72
att180 att192
att180 att108
att48 att72
att6 att186
att113 att185
att113 att53
att113 att65
att193 att97
att91 att31
att91 att199
att91 att19
att72 att132
att72 att144
att72 att192
att72 att120
att31 att199
att31 att7
att31 att67
att31 att55
att31 att1
att132 att144
att132 att120
att33 att57
att144 att192
att144 att120
att185 att53
att185 att65
att185 att29
att199 att19
att199 att7
att199 att67
att199 att55
att199 att109
att65 att29
att7 att67
att67 att55
att109 att181

71
docs/BoostAODE.md Normal file
View File

@@ -0,0 +1,71 @@
# BoostAODE Algorithm Operation
The algorithm is based on the AdaBoost algorithm with some new proposals that can be activated using the following hyperparameters.
## Hyperparameters
The hyperparameters defined in the algorithm are:
- ***repeatSparent*** (*boolean*): Allows dataset variables to be repeated as parents of an *SPODE*. Default value: *false*.
- ***maxModels*** (*int*): Maximum number of models (*SPODEs*) to build. This hyperparameter is only taken into account if ***repeatSparent*** is set to *true*. Default value: *0*.
- ***order*** (*{"asc", "desc", "rand"}*): Sets the order (ascending/descending/random) in which dataset variables will be processed to choose the parents of the *SPODEs*. Default value: *"desc"*.
- ***convergence*** (*boolean*): Sets whether the convergence of the result will be used as a termination condition. If this hyperparameter is set to true, the training dataset passed to the model is divided into two sets, one serving as training data and the other as a test set (so the original test partition will become a validation partition in this case). The partition is made by taking the first partition generated by a process of generating a 5 fold partition with stratification using a predetermined seed. The exit condition used in this *convergence* is that the difference between the accuracy obtained by the current model and that obtained by the previous model is greater than *1e-4*; otherwise, one will be added to the number of models that worsen the result (see next hyperparameter). Default value: *false*.
- ***tolerance*** (*int*): Sets the maximum number of models that can worsen the result without constituting a termination condition. Default value: *0*.
- ***select_features*** (*{"IWSS", "FCBF", "CFS", ""}*): Selects the variable selection method to be used to build initial models for the ensemble that will be included without considering any of the other exit conditions. Once the models of the selected variables are built, the algorithm will update the weights using the ensemble and set the significance of all the models built with the same &alpha;<sub>t</sub>. Default value: *""*.
- ***threshold*** (*double*): Sets the necessary value for the IWSS and FCBF algorithms to function. Accepted values are:
- IWSS: $threshold \in [0, 0.5]$
- FCBF: $threshold \in [10^{-7}, 1]$
Default value is *-1* so every time any of those algorithms are called, the threshold has to be set to the desired value.
- ***predict_voting*** (*boolean*): Sets whether the algorithm will use *model voting* to predict the result. If set to false, the weighted average of the probabilities of each model's prediction will be used. Default value: *true*.
- ***predict_single*** (*boolean*): Sets whether the algorithm will use single-model prediction in the learning process. If set to *false*, all models trained up to that point will be used to calculate the prediction necessary to update the weights in the learning process. Default value: *true*.
## Operation
The algorithm performs the following steps:
1. **Initialization**
- If ***select_features*** is set, as many *SPODEs* are created as variables selected by the corresponding feature selection algorithm, and these variables are marked as used.
- Initial weights of the examples are set to *1/m*.
1. **Main Training Loop:**
- Variables are sorted by mutual information order with the class variable and processed in ascending, descending or random order, according to the value of the *order* hyperparameter. If it is random, the variables are shuffled.
- If the parent repetition is not established, the variable is marked as used.
- A *SPODE* is created using the selected variable as the parent.
- The model is trained, and the class variable corresponding to the training dataset is calculated. The calculation can be done using the last trained model or the set of models trained up to that point, according to the value of the *predict_single* hyperparameter.
- The weights associated with the examples are updated using this expression:
- w<sub>i</sub> · e<sup>&alpha;<sub>t</sub></sup> (if the example has been misclassified)
- w<sub>i</sub> · e<sup>-&alpha;<sub>t</sub></sup> (if the example has been correctly classified)
- The model significance is set to &alpha;<sub>t</sub>.
- If the ***convergence*** hyperparameter is set, the accuracy value on the test dataset that we separated in an initial step is calculated.
1. **Exit Conditions:**
- &epsilon;<sub>t</sub> > 0.5 => misclassified examples are penalized.
- Number of models with worse accuracy greater than ***tolerance*** and ***convergence*** established.
- There are no more variables to create models, and ***repeatSparent*** is not set.
- Number of models > ***maxModels*** if ***repeatSparent*** is set.
### [Proposal for *predict_single = false*](./BoostAODE_train_predict.pdf)

Binary file not shown.

Binary file not shown.

View File

@@ -1,4 +1,4 @@
filter = src/
exclude-directories = build/lib/
filter = bayesnet/
exclude-directories = build_debug/lib/
print-summary = yes
sort-percentage = yes
sort = uncovered-percent

View File

@@ -4,11 +4,9 @@
#include <map>
#include <iostream>
using namespace std;
ArffFiles::ArffFiles() = default;
vector<string> ArffFiles::getLines() const
std::vector<std::string> ArffFiles::getLines() const
{
return lines;
}
@@ -18,48 +16,48 @@ unsigned long int ArffFiles::getSize() const
return lines.size();
}
vector<pair<string, string>> ArffFiles::getAttributes() const
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
{
return attributes;
}
string ArffFiles::getClassName() const
std::string ArffFiles::getClassName() const
{
return className;
}
string ArffFiles::getClassType() const
std::string ArffFiles::getClassType() const
{
return classType;
}
vector<vector<float>>& ArffFiles::getX()
std::vector<std::vector<float>>& ArffFiles::getX()
{
return X;
}
vector<int>& ArffFiles::getY()
std::vector<int>& ArffFiles::getY()
{
return y;
}
void ArffFiles::loadCommon(string fileName)
void ArffFiles::loadCommon(std::string fileName)
{
ifstream file(fileName);
std::ifstream file(fileName);
if (!file.is_open()) {
throw invalid_argument("Unable to open file");
throw std::invalid_argument("Unable to open file");
}
string line;
string keyword;
string attribute;
string type;
string type_w;
std::string line;
std::string keyword;
std::string attribute;
std::string type;
std::string type_w;
while (getline(file, line)) {
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
continue;
}
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
stringstream ss(line);
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
std::stringstream ss(line);
ss >> keyword >> attribute;
type = "";
while (ss >> type_w)
@@ -74,35 +72,35 @@ void ArffFiles::loadCommon(string fileName)
}
file.close();
if (attributes.empty())
throw invalid_argument("No attributes found");
throw std::invalid_argument("No attributes found");
}
void ArffFiles::load(const string& fileName, bool classLast)
void ArffFiles::load(const std::string& fileName, bool classLast)
{
int labelIndex;
loadCommon(fileName);
if (classLast) {
className = get<0>(attributes.back());
classType = get<1>(attributes.back());
className = std::get<0>(attributes.back());
classType = std::get<1>(attributes.back());
attributes.pop_back();
labelIndex = static_cast<int>(attributes.size());
} else {
className = get<0>(attributes.front());
classType = get<1>(attributes.front());
className = std::get<0>(attributes.front());
classType = std::get<1>(attributes.front());
attributes.erase(attributes.begin());
labelIndex = 0;
}
generateDataset(labelIndex);
}
void ArffFiles::load(const string& fileName, const string& name)
void ArffFiles::load(const std::string& fileName, const std::string& name)
{
int labelIndex;
loadCommon(fileName);
bool found = false;
for (int i = 0; i < attributes.size(); ++i) {
if (attributes[i].first == name) {
className = get<0>(attributes[i]);
classType = get<1>(attributes[i]);
className = std::get<0>(attributes[i]);
classType = std::get<1>(attributes[i]);
attributes.erase(attributes.begin() + i);
labelIndex = i;
found = true;
@@ -110,19 +108,19 @@ void ArffFiles::load(const string& fileName, const string& name)
}
}
if (!found) {
throw invalid_argument("Class name not found");
throw std::invalid_argument("Class name not found");
}
generateDataset(labelIndex);
}
void ArffFiles::generateDataset(int labelIndex)
{
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
auto yy = vector<string>(lines.size(), "");
auto removeLines = vector<int>(); // Lines with missing values
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
auto yy = std::vector<std::string>(lines.size(), "");
auto removeLines = std::vector<int>(); // Lines with missing values
for (size_t i = 0; i < lines.size(); i++) {
stringstream ss(lines[i]);
string value;
std::stringstream ss(lines[i]);
std::string value;
int pos = 0;
int xIndex = 0;
while (getline(ss, value, ',')) {
@@ -146,21 +144,21 @@ void ArffFiles::generateDataset(int labelIndex)
y = factorize(yy);
}
string ArffFiles::trim(const string& source)
std::string ArffFiles::trim(const std::string& source)
{
string s(source);
std::string s(source);
s.erase(0, s.find_first_not_of(" '\n\r\t"));
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
return s;
}
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
{
vector<int> yy;
std::vector<int> yy;
yy.reserve(labels_t.size());
map<string, int> labelMap;
std::map<std::string, int> labelMap;
int i = 0;
for (const string& label : labels_t) {
for (const std::string& label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
}

View File

@@ -4,31 +4,29 @@
#include <string>
#include <vector>
using namespace std;
class ArffFiles {
private:
vector<string> lines;
vector<pair<string, string>> attributes;
string className;
string classType;
vector<vector<float>> X;
vector<int> y;
std::vector<std::string> lines;
std::vector<std::pair<std::string, std::string>> attributes;
std::string className;
std::string classType;
std::vector<std::vector<float>> X;
std::vector<int> y;
void generateDataset(int);
void loadCommon(string);
void loadCommon(std::string);
public:
ArffFiles();
void load(const string&, bool = true);
void load(const string&, const string&);
vector<string> getLines() const;
void load(const std::string&, bool = true);
void load(const std::string&, const std::string&);
std::vector<std::string> getLines() const;
unsigned long int getSize() const;
string getClassName() const;
string getClassType() const;
static string trim(const string&);
vector<vector<float>>& getX();
vector<int>& getY();
vector<pair<string, string>> getAttributes() const;
static vector<int> factorize(const vector<string>& labels_t);
std::string getClassName() const;
std::string getClassType() const;
static std::string trim(const std::string&);
std::vector<std::vector<float>>& getX();
std::vector<int>& getY();
std::vector<std::pair<std::string, std::string>> getAttributes() const;
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
};
#endif

Submodule lib/argparse deleted from b0930ab028

1
lib/folding Submodule

Submodule lib/folding added at 37316a54e0

View File

@@ -1,8 +1,20 @@
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
cmake_minimum_required(VERSION 3.20)
project(bayesnet_sample)
set(CMAKE_CXX_STANDARD 17)
find_package(Torch REQUIRED)
find_library(BayesNet NAMES BayesNet.a libBayesNet.a REQUIRED)
include_directories(
lib/Files
lib/mdlp
lib/json/include
/usr/local/include
)
add_subdirectory(lib/Files)
add_subdirectory(lib/mdlp)
add_executable(bayesnet_sample sample.cc)
target_link_libraries(bayesnet_sample ArffFiles mdlp "${TORCH_LIBRARIES}" "${BayesNet}")

View File

@@ -0,0 +1,168 @@
#include "ArffFiles.h"
#include <fstream>
#include <sstream>
#include <map>
#include <iostream>
ArffFiles::ArffFiles() = default;
std::vector<std::string> ArffFiles::getLines() const
{
return lines;
}
unsigned long int ArffFiles::getSize() const
{
return lines.size();
}
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
{
return attributes;
}
std::string ArffFiles::getClassName() const
{
return className;
}
std::string ArffFiles::getClassType() const
{
return classType;
}
std::vector<std::vector<float>>& ArffFiles::getX()
{
return X;
}
std::vector<int>& ArffFiles::getY()
{
return y;
}
void ArffFiles::loadCommon(std::string fileName)
{
std::ifstream file(fileName);
if (!file.is_open()) {
throw std::invalid_argument("Unable to open file");
}
std::string line;
std::string keyword;
std::string attribute;
std::string type;
std::string type_w;
while (getline(file, line)) {
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
continue;
}
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
std::stringstream ss(line);
ss >> keyword >> attribute;
type = "";
while (ss >> type_w)
type += type_w + " ";
attributes.emplace_back(trim(attribute), trim(type));
continue;
}
if (line[0] == '@') {
continue;
}
lines.push_back(line);
}
file.close();
if (attributes.empty())
throw std::invalid_argument("No attributes found");
}
void ArffFiles::load(const std::string& fileName, bool classLast)
{
int labelIndex;
loadCommon(fileName);
if (classLast) {
className = std::get<0>(attributes.back());
classType = std::get<1>(attributes.back());
attributes.pop_back();
labelIndex = static_cast<int>(attributes.size());
} else {
className = std::get<0>(attributes.front());
classType = std::get<1>(attributes.front());
attributes.erase(attributes.begin());
labelIndex = 0;
}
generateDataset(labelIndex);
}
void ArffFiles::load(const std::string& fileName, const std::string& name)
{
int labelIndex;
loadCommon(fileName);
bool found = false;
for (int i = 0; i < attributes.size(); ++i) {
if (attributes[i].first == name) {
className = std::get<0>(attributes[i]);
classType = std::get<1>(attributes[i]);
attributes.erase(attributes.begin() + i);
labelIndex = i;
found = true;
break;
}
}
if (!found) {
throw std::invalid_argument("Class name not found");
}
generateDataset(labelIndex);
}
void ArffFiles::generateDataset(int labelIndex)
{
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
auto yy = std::vector<std::string>(lines.size(), "");
auto removeLines = std::vector<int>(); // Lines with missing values
for (size_t i = 0; i < lines.size(); i++) {
std::stringstream ss(lines[i]);
std::string value;
int pos = 0;
int xIndex = 0;
while (getline(ss, value, ',')) {
if (pos++ == labelIndex) {
yy[i] = value;
} else {
if (value == "?") {
X[xIndex++][i] = -1;
removeLines.push_back(i);
} else
X[xIndex++][i] = stof(value);
}
}
}
for (auto i : removeLines) {
yy.erase(yy.begin() + i);
for (auto& x : X) {
x.erase(x.begin() + i);
}
}
y = factorize(yy);
}
std::string ArffFiles::trim(const std::string& source)
{
std::string s(source);
s.erase(0, s.find_first_not_of(" '\n\r\t"));
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
return s;
}
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
{
std::vector<int> yy;
yy.reserve(labels_t.size());
std::map<std::string, int> labelMap;
int i = 0;
for (const std::string& label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
}
yy.push_back(labelMap[label]);
}
return yy;
}

View File

@@ -0,0 +1,32 @@
#ifndef ARFFFILES_H
#define ARFFFILES_H
#include <string>
#include <vector>
class ArffFiles {
private:
std::vector<std::string> lines;
std::vector<std::pair<std::string, std::string>> attributes;
std::string className;
std::string classType;
std::vector<std::vector<float>> X;
std::vector<int> y;
void generateDataset(int);
void loadCommon(std::string);
public:
ArffFiles();
void load(const std::string&, bool = true);
void load(const std::string&, const std::string&);
std::vector<std::string> getLines() const;
unsigned long int getSize() const;
std::string getClassName() const;
std::string getClassType() const;
static std::string trim(const std::string&);
std::vector<std::vector<float>>& getX();
std::vector<int>& getY();
std::vector<std::pair<std::string, std::string>> getAttributes() const;
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
};
#endif

View File

@@ -0,0 +1 @@
add_library(ArffFiles ArffFiles.cc)

View File

@@ -0,0 +1,55 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <utility>
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/conversions/from_json.hpp>
#include <nlohmann/detail/conversions/to_json.hpp>
#include <nlohmann/detail/meta/identity_tag.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
/// @sa https://json.nlohmann.me/api/adl_serializer/
template<typename ValueType, typename>
struct adl_serializer
{
/// @brief convert a JSON value to any value type
/// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
template<typename BasicJsonType, typename TargetType = ValueType>
static auto from_json(BasicJsonType && j, TargetType& val) noexcept(
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
{
::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
}
/// @brief convert a JSON value to any value type
/// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
template<typename BasicJsonType, typename TargetType = ValueType>
static auto from_json(BasicJsonType && j) noexcept(
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {})))
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {}))
{
return ::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {});
}
/// @brief convert any value type to a JSON value
/// @sa https://json.nlohmann.me/api/adl_serializer/to_json/
template<typename BasicJsonType, typename TargetType = ValueType>
static auto to_json(BasicJsonType& j, TargetType && val) noexcept(
noexcept(::nlohmann::to_json(j, std::forward<TargetType>(val))))
-> decltype(::nlohmann::to_json(j, std::forward<TargetType>(val)), void())
{
::nlohmann::to_json(j, std::forward<TargetType>(val));
}
};
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,103 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstdint> // uint8_t, uint64_t
#include <tuple> // tie
#include <utility> // move
#include <nlohmann/detail/abi_macros.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
/// @brief an internal type for a backed binary type
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/
template<typename BinaryType>
class byte_container_with_subtype : public BinaryType
{
public:
using container_type = BinaryType;
using subtype_type = std::uint64_t;
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
byte_container_with_subtype() noexcept(noexcept(container_type()))
: container_type()
{}
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
byte_container_with_subtype(const container_type& b) noexcept(noexcept(container_type(b)))
: container_type(b)
{}
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
byte_container_with_subtype(container_type&& b) noexcept(noexcept(container_type(std::move(b))))
: container_type(std::move(b))
{}
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
byte_container_with_subtype(const container_type& b, subtype_type subtype_) noexcept(noexcept(container_type(b)))
: container_type(b)
, m_subtype(subtype_)
, m_has_subtype(true)
{}
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
byte_container_with_subtype(container_type&& b, subtype_type subtype_) noexcept(noexcept(container_type(std::move(b))))
: container_type(std::move(b))
, m_subtype(subtype_)
, m_has_subtype(true)
{}
bool operator==(const byte_container_with_subtype& rhs) const
{
return std::tie(static_cast<const BinaryType&>(*this), m_subtype, m_has_subtype) ==
std::tie(static_cast<const BinaryType&>(rhs), rhs.m_subtype, rhs.m_has_subtype);
}
bool operator!=(const byte_container_with_subtype& rhs) const
{
return !(rhs == *this);
}
/// @brief sets the binary subtype
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/set_subtype/
void set_subtype(subtype_type subtype_) noexcept
{
m_subtype = subtype_;
m_has_subtype = true;
}
/// @brief return the binary subtype
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/subtype/
constexpr subtype_type subtype() const noexcept
{
return m_has_subtype ? m_subtype : static_cast<subtype_type>(-1);
}
/// @brief return whether the value has a subtype
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/has_subtype/
constexpr bool has_subtype() const noexcept
{
return m_has_subtype;
}
/// @brief clears the binary subtype
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/clear_subtype/
void clear_subtype() noexcept
{
m_subtype = 0;
m_has_subtype = false;
}
private:
subtype_type m_subtype = 0;
bool m_has_subtype = false;
};
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,100 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
// This file contains all macro definitions affecting or depending on the ABI
#ifndef JSON_SKIP_LIBRARY_VERSION_CHECK
#if defined(NLOHMANN_JSON_VERSION_MAJOR) && defined(NLOHMANN_JSON_VERSION_MINOR) && defined(NLOHMANN_JSON_VERSION_PATCH)
#if NLOHMANN_JSON_VERSION_MAJOR != 3 || NLOHMANN_JSON_VERSION_MINOR != 11 || NLOHMANN_JSON_VERSION_PATCH != 3
#warning "Already included a different version of the library!"
#endif
#endif
#endif
#define NLOHMANN_JSON_VERSION_MAJOR 3 // NOLINT(modernize-macro-to-enum)
#define NLOHMANN_JSON_VERSION_MINOR 11 // NOLINT(modernize-macro-to-enum)
#define NLOHMANN_JSON_VERSION_PATCH 3 // NOLINT(modernize-macro-to-enum)
#ifndef JSON_DIAGNOSTICS
#define JSON_DIAGNOSTICS 0
#endif
#ifndef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
#define JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON 0
#endif
#if JSON_DIAGNOSTICS
#define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS _diag
#else
#define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS
#endif
#if JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
#define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON _ldvcmp
#else
#define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON
#endif
#ifndef NLOHMANN_JSON_NAMESPACE_NO_VERSION
#define NLOHMANN_JSON_NAMESPACE_NO_VERSION 0
#endif
// Construct the namespace ABI tags component
#define NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b) json_abi ## a ## b
#define NLOHMANN_JSON_ABI_TAGS_CONCAT(a, b) \
NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b)
#define NLOHMANN_JSON_ABI_TAGS \
NLOHMANN_JSON_ABI_TAGS_CONCAT( \
NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS, \
NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON)
// Construct the namespace version component
#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch) \
_v ## major ## _ ## minor ## _ ## patch
#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(major, minor, patch) \
NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch)
#if NLOHMANN_JSON_NAMESPACE_NO_VERSION
#define NLOHMANN_JSON_NAMESPACE_VERSION
#else
#define NLOHMANN_JSON_NAMESPACE_VERSION \
NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(NLOHMANN_JSON_VERSION_MAJOR, \
NLOHMANN_JSON_VERSION_MINOR, \
NLOHMANN_JSON_VERSION_PATCH)
#endif
// Combine namespace components
#define NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b) a ## b
#define NLOHMANN_JSON_NAMESPACE_CONCAT(a, b) \
NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b)
#ifndef NLOHMANN_JSON_NAMESPACE
#define NLOHMANN_JSON_NAMESPACE \
nlohmann::NLOHMANN_JSON_NAMESPACE_CONCAT( \
NLOHMANN_JSON_ABI_TAGS, \
NLOHMANN_JSON_NAMESPACE_VERSION)
#endif
#ifndef NLOHMANN_JSON_NAMESPACE_BEGIN
#define NLOHMANN_JSON_NAMESPACE_BEGIN \
namespace nlohmann \
{ \
inline namespace NLOHMANN_JSON_NAMESPACE_CONCAT( \
NLOHMANN_JSON_ABI_TAGS, \
NLOHMANN_JSON_NAMESPACE_VERSION) \
{
#endif
#ifndef NLOHMANN_JSON_NAMESPACE_END
#define NLOHMANN_JSON_NAMESPACE_END \
} /* namespace (inline namespace) NOLINT(readability/namespace) */ \
} // namespace nlohmann
#endif

View File

@@ -0,0 +1,497 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <algorithm> // transform
#include <array> // array
#include <forward_list> // forward_list
#include <iterator> // inserter, front_inserter, end
#include <map> // map
#include <string> // string
#include <tuple> // tuple, make_tuple
#include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
#include <unordered_map> // unordered_map
#include <utility> // pair, declval
#include <valarray> // valarray
#include <nlohmann/detail/exceptions.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/cpp_future.hpp>
#include <nlohmann/detail/meta/identity_tag.hpp>
#include <nlohmann/detail/meta/std_fs.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
#include <nlohmann/detail/string_concat.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_null()))
{
JSON_THROW(type_error::create(302, concat("type must be null, but is ", j.type_name()), &j));
}
n = nullptr;
}
// overloads for basic_json template parameters
template < typename BasicJsonType, typename ArithmeticType,
enable_if_t < std::is_arithmetic<ArithmeticType>::value&&
!std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int > = 0 >
void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
case value_t::null:
case value_t::object:
case value_t::array:
case value_t::string:
case value_t::boolean:
case value_t::binary:
case value_t::discarded:
default:
JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
}
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_boolean()))
{
JSON_THROW(type_error::create(302, concat("type must be boolean, but is ", j.type_name()), &j));
}
b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
{
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template <
typename BasicJsonType, typename StringType,
enable_if_t <
std::is_assignable<StringType&, const typename BasicJsonType::string_t>::value
&& is_detected_exact<typename BasicJsonType::string_t::value_type, value_type_t, StringType>::value
&& !std::is_same<typename BasicJsonType::string_t, StringType>::value
&& !is_json_ref<StringType>::value, int > = 0 >
inline void from_json(const BasicJsonType& j, StringType& s)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
{
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
{
get_arithmetic_value(j, val);
}
#if !JSON_DISABLE_ENUM_SERIALIZATION
template<typename BasicJsonType, typename EnumType,
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
inline void from_json(const BasicJsonType& j, EnumType& e)
{
typename std::underlying_type<EnumType>::type val;
get_arithmetic_value(j, val);
e = static_cast<EnumType>(val);
}
#endif // JSON_DISABLE_ENUM_SERIALIZATION
// forward_list doesn't have an insert method
template<typename BasicJsonType, typename T, typename Allocator,
enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
inline void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
l.clear();
std::transform(j.rbegin(), j.rend(),
std::front_inserter(l), [](const BasicJsonType & i)
{
return i.template get<T>();
});
}
// valarray doesn't have an insert method
template<typename BasicJsonType, typename T,
enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
inline void from_json(const BasicJsonType& j, std::valarray<T>& l)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
l.resize(j.size());
std::transform(j.begin(), j.end(), std::begin(l),
[](const BasicJsonType & elem)
{
return elem.template get<T>();
});
}
template<typename BasicJsonType, typename T, std::size_t N>
auto from_json(const BasicJsonType& j, T (&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
-> decltype(j.template get<T>(), void())
{
for (std::size_t i = 0; i < N; ++i)
{
arr[i] = j.at(i).template get<T>();
}
}
template<typename BasicJsonType>
inline void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
{
arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
}
template<typename BasicJsonType, typename T, std::size_t N>
auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
priority_tag<2> /*unused*/)
-> decltype(j.template get<T>(), void())
{
for (std::size_t i = 0; i < N; ++i)
{
arr[i] = j.at(i).template get<T>();
}
}
template<typename BasicJsonType, typename ConstructibleArrayType,
enable_if_t<
std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
int> = 0>
auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
-> decltype(
arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
j.template get<typename ConstructibleArrayType::value_type>(),
void())
{
using std::end;
ConstructibleArrayType ret;
ret.reserve(j.size());
std::transform(j.begin(), j.end(),
std::inserter(ret, end(ret)), [](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename ConstructibleArrayType::value_type>();
});
arr = std::move(ret);
}
template<typename BasicJsonType, typename ConstructibleArrayType,
enable_if_t<
std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
int> = 0>
inline void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
priority_tag<0> /*unused*/)
{
using std::end;
ConstructibleArrayType ret;
std::transform(
j.begin(), j.end(), std::inserter(ret, end(ret)),
[](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename ConstructibleArrayType::value_type>();
});
arr = std::move(ret);
}
template < typename BasicJsonType, typename ConstructibleArrayType,
enable_if_t <
is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value&&
!is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value&&
!is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value&&
!std::is_same<ConstructibleArrayType, typename BasicJsonType::binary_t>::value&&
!is_basic_json<ConstructibleArrayType>::value,
int > = 0 >
auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
-> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
j.template get<typename ConstructibleArrayType::value_type>(),
void())
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
from_json_array_impl(j, arr, priority_tag<3> {});
}
template < typename BasicJsonType, typename T, std::size_t... Idx >
std::array<T, sizeof...(Idx)> from_json_inplace_array_impl(BasicJsonType&& j,
identity_tag<std::array<T, sizeof...(Idx)>> /*unused*/, index_sequence<Idx...> /*unused*/)
{
return { { std::forward<BasicJsonType>(j).at(Idx).template get<T>()... } };
}
template < typename BasicJsonType, typename T, std::size_t N >
auto from_json(BasicJsonType&& j, identity_tag<std::array<T, N>> tag)
-> decltype(from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {}))
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
return from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {});
}
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, typename BasicJsonType::binary_t& bin)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_binary()))
{
JSON_THROW(type_error::create(302, concat("type must be binary, but is ", j.type_name()), &j));
}
bin = *j.template get_ptr<const typename BasicJsonType::binary_t*>();
}
template<typename BasicJsonType, typename ConstructibleObjectType,
enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0>
inline void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_object()))
{
JSON_THROW(type_error::create(302, concat("type must be object, but is ", j.type_name()), &j));
}
ConstructibleObjectType ret;
const auto* inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
using value_type = typename ConstructibleObjectType::value_type;
std::transform(
inner_object->begin(), inner_object->end(),
std::inserter(ret, ret.begin()),
[](typename BasicJsonType::object_t::value_type const & p)
{
return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
});
obj = std::move(ret);
}
// overload for arithmetic types, not chosen for basic_json template arguments
// (BooleanType, etc..); note: Is it really necessary to provide explicit
// overloads for boolean_t etc. in case of a custom BooleanType which is not
// an arithmetic type?
template < typename BasicJsonType, typename ArithmeticType,
enable_if_t <
std::is_arithmetic<ArithmeticType>::value&&
!std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value&&
!std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value&&
!std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value&&
!std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int > = 0 >
inline void from_json(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
case value_t::boolean:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
break;
}
case value_t::null:
case value_t::object:
case value_t::array:
case value_t::string:
case value_t::binary:
case value_t::discarded:
default:
JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
}
}
template<typename BasicJsonType, typename... Args, std::size_t... Idx>
std::tuple<Args...> from_json_tuple_impl_base(BasicJsonType&& j, index_sequence<Idx...> /*unused*/)
{
return std::make_tuple(std::forward<BasicJsonType>(j).at(Idx).template get<Args>()...);
}
template < typename BasicJsonType, class A1, class A2 >
std::pair<A1, A2> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::pair<A1, A2>> /*unused*/, priority_tag<0> /*unused*/)
{
return {std::forward<BasicJsonType>(j).at(0).template get<A1>(),
std::forward<BasicJsonType>(j).at(1).template get<A2>()};
}
template<typename BasicJsonType, typename A1, typename A2>
inline void from_json_tuple_impl(BasicJsonType&& j, std::pair<A1, A2>& p, priority_tag<1> /*unused*/)
{
p = from_json_tuple_impl(std::forward<BasicJsonType>(j), identity_tag<std::pair<A1, A2>> {}, priority_tag<0> {});
}
template<typename BasicJsonType, typename... Args>
std::tuple<Args...> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::tuple<Args...>> /*unused*/, priority_tag<2> /*unused*/)
{
return from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
}
template<typename BasicJsonType, typename... Args>
inline void from_json_tuple_impl(BasicJsonType&& j, std::tuple<Args...>& t, priority_tag<3> /*unused*/)
{
t = from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
}
template<typename BasicJsonType, typename TupleRelated>
auto from_json(BasicJsonType&& j, TupleRelated&& t)
-> decltype(from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {}))
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
return from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {});
}
template < typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
typename = enable_if_t < !std::is_constructible <
typename BasicJsonType::string_t, Key >::value >>
inline void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
m.clear();
for (const auto& p : j)
{
if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
}
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
}
}
template < typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
typename = enable_if_t < !std::is_constructible <
typename BasicJsonType::string_t, Key >::value >>
inline void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
}
m.clear();
for (const auto& p : j)
{
if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
{
JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
}
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
}
}
#if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
template<typename BasicJsonType>
inline void from_json(const BasicJsonType& j, std_fs::path& p)
{
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
{
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
}
p = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
#endif
struct from_json_fn
{
template<typename BasicJsonType, typename T>
auto operator()(const BasicJsonType& j, T&& val) const
noexcept(noexcept(from_json(j, std::forward<T>(val))))
-> decltype(from_json(j, std::forward<T>(val)))
{
return from_json(j, std::forward<T>(val));
}
};
} // namespace detail
#ifndef JSON_HAS_CPP_17
/// namespace to hold default `from_json` function
/// to see why this is required:
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
{
#endif
JSON_INLINE_VARIABLE constexpr const auto& from_json = // NOLINT(misc-definitions-in-headers)
detail::static_const<detail::from_json_fn>::value;
#ifndef JSON_HAS_CPP_17
} // namespace
#endif
NLOHMANN_JSON_NAMESPACE_END

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,447 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <algorithm> // copy
#include <iterator> // begin, end
#include <string> // string
#include <tuple> // tuple, get
#include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type
#include <utility> // move, forward, declval, pair
#include <valarray> // valarray
#include <vector> // vector
#include <nlohmann/detail/iterators/iteration_proxy.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/cpp_future.hpp>
#include <nlohmann/detail/meta/std_fs.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
//////////////////
// constructors //
//////////////////
/*
* Note all external_constructor<>::construct functions need to call
* j.m_data.m_value.destroy(j.m_data.m_type) to avoid a memory leak in case j contains an
* allocated value (e.g., a string). See bug issue
* https://github.com/nlohmann/json/issues/2865 for more information.
*/
template<value_t> struct external_constructor;
template<>
struct external_constructor<value_t::boolean>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::boolean;
j.m_data.m_value = b;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::string>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::string;
j.m_data.m_value = s;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::string;
j.m_data.m_value = std::move(s);
j.assert_invariant();
}
template < typename BasicJsonType, typename CompatibleStringType,
enable_if_t < !std::is_same<CompatibleStringType, typename BasicJsonType::string_t>::value,
int > = 0 >
static void construct(BasicJsonType& j, const CompatibleStringType& str)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::string;
j.m_data.m_value.string = j.template create<typename BasicJsonType::string_t>(str);
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::binary>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::binary_t& b)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::binary;
j.m_data.m_value = typename BasicJsonType::binary_t(b);
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::binary_t&& b)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::binary;
j.m_data.m_value = typename BasicJsonType::binary_t(std::move(b));
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_float>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::number_float;
j.m_data.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_unsigned>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::number_unsigned;
j.m_data.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_integer>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::number_integer;
j.m_data.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::array>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::array;
j.m_data.m_value = arr;
j.set_parents();
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::array;
j.m_data.m_value = std::move(arr);
j.set_parents();
j.assert_invariant();
}
template < typename BasicJsonType, typename CompatibleArrayType,
enable_if_t < !std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value,
int > = 0 >
static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
{
using std::begin;
using std::end;
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::array;
j.m_data.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
j.set_parents();
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const std::vector<bool>& arr)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::array;
j.m_data.m_value = value_t::array;
j.m_data.m_value.array->reserve(arr.size());
for (const bool x : arr)
{
j.m_data.m_value.array->push_back(x);
j.set_parent(j.m_data.m_value.array->back());
}
j.assert_invariant();
}
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
static void construct(BasicJsonType& j, const std::valarray<T>& arr)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::array;
j.m_data.m_value = value_t::array;
j.m_data.m_value.array->resize(arr.size());
if (arr.size() > 0)
{
std::copy(std::begin(arr), std::end(arr), j.m_data.m_value.array->begin());
}
j.set_parents();
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::object>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::object;
j.m_data.m_value = obj;
j.set_parents();
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
{
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::object;
j.m_data.m_value = std::move(obj);
j.set_parents();
j.assert_invariant();
}
template < typename BasicJsonType, typename CompatibleObjectType,
enable_if_t < !std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int > = 0 >
static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
{
using std::begin;
using std::end;
j.m_data.m_value.destroy(j.m_data.m_type);
j.m_data.m_type = value_t::object;
j.m_data.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
j.set_parents();
j.assert_invariant();
}
};
/////////////
// to_json //
/////////////
template<typename BasicJsonType, typename T,
enable_if_t<std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
inline void to_json(BasicJsonType& j, T b) noexcept
{
external_constructor<value_t::boolean>::construct(j, b);
}
template < typename BasicJsonType, typename BoolRef,
enable_if_t <
((std::is_same<std::vector<bool>::reference, BoolRef>::value
&& !std::is_same <std::vector<bool>::reference, typename BasicJsonType::boolean_t&>::value)
|| (std::is_same<std::vector<bool>::const_reference, BoolRef>::value
&& !std::is_same <detail::uncvref_t<std::vector<bool>::const_reference>,
typename BasicJsonType::boolean_t >::value))
&& std::is_convertible<const BoolRef&, typename BasicJsonType::boolean_t>::value, int > = 0 >
inline void to_json(BasicJsonType& j, const BoolRef& b) noexcept
{
external_constructor<value_t::boolean>::construct(j, static_cast<typename BasicJsonType::boolean_t>(b));
}
template<typename BasicJsonType, typename CompatibleString,
enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0>
inline void to_json(BasicJsonType& j, const CompatibleString& s)
{
external_constructor<value_t::string>::construct(j, s);
}
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
{
external_constructor<value_t::string>::construct(j, std::move(s));
}
template<typename BasicJsonType, typename FloatType,
enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
inline void to_json(BasicJsonType& j, FloatType val) noexcept
{
external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
}
template<typename BasicJsonType, typename CompatibleNumberUnsignedType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0>
inline void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
{
external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
}
template<typename BasicJsonType, typename CompatibleNumberIntegerType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0>
inline void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
{
external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
}
#if !JSON_DISABLE_ENUM_SERIALIZATION
template<typename BasicJsonType, typename EnumType,
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
inline void to_json(BasicJsonType& j, EnumType e) noexcept
{
using underlying_type = typename std::underlying_type<EnumType>::type;
static constexpr value_t integral_value_t = std::is_unsigned<underlying_type>::value ? value_t::number_unsigned : value_t::number_integer;
external_constructor<integral_value_t>::construct(j, static_cast<underlying_type>(e));
}
#endif // JSON_DISABLE_ENUM_SERIALIZATION
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, const std::vector<bool>& e)
{
external_constructor<value_t::array>::construct(j, e);
}
template < typename BasicJsonType, typename CompatibleArrayType,
enable_if_t < is_compatible_array_type<BasicJsonType,
CompatibleArrayType>::value&&
!is_compatible_object_type<BasicJsonType, CompatibleArrayType>::value&&
!is_compatible_string_type<BasicJsonType, CompatibleArrayType>::value&&
!std::is_same<typename BasicJsonType::binary_t, CompatibleArrayType>::value&&
!is_basic_json<CompatibleArrayType>::value,
int > = 0 >
inline void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
{
external_constructor<value_t::array>::construct(j, arr);
}
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, const typename BasicJsonType::binary_t& bin)
{
external_constructor<value_t::binary>::construct(j, bin);
}
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
inline void to_json(BasicJsonType& j, const std::valarray<T>& arr)
{
external_constructor<value_t::array>::construct(j, std::move(arr));
}
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
{
external_constructor<value_t::array>::construct(j, std::move(arr));
}
template < typename BasicJsonType, typename CompatibleObjectType,
enable_if_t < is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value&& !is_basic_json<CompatibleObjectType>::value, int > = 0 >
inline void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
{
external_constructor<value_t::object>::construct(j, obj);
}
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
{
external_constructor<value_t::object>::construct(j, std::move(obj));
}
template <
typename BasicJsonType, typename T, std::size_t N,
enable_if_t < !std::is_constructible<typename BasicJsonType::string_t,
const T(&)[N]>::value, // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
int > = 0 >
inline void to_json(BasicJsonType& j, const T(&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
{
external_constructor<value_t::array>::construct(j, arr);
}
template < typename BasicJsonType, typename T1, typename T2, enable_if_t < std::is_constructible<BasicJsonType, T1>::value&& std::is_constructible<BasicJsonType, T2>::value, int > = 0 >
inline void to_json(BasicJsonType& j, const std::pair<T1, T2>& p)
{
j = { p.first, p.second };
}
// for https://github.com/nlohmann/json/pull/1134
template<typename BasicJsonType, typename T,
enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0>
inline void to_json(BasicJsonType& j, const T& b)
{
j = { {b.key(), b.value()} };
}
template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
inline void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/)
{
j = { std::get<Idx>(t)... };
}
template<typename BasicJsonType, typename T, enable_if_t<is_constructible_tuple<BasicJsonType, T>::value, int > = 0>
inline void to_json(BasicJsonType& j, const T& t)
{
to_json_tuple_impl(j, t, make_index_sequence<std::tuple_size<T>::value> {});
}
#if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
template<typename BasicJsonType>
inline void to_json(BasicJsonType& j, const std_fs::path& p)
{
j = p.string();
}
#endif
struct to_json_fn
{
template<typename BasicJsonType, typename T>
auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
-> decltype(to_json(j, std::forward<T>(val)), void())
{
return to_json(j, std::forward<T>(val));
}
};
} // namespace detail
#ifndef JSON_HAS_CPP_17
/// namespace to hold default `to_json` function
/// to see why this is required:
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
{
#endif
JSON_INLINE_VARIABLE constexpr const auto& to_json = // NOLINT(misc-definitions-in-headers)
detail::static_const<detail::to_json_fn>::value;
#ifndef JSON_HAS_CPP_17
} // namespace
#endif
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,257 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef> // nullptr_t
#include <exception> // exception
#if JSON_DIAGNOSTICS
#include <numeric> // accumulate
#endif
#include <stdexcept> // runtime_error
#include <string> // to_string
#include <vector> // vector
#include <nlohmann/detail/value_t.hpp>
#include <nlohmann/detail/string_escape.hpp>
#include <nlohmann/detail/input/position_t.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/cpp_future.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
#include <nlohmann/detail/string_concat.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
////////////////
// exceptions //
////////////////
/// @brief general exception of the @ref basic_json class
/// @sa https://json.nlohmann.me/api/basic_json/exception/
class exception : public std::exception
{
public:
/// returns the explanatory string
const char* what() const noexcept override
{
return m.what();
}
/// the id of the exception
const int id; // NOLINT(cppcoreguidelines-non-private-member-variables-in-classes)
protected:
JSON_HEDLEY_NON_NULL(3)
exception(int id_, const char* what_arg) : id(id_), m(what_arg) {} // NOLINT(bugprone-throw-keyword-missing)
static std::string name(const std::string& ename, int id_)
{
return concat("[json.exception.", ename, '.', std::to_string(id_), "] ");
}
static std::string diagnostics(std::nullptr_t /*leaf_element*/)
{
return "";
}
template<typename BasicJsonType>
static std::string diagnostics(const BasicJsonType* leaf_element)
{
#if JSON_DIAGNOSTICS
std::vector<std::string> tokens;
for (const auto* current = leaf_element; current != nullptr && current->m_parent != nullptr; current = current->m_parent)
{
switch (current->m_parent->type())
{
case value_t::array:
{
for (std::size_t i = 0; i < current->m_parent->m_data.m_value.array->size(); ++i)
{
if (&current->m_parent->m_data.m_value.array->operator[](i) == current)
{
tokens.emplace_back(std::to_string(i));
break;
}
}
break;
}
case value_t::object:
{
for (const auto& element : *current->m_parent->m_data.m_value.object)
{
if (&element.second == current)
{
tokens.emplace_back(element.first.c_str());
break;
}
}
break;
}
case value_t::null: // LCOV_EXCL_LINE
case value_t::string: // LCOV_EXCL_LINE
case value_t::boolean: // LCOV_EXCL_LINE
case value_t::number_integer: // LCOV_EXCL_LINE
case value_t::number_unsigned: // LCOV_EXCL_LINE
case value_t::number_float: // LCOV_EXCL_LINE
case value_t::binary: // LCOV_EXCL_LINE
case value_t::discarded: // LCOV_EXCL_LINE
default: // LCOV_EXCL_LINE
break; // LCOV_EXCL_LINE
}
}
if (tokens.empty())
{
return "";
}
auto str = std::accumulate(tokens.rbegin(), tokens.rend(), std::string{},
[](const std::string & a, const std::string & b)
{
return concat(a, '/', detail::escape(b));
});
return concat('(', str, ") ");
#else
static_cast<void>(leaf_element);
return "";
#endif
}
private:
/// an exception object as storage for error messages
std::runtime_error m;
};
/// @brief exception indicating a parse error
/// @sa https://json.nlohmann.me/api/basic_json/parse_error/
class parse_error : public exception
{
public:
/*!
@brief create a parse error exception
@param[in] id_ the id of the exception
@param[in] pos the position where the error occurred (or with
chars_read_total=0 if the position cannot be
determined)
@param[in] what_arg the explanatory string
@return parse_error object
*/
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static parse_error create(int id_, const position_t& pos, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("parse_error", id_), "parse error",
position_string(pos), ": ", exception::diagnostics(context), what_arg);
return {id_, pos.chars_read_total, w.c_str()};
}
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static parse_error create(int id_, std::size_t byte_, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("parse_error", id_), "parse error",
(byte_ != 0 ? (concat(" at byte ", std::to_string(byte_))) : ""),
": ", exception::diagnostics(context), what_arg);
return {id_, byte_, w.c_str()};
}
/*!
@brief byte index of the parse error
The byte index of the last read character in the input file.
@note For an input with n bytes, 1 is the index of the first character and
n+1 is the index of the terminating null byte or the end of file.
This also holds true when reading a byte vector (CBOR or MessagePack).
*/
const std::size_t byte;
private:
parse_error(int id_, std::size_t byte_, const char* what_arg)
: exception(id_, what_arg), byte(byte_) {}
static std::string position_string(const position_t& pos)
{
return concat(" at line ", std::to_string(pos.lines_read + 1),
", column ", std::to_string(pos.chars_read_current_line));
}
};
/// @brief exception indicating errors with iterators
/// @sa https://json.nlohmann.me/api/basic_json/invalid_iterator/
class invalid_iterator : public exception
{
public:
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static invalid_iterator create(int id_, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("invalid_iterator", id_), exception::diagnostics(context), what_arg);
return {id_, w.c_str()};
}
private:
JSON_HEDLEY_NON_NULL(3)
invalid_iterator(int id_, const char* what_arg)
: exception(id_, what_arg) {}
};
/// @brief exception indicating executing a member function with a wrong type
/// @sa https://json.nlohmann.me/api/basic_json/type_error/
class type_error : public exception
{
public:
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static type_error create(int id_, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("type_error", id_), exception::diagnostics(context), what_arg);
return {id_, w.c_str()};
}
private:
JSON_HEDLEY_NON_NULL(3)
type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
/// @brief exception indicating access out of the defined range
/// @sa https://json.nlohmann.me/api/basic_json/out_of_range/
class out_of_range : public exception
{
public:
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static out_of_range create(int id_, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("out_of_range", id_), exception::diagnostics(context), what_arg);
return {id_, w.c_str()};
}
private:
JSON_HEDLEY_NON_NULL(3)
out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
/// @brief exception indicating other library errors
/// @sa https://json.nlohmann.me/api/basic_json/other_error/
class other_error : public exception
{
public:
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
static other_error create(int id_, const std::string& what_arg, BasicJsonContext context)
{
const std::string w = concat(exception::name("other_error", id_), exception::diagnostics(context), what_arg);
return {id_, w.c_str()};
}
private:
JSON_HEDLEY_NON_NULL(3)
other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,129 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstdint> // uint8_t
#include <cstddef> // size_t
#include <functional> // hash
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
// boost::hash_combine
inline std::size_t combine(std::size_t seed, std::size_t h) noexcept
{
seed ^= h + 0x9e3779b9 + (seed << 6U) + (seed >> 2U);
return seed;
}
/*!
@brief hash a JSON value
The hash function tries to rely on std::hash where possible. Furthermore, the
type of the JSON value is taken into account to have different hash values for
null, 0, 0U, and false, etc.
@tparam BasicJsonType basic_json specialization
@param j JSON value to hash
@return hash value of j
*/
template<typename BasicJsonType>
std::size_t hash(const BasicJsonType& j)
{
using string_t = typename BasicJsonType::string_t;
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
const auto type = static_cast<std::size_t>(j.type());
switch (j.type())
{
case BasicJsonType::value_t::null:
case BasicJsonType::value_t::discarded:
{
return combine(type, 0);
}
case BasicJsonType::value_t::object:
{
auto seed = combine(type, j.size());
for (const auto& element : j.items())
{
const auto h = std::hash<string_t> {}(element.key());
seed = combine(seed, h);
seed = combine(seed, hash(element.value()));
}
return seed;
}
case BasicJsonType::value_t::array:
{
auto seed = combine(type, j.size());
for (const auto& element : j)
{
seed = combine(seed, hash(element));
}
return seed;
}
case BasicJsonType::value_t::string:
{
const auto h = std::hash<string_t> {}(j.template get_ref<const string_t&>());
return combine(type, h);
}
case BasicJsonType::value_t::boolean:
{
const auto h = std::hash<bool> {}(j.template get<bool>());
return combine(type, h);
}
case BasicJsonType::value_t::number_integer:
{
const auto h = std::hash<number_integer_t> {}(j.template get<number_integer_t>());
return combine(type, h);
}
case BasicJsonType::value_t::number_unsigned:
{
const auto h = std::hash<number_unsigned_t> {}(j.template get<number_unsigned_t>());
return combine(type, h);
}
case BasicJsonType::value_t::number_float:
{
const auto h = std::hash<number_float_t> {}(j.template get<number_float_t>());
return combine(type, h);
}
case BasicJsonType::value_t::binary:
{
auto seed = combine(type, j.get_binary().size());
const auto h = std::hash<bool> {}(j.get_binary().has_subtype());
seed = combine(seed, h);
seed = combine(seed, static_cast<std::size_t>(j.get_binary().subtype()));
for (const auto byte : j.get_binary())
{
seed = combine(seed, std::hash<std::uint8_t> {}(byte));
}
return seed;
}
default: // LCOV_EXCL_LINE
JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
return 0; // LCOV_EXCL_LINE
}
}
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,492 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <array> // array
#include <cstddef> // size_t
#include <cstring> // strlen
#include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next
#include <memory> // shared_ptr, make_shared, addressof
#include <numeric> // accumulate
#include <string> // string, char_traits
#include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer
#include <utility> // pair, declval
#ifndef JSON_NO_IO
#include <cstdio> // FILE *
#include <istream> // istream
#endif // JSON_NO_IO
#include <nlohmann/detail/iterators/iterator_traits.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
/// the supported input formats
enum class input_format_t { json, cbor, msgpack, ubjson, bson, bjdata };
////////////////////
// input adapters //
////////////////////
#ifndef JSON_NO_IO
/*!
Input adapter for stdio file access. This adapter read only 1 byte and do not use any
buffer. This adapter is a very low level adapter.
*/
class file_input_adapter
{
public:
using char_type = char;
JSON_HEDLEY_NON_NULL(2)
explicit file_input_adapter(std::FILE* f) noexcept
: m_file(f)
{
JSON_ASSERT(m_file != nullptr);
}
// make class move-only
file_input_adapter(const file_input_adapter&) = delete;
file_input_adapter(file_input_adapter&&) noexcept = default;
file_input_adapter& operator=(const file_input_adapter&) = delete;
file_input_adapter& operator=(file_input_adapter&&) = delete;
~file_input_adapter() = default;
std::char_traits<char>::int_type get_character() noexcept
{
return std::fgetc(m_file);
}
private:
/// the file pointer to read from
std::FILE* m_file;
};
/*!
Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
beginning of input. Does not support changing the underlying std::streambuf
in mid-input. Maintains underlying std::istream and std::streambuf to support
subsequent use of standard std::istream operations to process any input
characters following those used in parsing the JSON input. Clears the
std::istream flags; any input errors (e.g., EOF) will be detected by the first
subsequent call for input from the std::istream.
*/
class input_stream_adapter
{
public:
using char_type = char;
~input_stream_adapter()
{
// clear stream flags; we use underlying streambuf I/O, do not
// maintain ifstream flags, except eof
if (is != nullptr)
{
is->clear(is->rdstate() & std::ios::eofbit);
}
}
explicit input_stream_adapter(std::istream& i)
: is(&i), sb(i.rdbuf())
{}
// delete because of pointer members
input_stream_adapter(const input_stream_adapter&) = delete;
input_stream_adapter& operator=(input_stream_adapter&) = delete;
input_stream_adapter& operator=(input_stream_adapter&&) = delete;
input_stream_adapter(input_stream_adapter&& rhs) noexcept
: is(rhs.is), sb(rhs.sb)
{
rhs.is = nullptr;
rhs.sb = nullptr;
}
// std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
// ensure that std::char_traits<char>::eof() and the character 0xFF do not
// end up as the same value, e.g. 0xFFFFFFFF.
std::char_traits<char>::int_type get_character()
{
auto res = sb->sbumpc();
// set eof manually, as we don't use the istream interface.
if (JSON_HEDLEY_UNLIKELY(res == std::char_traits<char>::eof()))
{
is->clear(is->rdstate() | std::ios::eofbit);
}
return res;
}
private:
/// the associated input stream
std::istream* is = nullptr;
std::streambuf* sb = nullptr;
};
#endif // JSON_NO_IO
// General-purpose iterator-based adapter. It might not be as fast as
// theoretically possible for some containers, but it is extremely versatile.
template<typename IteratorType>
class iterator_input_adapter
{
public:
using char_type = typename std::iterator_traits<IteratorType>::value_type;
iterator_input_adapter(IteratorType first, IteratorType last)
: current(std::move(first)), end(std::move(last))
{}
typename char_traits<char_type>::int_type get_character()
{
if (JSON_HEDLEY_LIKELY(current != end))
{
auto result = char_traits<char_type>::to_int_type(*current);
std::advance(current, 1);
return result;
}
return char_traits<char_type>::eof();
}
private:
IteratorType current;
IteratorType end;
template<typename BaseInputAdapter, size_t T>
friend struct wide_string_input_helper;
bool empty() const
{
return current == end;
}
};
template<typename BaseInputAdapter, size_t T>
struct wide_string_input_helper;
template<typename BaseInputAdapter>
struct wide_string_input_helper<BaseInputAdapter, 4>
{
// UTF-32
static void fill_buffer(BaseInputAdapter& input,
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
size_t& utf8_bytes_index,
size_t& utf8_bytes_filled)
{
utf8_bytes_index = 0;
if (JSON_HEDLEY_UNLIKELY(input.empty()))
{
utf8_bytes[0] = std::char_traits<char>::eof();
utf8_bytes_filled = 1;
}
else
{
// get the current character
const auto wc = input.get_character();
// UTF-32 to UTF-8 encoding
if (wc < 0x80)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
else if (wc <= 0x7FF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((static_cast<unsigned int>(wc) >> 6u) & 0x1Fu));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
utf8_bytes_filled = 2;
}
else if (wc <= 0xFFFF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((static_cast<unsigned int>(wc) >> 12u) & 0x0Fu));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
utf8_bytes_filled = 3;
}
else if (wc <= 0x10FFFF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | ((static_cast<unsigned int>(wc) >> 18u) & 0x07u));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 12u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
utf8_bytes_filled = 4;
}
else
{
// unknown character
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
}
}
};
template<typename BaseInputAdapter>
struct wide_string_input_helper<BaseInputAdapter, 2>
{
// UTF-16
static void fill_buffer(BaseInputAdapter& input,
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
size_t& utf8_bytes_index,
size_t& utf8_bytes_filled)
{
utf8_bytes_index = 0;
if (JSON_HEDLEY_UNLIKELY(input.empty()))
{
utf8_bytes[0] = std::char_traits<char>::eof();
utf8_bytes_filled = 1;
}
else
{
// get the current character
const auto wc = input.get_character();
// UTF-16 to UTF-8 encoding
if (wc < 0x80)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
else if (wc <= 0x7FF)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((static_cast<unsigned int>(wc) >> 6u)));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
utf8_bytes_filled = 2;
}
else if (0xD800 > wc || wc >= 0xE000)
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((static_cast<unsigned int>(wc) >> 12u)));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
utf8_bytes_filled = 3;
}
else
{
if (JSON_HEDLEY_UNLIKELY(!input.empty()))
{
const auto wc2 = static_cast<unsigned int>(input.get_character());
const auto charcode = 0x10000u + (((static_cast<unsigned int>(wc) & 0x3FFu) << 10u) | (wc2 & 0x3FFu));
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | (charcode >> 18u));
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 12u) & 0x3Fu));
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 6u) & 0x3Fu));
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (charcode & 0x3Fu));
utf8_bytes_filled = 4;
}
else
{
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
utf8_bytes_filled = 1;
}
}
}
}
};
// Wraps another input adapter to convert wide character types into individual bytes.
template<typename BaseInputAdapter, typename WideCharType>
class wide_string_input_adapter
{
public:
using char_type = char;
wide_string_input_adapter(BaseInputAdapter base)
: base_adapter(base) {}
typename std::char_traits<char>::int_type get_character() noexcept
{
// check if buffer needs to be filled
if (utf8_bytes_index == utf8_bytes_filled)
{
fill_buffer<sizeof(WideCharType)>();
JSON_ASSERT(utf8_bytes_filled > 0);
JSON_ASSERT(utf8_bytes_index == 0);
}
// use buffer
JSON_ASSERT(utf8_bytes_filled > 0);
JSON_ASSERT(utf8_bytes_index < utf8_bytes_filled);
return utf8_bytes[utf8_bytes_index++];
}
private:
BaseInputAdapter base_adapter;
template<size_t T>
void fill_buffer()
{
wide_string_input_helper<BaseInputAdapter, T>::fill_buffer(base_adapter, utf8_bytes, utf8_bytes_index, utf8_bytes_filled);
}
/// a buffer for UTF-8 bytes
std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
/// index to the utf8_codes array for the next valid byte
std::size_t utf8_bytes_index = 0;
/// number of valid bytes in the utf8_codes array
std::size_t utf8_bytes_filled = 0;
};
template<typename IteratorType, typename Enable = void>
struct iterator_input_adapter_factory
{
using iterator_type = IteratorType;
using char_type = typename std::iterator_traits<iterator_type>::value_type;
using adapter_type = iterator_input_adapter<iterator_type>;
static adapter_type create(IteratorType first, IteratorType last)
{
return adapter_type(std::move(first), std::move(last));
}
};
template<typename T>
struct is_iterator_of_multibyte
{
using value_type = typename std::iterator_traits<T>::value_type;
enum
{
value = sizeof(value_type) > 1
};
};
template<typename IteratorType>
struct iterator_input_adapter_factory<IteratorType, enable_if_t<is_iterator_of_multibyte<IteratorType>::value>>
{
using iterator_type = IteratorType;
using char_type = typename std::iterator_traits<iterator_type>::value_type;
using base_adapter_type = iterator_input_adapter<iterator_type>;
using adapter_type = wide_string_input_adapter<base_adapter_type, char_type>;
static adapter_type create(IteratorType first, IteratorType last)
{
return adapter_type(base_adapter_type(std::move(first), std::move(last)));
}
};
// General purpose iterator-based input
template<typename IteratorType>
typename iterator_input_adapter_factory<IteratorType>::adapter_type input_adapter(IteratorType first, IteratorType last)
{
using factory_type = iterator_input_adapter_factory<IteratorType>;
return factory_type::create(first, last);
}
// Convenience shorthand from container to iterator
// Enables ADL on begin(container) and end(container)
// Encloses the using declarations in namespace for not to leak them to outside scope
namespace container_input_adapter_factory_impl
{
using std::begin;
using std::end;
template<typename ContainerType, typename Enable = void>
struct container_input_adapter_factory {};
template<typename ContainerType>
struct container_input_adapter_factory< ContainerType,
void_t<decltype(begin(std::declval<ContainerType>()), end(std::declval<ContainerType>()))>>
{
using adapter_type = decltype(input_adapter(begin(std::declval<ContainerType>()), end(std::declval<ContainerType>())));
static adapter_type create(const ContainerType& container)
{
return input_adapter(begin(container), end(container));
}
};
} // namespace container_input_adapter_factory_impl
template<typename ContainerType>
typename container_input_adapter_factory_impl::container_input_adapter_factory<ContainerType>::adapter_type input_adapter(const ContainerType& container)
{
return container_input_adapter_factory_impl::container_input_adapter_factory<ContainerType>::create(container);
}
#ifndef JSON_NO_IO
// Special cases with fast paths
inline file_input_adapter input_adapter(std::FILE* file)
{
return file_input_adapter(file);
}
inline input_stream_adapter input_adapter(std::istream& stream)
{
return input_stream_adapter(stream);
}
inline input_stream_adapter input_adapter(std::istream&& stream)
{
return input_stream_adapter(stream);
}
#endif // JSON_NO_IO
using contiguous_bytes_input_adapter = decltype(input_adapter(std::declval<const char*>(), std::declval<const char*>()));
// Null-delimited strings, and the like.
template < typename CharT,
typename std::enable_if <
std::is_pointer<CharT>::value&&
!std::is_array<CharT>::value&&
std::is_integral<typename std::remove_pointer<CharT>::type>::value&&
sizeof(typename std::remove_pointer<CharT>::type) == 1,
int >::type = 0 >
contiguous_bytes_input_adapter input_adapter(CharT b)
{
auto length = std::strlen(reinterpret_cast<const char*>(b));
const auto* ptr = reinterpret_cast<const char*>(b);
return input_adapter(ptr, ptr + length);
}
template<typename T, std::size_t N>
auto input_adapter(T (&array)[N]) -> decltype(input_adapter(array, array + N)) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
{
return input_adapter(array, array + N);
}
// This class only handles inputs of input_buffer_adapter type.
// It's required so that expressions like {ptr, len} can be implicitly cast
// to the correct adapter.
class span_input_adapter
{
public:
template < typename CharT,
typename std::enable_if <
std::is_pointer<CharT>::value&&
std::is_integral<typename std::remove_pointer<CharT>::type>::value&&
sizeof(typename std::remove_pointer<CharT>::type) == 1,
int >::type = 0 >
span_input_adapter(CharT b, std::size_t l)
: ia(reinterpret_cast<const char*>(b), reinterpret_cast<const char*>(b) + l) {}
template<class IteratorType,
typename std::enable_if<
std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
int>::type = 0>
span_input_adapter(IteratorType first, IteratorType last)
: ia(input_adapter(first, last)) {}
contiguous_bytes_input_adapter&& get()
{
return std::move(ia); // NOLINT(hicpp-move-const-arg,performance-move-const-arg)
}
private:
contiguous_bytes_input_adapter ia;
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,727 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef>
#include <string> // string
#include <utility> // move
#include <vector> // vector
#include <nlohmann/detail/exceptions.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/string_concat.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
/*!
@brief SAX interface
This class describes the SAX interface used by @ref nlohmann::json::sax_parse.
Each function is called in different situations while the input is parsed. The
boolean return value informs the parser whether to continue processing the
input.
*/
template<typename BasicJsonType>
struct json_sax
{
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using binary_t = typename BasicJsonType::binary_t;
/*!
@brief a null value was read
@return whether parsing should proceed
*/
virtual bool null() = 0;
/*!
@brief a boolean value was read
@param[in] val boolean value
@return whether parsing should proceed
*/
virtual bool boolean(bool val) = 0;
/*!
@brief an integer number was read
@param[in] val integer value
@return whether parsing should proceed
*/
virtual bool number_integer(number_integer_t val) = 0;
/*!
@brief an unsigned integer number was read
@param[in] val unsigned integer value
@return whether parsing should proceed
*/
virtual bool number_unsigned(number_unsigned_t val) = 0;
/*!
@brief a floating-point number was read
@param[in] val floating-point value
@param[in] s raw token value
@return whether parsing should proceed
*/
virtual bool number_float(number_float_t val, const string_t& s) = 0;
/*!
@brief a string value was read
@param[in] val string value
@return whether parsing should proceed
@note It is safe to move the passed string value.
*/
virtual bool string(string_t& val) = 0;
/*!
@brief a binary value was read
@param[in] val binary value
@return whether parsing should proceed
@note It is safe to move the passed binary value.
*/
virtual bool binary(binary_t& val) = 0;
/*!
@brief the beginning of an object was read
@param[in] elements number of object elements or -1 if unknown
@return whether parsing should proceed
@note binary formats may report the number of elements
*/
virtual bool start_object(std::size_t elements) = 0;
/*!
@brief an object key was read
@param[in] val object key
@return whether parsing should proceed
@note It is safe to move the passed string.
*/
virtual bool key(string_t& val) = 0;
/*!
@brief the end of an object was read
@return whether parsing should proceed
*/
virtual bool end_object() = 0;
/*!
@brief the beginning of an array was read
@param[in] elements number of array elements or -1 if unknown
@return whether parsing should proceed
@note binary formats may report the number of elements
*/
virtual bool start_array(std::size_t elements) = 0;
/*!
@brief the end of an array was read
@return whether parsing should proceed
*/
virtual bool end_array() = 0;
/*!
@brief a parse error occurred
@param[in] position the position in the input where the error occurs
@param[in] last_token the last read token
@param[in] ex an exception object describing the error
@return whether parsing should proceed (must return false)
*/
virtual bool parse_error(std::size_t position,
const std::string& last_token,
const detail::exception& ex) = 0;
json_sax() = default;
json_sax(const json_sax&) = default;
json_sax(json_sax&&) noexcept = default;
json_sax& operator=(const json_sax&) = default;
json_sax& operator=(json_sax&&) noexcept = default;
virtual ~json_sax() = default;
};
namespace detail
{
/*!
@brief SAX implementation to create a JSON value from SAX events
This class implements the @ref json_sax interface and processes the SAX events
to create a JSON value which makes it basically a DOM parser. The structure or
hierarchy of the JSON value is managed by the stack `ref_stack` which contains
a pointer to the respective array or object for each recursion depth.
After successful parsing, the value that is passed by reference to the
constructor contains the parsed value.
@tparam BasicJsonType the JSON type
*/
template<typename BasicJsonType>
class json_sax_dom_parser
{
public:
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using binary_t = typename BasicJsonType::binary_t;
/*!
@param[in,out] r reference to a JSON value that is manipulated while
parsing
@param[in] allow_exceptions_ whether parse errors yield exceptions
*/
explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true)
: root(r), allow_exceptions(allow_exceptions_)
{}
// make class move-only
json_sax_dom_parser(const json_sax_dom_parser&) = delete;
json_sax_dom_parser(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete;
json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
~json_sax_dom_parser() = default;
bool null()
{
handle_value(nullptr);
return true;
}
bool boolean(bool val)
{
handle_value(val);
return true;
}
bool number_integer(number_integer_t val)
{
handle_value(val);
return true;
}
bool number_unsigned(number_unsigned_t val)
{
handle_value(val);
return true;
}
bool number_float(number_float_t val, const string_t& /*unused*/)
{
handle_value(val);
return true;
}
bool string(string_t& val)
{
handle_value(val);
return true;
}
bool binary(binary_t& val)
{
handle_value(std::move(val));
return true;
}
bool start_object(std::size_t len)
{
ref_stack.push_back(handle_value(BasicJsonType::value_t::object));
if (JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back()));
}
return true;
}
bool key(string_t& val)
{
JSON_ASSERT(!ref_stack.empty());
JSON_ASSERT(ref_stack.back()->is_object());
// add null at given key and store the reference for later
object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val));
return true;
}
bool end_object()
{
JSON_ASSERT(!ref_stack.empty());
JSON_ASSERT(ref_stack.back()->is_object());
ref_stack.back()->set_parents();
ref_stack.pop_back();
return true;
}
bool start_array(std::size_t len)
{
ref_stack.push_back(handle_value(BasicJsonType::value_t::array));
if (JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back()));
}
return true;
}
bool end_array()
{
JSON_ASSERT(!ref_stack.empty());
JSON_ASSERT(ref_stack.back()->is_array());
ref_stack.back()->set_parents();
ref_stack.pop_back();
return true;
}
template<class Exception>
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
const Exception& ex)
{
errored = true;
static_cast<void>(ex);
if (allow_exceptions)
{
JSON_THROW(ex);
}
return false;
}
constexpr bool is_errored() const
{
return errored;
}
private:
/*!
@invariant If the ref stack is empty, then the passed value will be the new
root.
@invariant If the ref stack contains a value, then it is an array or an
object to which we can add elements
*/
template<typename Value>
JSON_HEDLEY_RETURNS_NON_NULL
BasicJsonType* handle_value(Value&& v)
{
if (ref_stack.empty())
{
root = BasicJsonType(std::forward<Value>(v));
return &root;
}
JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object());
if (ref_stack.back()->is_array())
{
ref_stack.back()->m_data.m_value.array->emplace_back(std::forward<Value>(v));
return &(ref_stack.back()->m_data.m_value.array->back());
}
JSON_ASSERT(ref_stack.back()->is_object());
JSON_ASSERT(object_element);
*object_element = BasicJsonType(std::forward<Value>(v));
return object_element;
}
/// the parsed JSON value
BasicJsonType& root;
/// stack to model hierarchy of values
std::vector<BasicJsonType*> ref_stack {};
/// helper to hold the reference for the next object element
BasicJsonType* object_element = nullptr;
/// whether a syntax error occurred
bool errored = false;
/// whether to throw exceptions in case of errors
const bool allow_exceptions = true;
};
template<typename BasicJsonType>
class json_sax_dom_callback_parser
{
public:
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using binary_t = typename BasicJsonType::binary_t;
using parser_callback_t = typename BasicJsonType::parser_callback_t;
using parse_event_t = typename BasicJsonType::parse_event_t;
json_sax_dom_callback_parser(BasicJsonType& r,
const parser_callback_t cb,
const bool allow_exceptions_ = true)
: root(r), callback(cb), allow_exceptions(allow_exceptions_)
{
keep_stack.push_back(true);
}
// make class move-only
json_sax_dom_callback_parser(const json_sax_dom_callback_parser&) = delete;
json_sax_dom_callback_parser(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete;
json_sax_dom_callback_parser& operator=(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
~json_sax_dom_callback_parser() = default;
bool null()
{
handle_value(nullptr);
return true;
}
bool boolean(bool val)
{
handle_value(val);
return true;
}
bool number_integer(number_integer_t val)
{
handle_value(val);
return true;
}
bool number_unsigned(number_unsigned_t val)
{
handle_value(val);
return true;
}
bool number_float(number_float_t val, const string_t& /*unused*/)
{
handle_value(val);
return true;
}
bool string(string_t& val)
{
handle_value(val);
return true;
}
bool binary(binary_t& val)
{
handle_value(std::move(val));
return true;
}
bool start_object(std::size_t len)
{
// check callback for object start
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::object_start, discarded);
keep_stack.push_back(keep);
auto val = handle_value(BasicJsonType::value_t::object, true);
ref_stack.push_back(val.second);
// check object limit
if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back()));
}
return true;
}
bool key(string_t& val)
{
BasicJsonType k = BasicJsonType(val);
// check callback for key
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::key, k);
key_keep_stack.push_back(keep);
// add discarded value at given key and store the reference for later
if (keep && ref_stack.back())
{
object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val) = discarded);
}
return true;
}
bool end_object()
{
if (ref_stack.back())
{
if (!callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back()))
{
// discard object
*ref_stack.back() = discarded;
}
else
{
ref_stack.back()->set_parents();
}
}
JSON_ASSERT(!ref_stack.empty());
JSON_ASSERT(!keep_stack.empty());
ref_stack.pop_back();
keep_stack.pop_back();
if (!ref_stack.empty() && ref_stack.back() && ref_stack.back()->is_structured())
{
// remove discarded value
for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it)
{
if (it->is_discarded())
{
ref_stack.back()->erase(it);
break;
}
}
}
return true;
}
bool start_array(std::size_t len)
{
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::array_start, discarded);
keep_stack.push_back(keep);
auto val = handle_value(BasicJsonType::value_t::array, true);
ref_stack.push_back(val.second);
// check array limit
if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
{
JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back()));
}
return true;
}
bool end_array()
{
bool keep = true;
if (ref_stack.back())
{
keep = callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back());
if (keep)
{
ref_stack.back()->set_parents();
}
else
{
// discard array
*ref_stack.back() = discarded;
}
}
JSON_ASSERT(!ref_stack.empty());
JSON_ASSERT(!keep_stack.empty());
ref_stack.pop_back();
keep_stack.pop_back();
// remove discarded value
if (!keep && !ref_stack.empty() && ref_stack.back()->is_array())
{
ref_stack.back()->m_data.m_value.array->pop_back();
}
return true;
}
template<class Exception>
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
const Exception& ex)
{
errored = true;
static_cast<void>(ex);
if (allow_exceptions)
{
JSON_THROW(ex);
}
return false;
}
constexpr bool is_errored() const
{
return errored;
}
private:
/*!
@param[in] v value to add to the JSON value we build during parsing
@param[in] skip_callback whether we should skip calling the callback
function; this is required after start_array() and
start_object() SAX events, because otherwise we would call the
callback function with an empty array or object, respectively.
@invariant If the ref stack is empty, then the passed value will be the new
root.
@invariant If the ref stack contains a value, then it is an array or an
object to which we can add elements
@return pair of boolean (whether value should be kept) and pointer (to the
passed value in the ref_stack hierarchy; nullptr if not kept)
*/
template<typename Value>
std::pair<bool, BasicJsonType*> handle_value(Value&& v, const bool skip_callback = false)
{
JSON_ASSERT(!keep_stack.empty());
// do not handle this value if we know it would be added to a discarded
// container
if (!keep_stack.back())
{
return {false, nullptr};
}
// create value
auto value = BasicJsonType(std::forward<Value>(v));
// check callback
const bool keep = skip_callback || callback(static_cast<int>(ref_stack.size()), parse_event_t::value, value);
// do not handle this value if we just learnt it shall be discarded
if (!keep)
{
return {false, nullptr};
}
if (ref_stack.empty())
{
root = std::move(value);
return {true, & root};
}
// skip this value if we already decided to skip the parent
// (https://github.com/nlohmann/json/issues/971#issuecomment-413678360)
if (!ref_stack.back())
{
return {false, nullptr};
}
// we now only expect arrays and objects
JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object());
// array
if (ref_stack.back()->is_array())
{
ref_stack.back()->m_data.m_value.array->emplace_back(std::move(value));
return {true, & (ref_stack.back()->m_data.m_value.array->back())};
}
// object
JSON_ASSERT(ref_stack.back()->is_object());
// check if we should store an element for the current key
JSON_ASSERT(!key_keep_stack.empty());
const bool store_element = key_keep_stack.back();
key_keep_stack.pop_back();
if (!store_element)
{
return {false, nullptr};
}
JSON_ASSERT(object_element);
*object_element = std::move(value);
return {true, object_element};
}
/// the parsed JSON value
BasicJsonType& root;
/// stack to model hierarchy of values
std::vector<BasicJsonType*> ref_stack {};
/// stack to manage which values to keep
std::vector<bool> keep_stack {}; // NOLINT(readability-redundant-member-init)
/// stack to manage which object keys to keep
std::vector<bool> key_keep_stack {}; // NOLINT(readability-redundant-member-init)
/// helper to hold the reference for the next object element
BasicJsonType* object_element = nullptr;
/// whether a syntax error occurred
bool errored = false;
/// callback function
const parser_callback_t callback = nullptr;
/// whether to throw exceptions in case of errors
const bool allow_exceptions = true;
/// a discarded value for the callback
BasicJsonType discarded = BasicJsonType::value_t::discarded;
};
template<typename BasicJsonType>
class json_sax_acceptor
{
public:
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using binary_t = typename BasicJsonType::binary_t;
bool null()
{
return true;
}
bool boolean(bool /*unused*/)
{
return true;
}
bool number_integer(number_integer_t /*unused*/)
{
return true;
}
bool number_unsigned(number_unsigned_t /*unused*/)
{
return true;
}
bool number_float(number_float_t /*unused*/, const string_t& /*unused*/)
{
return true;
}
bool string(string_t& /*unused*/)
{
return true;
}
bool binary(binary_t& /*unused*/)
{
return true;
}
bool start_object(std::size_t /*unused*/ = static_cast<std::size_t>(-1))
{
return true;
}
bool key(string_t& /*unused*/)
{
return true;
}
bool end_object()
{
return true;
}
bool start_array(std::size_t /*unused*/ = static_cast<std::size_t>(-1))
{
return true;
}
bool end_array()
{
return true;
}
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/)
{
return false;
}
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,519 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cmath> // isfinite
#include <cstdint> // uint8_t
#include <functional> // function
#include <string> // string
#include <utility> // move
#include <vector> // vector
#include <nlohmann/detail/exceptions.hpp>
#include <nlohmann/detail/input/input_adapters.hpp>
#include <nlohmann/detail/input/json_sax.hpp>
#include <nlohmann/detail/input/lexer.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/is_sax.hpp>
#include <nlohmann/detail/string_concat.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
////////////
// parser //
////////////
enum class parse_event_t : std::uint8_t
{
/// the parser read `{` and started to process a JSON object
object_start,
/// the parser read `}` and finished processing a JSON object
object_end,
/// the parser read `[` and started to process a JSON array
array_start,
/// the parser read `]` and finished processing a JSON array
array_end,
/// the parser read a key of a value in an object
key,
/// the parser finished reading a JSON value
value
};
template<typename BasicJsonType>
using parser_callback_t =
std::function<bool(int /*depth*/, parse_event_t /*event*/, BasicJsonType& /*parsed*/)>;
/*!
@brief syntax analysis
This class implements a recursive descent parser.
*/
template<typename BasicJsonType, typename InputAdapterType>
class parser
{
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using string_t = typename BasicJsonType::string_t;
using lexer_t = lexer<BasicJsonType, InputAdapterType>;
using token_type = typename lexer_t::token_type;
public:
/// a parser reading from an input adapter
explicit parser(InputAdapterType&& adapter,
const parser_callback_t<BasicJsonType> cb = nullptr,
const bool allow_exceptions_ = true,
const bool skip_comments = false)
: callback(cb)
, m_lexer(std::move(adapter), skip_comments)
, allow_exceptions(allow_exceptions_)
{
// read first token
get_token();
}
/*!
@brief public parser interface
@param[in] strict whether to expect the last token to be EOF
@param[in,out] result parsed JSON value
@throw parse_error.101 in case of an unexpected token
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
*/
void parse(const bool strict, BasicJsonType& result)
{
if (callback)
{
json_sax_dom_callback_parser<BasicJsonType> sdp(result, callback, allow_exceptions);
sax_parse_internal(&sdp);
// in strict mode, input must be completely read
if (strict && (get_token() != token_type::end_of_input))
{
sdp.parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
exception_message(token_type::end_of_input, "value"), nullptr));
}
// in case of an error, return discarded value
if (sdp.is_errored())
{
result = value_t::discarded;
return;
}
// set top-level value to null if it was discarded by the callback
// function
if (result.is_discarded())
{
result = nullptr;
}
}
else
{
json_sax_dom_parser<BasicJsonType> sdp(result, allow_exceptions);
sax_parse_internal(&sdp);
// in strict mode, input must be completely read
if (strict && (get_token() != token_type::end_of_input))
{
sdp.parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"), nullptr));
}
// in case of an error, return discarded value
if (sdp.is_errored())
{
result = value_t::discarded;
return;
}
}
result.assert_invariant();
}
/*!
@brief public accept interface
@param[in] strict whether to expect the last token to be EOF
@return whether the input is a proper JSON text
*/
bool accept(const bool strict = true)
{
json_sax_acceptor<BasicJsonType> sax_acceptor;
return sax_parse(&sax_acceptor, strict);
}
template<typename SAX>
JSON_HEDLEY_NON_NULL(2)
bool sax_parse(SAX* sax, const bool strict = true)
{
(void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
const bool result = sax_parse_internal(sax);
// strict mode: next byte must be EOF
if (result && strict && (get_token() != token_type::end_of_input))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"), nullptr));
}
return result;
}
private:
template<typename SAX>
JSON_HEDLEY_NON_NULL(2)
bool sax_parse_internal(SAX* sax)
{
// stack to remember the hierarchy of structured values we are parsing
// true = array; false = object
std::vector<bool> states;
// value to avoid a goto (see comment where set to true)
bool skip_to_state_evaluation = false;
while (true)
{
if (!skip_to_state_evaluation)
{
// invariant: get_token() was called before each iteration
switch (last_token)
{
case token_type::begin_object:
{
if (JSON_HEDLEY_UNLIKELY(!sax->start_object(static_cast<std::size_t>(-1))))
{
return false;
}
// closing } -> we are done
if (get_token() == token_type::end_object)
{
if (JSON_HEDLEY_UNLIKELY(!sax->end_object()))
{
return false;
}
break;
}
// parse key
if (JSON_HEDLEY_UNLIKELY(last_token != token_type::value_string))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"), nullptr));
}
if (JSON_HEDLEY_UNLIKELY(!sax->key(m_lexer.get_string())))
{
return false;
}
// parse separator (:)
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"), nullptr));
}
// remember we are now inside an object
states.push_back(false);
// parse values
get_token();
continue;
}
case token_type::begin_array:
{
if (JSON_HEDLEY_UNLIKELY(!sax->start_array(static_cast<std::size_t>(-1))))
{
return false;
}
// closing ] -> we are done
if (get_token() == token_type::end_array)
{
if (JSON_HEDLEY_UNLIKELY(!sax->end_array()))
{
return false;
}
break;
}
// remember we are now inside an array
states.push_back(true);
// parse values (no need to call get_token)
continue;
}
case token_type::value_float:
{
const auto res = m_lexer.get_number_float();
if (JSON_HEDLEY_UNLIKELY(!std::isfinite(res)))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
out_of_range::create(406, concat("number overflow parsing '", m_lexer.get_token_string(), '\''), nullptr));
}
if (JSON_HEDLEY_UNLIKELY(!sax->number_float(res, m_lexer.get_string())))
{
return false;
}
break;
}
case token_type::literal_false:
{
if (JSON_HEDLEY_UNLIKELY(!sax->boolean(false)))
{
return false;
}
break;
}
case token_type::literal_null:
{
if (JSON_HEDLEY_UNLIKELY(!sax->null()))
{
return false;
}
break;
}
case token_type::literal_true:
{
if (JSON_HEDLEY_UNLIKELY(!sax->boolean(true)))
{
return false;
}
break;
}
case token_type::value_integer:
{
if (JSON_HEDLEY_UNLIKELY(!sax->number_integer(m_lexer.get_number_integer())))
{
return false;
}
break;
}
case token_type::value_string:
{
if (JSON_HEDLEY_UNLIKELY(!sax->string(m_lexer.get_string())))
{
return false;
}
break;
}
case token_type::value_unsigned:
{
if (JSON_HEDLEY_UNLIKELY(!sax->number_unsigned(m_lexer.get_number_unsigned())))
{
return false;
}
break;
}
case token_type::parse_error:
{
// using "uninitialized" to avoid "expected" message
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::uninitialized, "value"), nullptr));
}
case token_type::end_of_input:
{
if (JSON_HEDLEY_UNLIKELY(m_lexer.get_position().chars_read_total == 1))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(),
"attempting to parse an empty input; check that your input string or stream contains the expected JSON", nullptr));
}
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"), nullptr));
}
case token_type::uninitialized:
case token_type::end_array:
case token_type::end_object:
case token_type::name_separator:
case token_type::value_separator:
case token_type::literal_or_value:
default: // the last token was unexpected
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"), nullptr));
}
}
}
else
{
skip_to_state_evaluation = false;
}
// we reached this line after we successfully parsed a value
if (states.empty())
{
// empty stack: we reached the end of the hierarchy: done
return true;
}
if (states.back()) // array
{
// comma -> next value
if (get_token() == token_type::value_separator)
{
// parse a new value
get_token();
continue;
}
// closing ]
if (JSON_HEDLEY_LIKELY(last_token == token_type::end_array))
{
if (JSON_HEDLEY_UNLIKELY(!sax->end_array()))
{
return false;
}
// We are done with this array. Before we can parse a
// new value, we need to evaluate the new state first.
// By setting skip_to_state_evaluation to false, we
// are effectively jumping to the beginning of this if.
JSON_ASSERT(!states.empty());
states.pop_back();
skip_to_state_evaluation = true;
continue;
}
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_array, "array"), nullptr));
}
// states.back() is false -> object
// comma -> next value
if (get_token() == token_type::value_separator)
{
// parse key
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::value_string))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"), nullptr));
}
if (JSON_HEDLEY_UNLIKELY(!sax->key(m_lexer.get_string())))
{
return false;
}
// parse separator (:)
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
{
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"), nullptr));
}
// parse values
get_token();
continue;
}
// closing }
if (JSON_HEDLEY_LIKELY(last_token == token_type::end_object))
{
if (JSON_HEDLEY_UNLIKELY(!sax->end_object()))
{
return false;
}
// We are done with this object. Before we can parse a
// new value, we need to evaluate the new state first.
// By setting skip_to_state_evaluation to false, we
// are effectively jumping to the beginning of this if.
JSON_ASSERT(!states.empty());
states.pop_back();
skip_to_state_evaluation = true;
continue;
}
return sax->parse_error(m_lexer.get_position(),
m_lexer.get_token_string(),
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_object, "object"), nullptr));
}
}
/// get next token from lexer
token_type get_token()
{
return last_token = m_lexer.scan();
}
std::string exception_message(const token_type expected, const std::string& context)
{
std::string error_msg = "syntax error ";
if (!context.empty())
{
error_msg += concat("while parsing ", context, ' ');
}
error_msg += "- ";
if (last_token == token_type::parse_error)
{
error_msg += concat(m_lexer.get_error_message(), "; last read: '",
m_lexer.get_token_string(), '\'');
}
else
{
error_msg += concat("unexpected ", lexer_t::token_type_name(last_token));
}
if (expected != token_type::uninitialized)
{
error_msg += concat("; expected ", lexer_t::token_type_name(expected));
}
return error_msg;
}
private:
/// callback function
const parser_callback_t<BasicJsonType> callback = nullptr;
/// the type of the last read token
token_type last_token = token_type::uninitialized;
/// the lexer
lexer_t m_lexer;
/// whether to throw exceptions in case of errors
const bool allow_exceptions = true;
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,37 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef> // size_t
#include <nlohmann/detail/abi_macros.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
/// struct to capture the start position of the current token
struct position_t
{
/// the total number of characters read
std::size_t chars_read_total = 0;
/// the number of characters read in the current line
std::size_t chars_read_current_line = 0;
/// the number of lines read
std::size_t lines_read = 0;
/// conversion to size_t to preserve SAX interface
constexpr operator size_t() const
{
return chars_read_total;
}
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,35 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/iterators/primitive_iterator.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
/*!
@brief an iterator value
@note This structure could easily be a union, but MSVC currently does not allow
unions members with complex constructors, see https://github.com/nlohmann/json/pull/105.
*/
template<typename BasicJsonType> struct internal_iterator
{
/// iterator for JSON objects
typename BasicJsonType::object_t::iterator object_iterator {};
/// iterator for JSON arrays
typename BasicJsonType::array_t::iterator array_iterator {};
/// generic iterator for all other types
primitive_iterator_t primitive_iterator {};
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,751 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <iterator> // iterator, random_access_iterator_tag, bidirectional_iterator_tag, advance, next
#include <type_traits> // conditional, is_const, remove_const
#include <nlohmann/detail/exceptions.hpp>
#include <nlohmann/detail/iterators/internal_iterator.hpp>
#include <nlohmann/detail/iterators/primitive_iterator.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/meta/cpp_future.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
// forward declare, to be able to friend it later on
template<typename IteratorType> class iteration_proxy;
template<typename IteratorType> class iteration_proxy_value;
/*!
@brief a template for a bidirectional iterator for the @ref basic_json class
This class implements a both iterators (iterator and const_iterator) for the
@ref basic_json class.
@note An iterator is called *initialized* when a pointer to a JSON value has
been set (e.g., by a constructor or a copy assignment). If the iterator is
default-constructed, it is *uninitialized* and most methods are undefined.
**The library uses assertions to detect calls on uninitialized iterators.**
@requirement The class satisfies the following concept requirements:
-
[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
The iterator that can be moved can be moved in both directions (i.e.
incremented and decremented).
@since version 1.0.0, simplified in version 2.0.9, change to bidirectional
iterators in version 3.0.0 (see https://github.com/nlohmann/json/issues/593)
*/
template<typename BasicJsonType>
class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-special-member-functions)
{
/// the iterator with BasicJsonType of different const-ness
using other_iter_impl = iter_impl<typename std::conditional<std::is_const<BasicJsonType>::value, typename std::remove_const<BasicJsonType>::type, const BasicJsonType>::type>;
/// allow basic_json to access private members
friend other_iter_impl;
friend BasicJsonType;
friend iteration_proxy<iter_impl>;
friend iteration_proxy_value<iter_impl>;
using object_t = typename BasicJsonType::object_t;
using array_t = typename BasicJsonType::array_t;
// make sure BasicJsonType is basic_json or const basic_json
static_assert(is_basic_json<typename std::remove_const<BasicJsonType>::type>::value,
"iter_impl only accepts (const) basic_json");
// superficial check for the LegacyBidirectionalIterator named requirement
static_assert(std::is_base_of<std::bidirectional_iterator_tag, std::bidirectional_iterator_tag>::value
&& std::is_base_of<std::bidirectional_iterator_tag, typename std::iterator_traits<typename array_t::iterator>::iterator_category>::value,
"basic_json iterator assumes array and object type iterators satisfy the LegacyBidirectionalIterator named requirement.");
public:
/// The std::iterator class template (used as a base class to provide typedefs) is deprecated in C++17.
/// The C++ Standard has never required user-defined iterators to derive from std::iterator.
/// A user-defined iterator should provide publicly accessible typedefs named
/// iterator_category, value_type, difference_type, pointer, and reference.
/// Note that value_type is required to be non-const, even for constant iterators.
using iterator_category = std::bidirectional_iterator_tag;
/// the type of the values when the iterator is dereferenced
using value_type = typename BasicJsonType::value_type;
/// a type to represent differences between iterators
using difference_type = typename BasicJsonType::difference_type;
/// defines a pointer to the type iterated over (value_type)
using pointer = typename std::conditional<std::is_const<BasicJsonType>::value,
typename BasicJsonType::const_pointer,
typename BasicJsonType::pointer>::type;
/// defines a reference to the type iterated over (value_type)
using reference =
typename std::conditional<std::is_const<BasicJsonType>::value,
typename BasicJsonType::const_reference,
typename BasicJsonType::reference>::type;
iter_impl() = default;
~iter_impl() = default;
iter_impl(iter_impl&&) noexcept = default;
iter_impl& operator=(iter_impl&&) noexcept = default;
/*!
@brief constructor for a given JSON instance
@param[in] object pointer to a JSON object for this iterator
@pre object != nullptr
@post The iterator is initialized; i.e. `m_object != nullptr`.
*/
explicit iter_impl(pointer object) noexcept : m_object(object)
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
m_it.object_iterator = typename object_t::iterator();
break;
}
case value_t::array:
{
m_it.array_iterator = typename array_t::iterator();
break;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
m_it.primitive_iterator = primitive_iterator_t();
break;
}
}
}
/*!
@note The conventional copy constructor and copy assignment are implicitly
defined. Combined with the following converting constructor and
assignment, they support: (1) copy from iterator to iterator, (2)
copy from const iterator to const iterator, and (3) conversion from
iterator to const iterator. However conversion from const iterator
to iterator is not defined.
*/
/*!
@brief const copy constructor
@param[in] other const iterator to copy from
@note This copy constructor had to be defined explicitly to circumvent a bug
occurring on msvc v19.0 compiler (VS 2015) debug build. For more
information refer to: https://github.com/nlohmann/json/issues/1608
*/
iter_impl(const iter_impl<const BasicJsonType>& other) noexcept
: m_object(other.m_object), m_it(other.m_it)
{}
/*!
@brief converting assignment
@param[in] other const iterator to copy from
@return const/non-const iterator
@note It is not checked whether @a other is initialized.
*/
iter_impl& operator=(const iter_impl<const BasicJsonType>& other) noexcept
{
if (&other != this)
{
m_object = other.m_object;
m_it = other.m_it;
}
return *this;
}
/*!
@brief converting constructor
@param[in] other non-const iterator to copy from
@note It is not checked whether @a other is initialized.
*/
iter_impl(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
: m_object(other.m_object), m_it(other.m_it)
{}
/*!
@brief converting assignment
@param[in] other non-const iterator to copy from
@return const/non-const iterator
@note It is not checked whether @a other is initialized.
*/
iter_impl& operator=(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept // NOLINT(cert-oop54-cpp)
{
m_object = other.m_object;
m_it = other.m_it;
return *this;
}
JSON_PRIVATE_UNLESS_TESTED:
/*!
@brief set the iterator to the first value
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
void set_begin() noexcept
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
m_it.object_iterator = m_object->m_data.m_value.object->begin();
break;
}
case value_t::array:
{
m_it.array_iterator = m_object->m_data.m_value.array->begin();
break;
}
case value_t::null:
{
// set to end so begin()==end() is true: null is empty
m_it.primitive_iterator.set_end();
break;
}
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
m_it.primitive_iterator.set_begin();
break;
}
}
}
/*!
@brief set the iterator past the last value
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
void set_end() noexcept
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
m_it.object_iterator = m_object->m_data.m_value.object->end();
break;
}
case value_t::array:
{
m_it.array_iterator = m_object->m_data.m_value.array->end();
break;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
m_it.primitive_iterator.set_end();
break;
}
}
}
public:
/*!
@brief return a reference to the value pointed to by the iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference operator*() const
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
JSON_ASSERT(m_it.object_iterator != m_object->m_data.m_value.object->end());
return m_it.object_iterator->second;
}
case value_t::array:
{
JSON_ASSERT(m_it.array_iterator != m_object->m_data.m_value.array->end());
return *m_it.array_iterator;
}
case value_t::null:
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
{
return *m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
}
}
}
/*!
@brief dereference the iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
pointer operator->() const
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
JSON_ASSERT(m_it.object_iterator != m_object->m_data.m_value.object->end());
return &(m_it.object_iterator->second);
}
case value_t::array:
{
JSON_ASSERT(m_it.array_iterator != m_object->m_data.m_value.array->end());
return &*m_it.array_iterator;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
{
return m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
}
}
}
/*!
@brief post-increment (it++)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator++(int)& // NOLINT(cert-dcl21-cpp)
{
auto result = *this;
++(*this);
return result;
}
/*!
@brief pre-increment (++it)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator++()
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
std::advance(m_it.object_iterator, 1);
break;
}
case value_t::array:
{
std::advance(m_it.array_iterator, 1);
break;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
++m_it.primitive_iterator;
break;
}
}
return *this;
}
/*!
@brief post-decrement (it--)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator--(int)& // NOLINT(cert-dcl21-cpp)
{
auto result = *this;
--(*this);
return result;
}
/*!
@brief pre-decrement (--it)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator--()
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
{
std::advance(m_it.object_iterator, -1);
break;
}
case value_t::array:
{
std::advance(m_it.array_iterator, -1);
break;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
--m_it.primitive_iterator;
break;
}
}
return *this;
}
/*!
@brief comparison: equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
template < typename IterImpl, detail::enable_if_t < (std::is_same<IterImpl, iter_impl>::value || std::is_same<IterImpl, other_iter_impl>::value), std::nullptr_t > = nullptr >
bool operator==(const IterImpl& other) const
{
// if objects are not the same, the comparison is undefined
if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
{
JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers", m_object));
}
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
return (m_it.object_iterator == other.m_it.object_iterator);
case value_t::array:
return (m_it.array_iterator == other.m_it.array_iterator);
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
return (m_it.primitive_iterator == other.m_it.primitive_iterator);
}
}
/*!
@brief comparison: not equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
template < typename IterImpl, detail::enable_if_t < (std::is_same<IterImpl, iter_impl>::value || std::is_same<IterImpl, other_iter_impl>::value), std::nullptr_t > = nullptr >
bool operator!=(const IterImpl& other) const
{
return !operator==(other);
}
/*!
@brief comparison: smaller
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator<(const iter_impl& other) const
{
// if objects are not the same, the comparison is undefined
if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
{
JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers", m_object));
}
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(213, "cannot compare order of object iterators", m_object));
case value_t::array:
return (m_it.array_iterator < other.m_it.array_iterator);
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
return (m_it.primitive_iterator < other.m_it.primitive_iterator);
}
}
/*!
@brief comparison: less than or equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator<=(const iter_impl& other) const
{
return !other.operator < (*this);
}
/*!
@brief comparison: greater than
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator>(const iter_impl& other) const
{
return !operator<=(other);
}
/*!
@brief comparison: greater than or equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator>=(const iter_impl& other) const
{
return !operator<(other);
}
/*!
@brief add to iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator+=(difference_type i)
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators", m_object));
case value_t::array:
{
std::advance(m_it.array_iterator, i);
break;
}
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
m_it.primitive_iterator += i;
break;
}
}
return *this;
}
/*!
@brief subtract from iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator-=(difference_type i)
{
return operator+=(-i);
}
/*!
@brief add to iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator+(difference_type i) const
{
auto result = *this;
result += i;
return result;
}
/*!
@brief addition of distance and iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
friend iter_impl operator+(difference_type i, const iter_impl& it)
{
auto result = it;
result += i;
return result;
}
/*!
@brief subtract from iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator-(difference_type i) const
{
auto result = *this;
result -= i;
return result;
}
/*!
@brief return difference
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
difference_type operator-(const iter_impl& other) const
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators", m_object));
case value_t::array:
return m_it.array_iterator - other.m_it.array_iterator;
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
return m_it.primitive_iterator - other.m_it.primitive_iterator;
}
}
/*!
@brief access to successor
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference operator[](difference_type n) const
{
JSON_ASSERT(m_object != nullptr);
switch (m_object->m_data.m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(208, "cannot use operator[] for object iterators", m_object));
case value_t::array:
return *std::next(m_it.array_iterator, n);
case value_t::null:
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
{
if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.get_value() == -n))
{
return *m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
}
}
}
/*!
@brief return the key of an object iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const typename object_t::key_type& key() const
{
JSON_ASSERT(m_object != nullptr);
if (JSON_HEDLEY_LIKELY(m_object->is_object()))
{
return m_it.object_iterator->first;
}
JSON_THROW(invalid_iterator::create(207, "cannot use key() for non-object iterators", m_object));
}
/*!
@brief return the value of an iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference value() const
{
return operator*();
}
JSON_PRIVATE_UNLESS_TESTED:
/// associated JSON instance
pointer m_object = nullptr;
/// the actual iterator of the associated instance
internal_iterator<typename std::remove_const<BasicJsonType>::type> m_it {};
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,242 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef> // size_t
#include <iterator> // input_iterator_tag
#include <string> // string, to_string
#include <tuple> // tuple_size, get, tuple_element
#include <utility> // move
#if JSON_HAS_RANGES
#include <ranges> // enable_borrowed_range
#endif
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
template<typename string_type>
void int_to_string( string_type& target, std::size_t value )
{
// For ADL
using std::to_string;
target = to_string(value);
}
template<typename IteratorType> class iteration_proxy_value
{
public:
using difference_type = std::ptrdiff_t;
using value_type = iteration_proxy_value;
using pointer = value_type *;
using reference = value_type &;
using iterator_category = std::input_iterator_tag;
using string_type = typename std::remove_cv< typename std::remove_reference<decltype( std::declval<IteratorType>().key() ) >::type >::type;
private:
/// the iterator
IteratorType anchor{};
/// an index for arrays (used to create key names)
std::size_t array_index = 0;
/// last stringified array index
mutable std::size_t array_index_last = 0;
/// a string representation of the array index
mutable string_type array_index_str = "0";
/// an empty string (to return a reference for primitive values)
string_type empty_str{};
public:
explicit iteration_proxy_value() = default;
explicit iteration_proxy_value(IteratorType it, std::size_t array_index_ = 0)
noexcept(std::is_nothrow_move_constructible<IteratorType>::value
&& std::is_nothrow_default_constructible<string_type>::value)
: anchor(std::move(it))
, array_index(array_index_)
{}
iteration_proxy_value(iteration_proxy_value const&) = default;
iteration_proxy_value& operator=(iteration_proxy_value const&) = default;
// older GCCs are a bit fussy and require explicit noexcept specifiers on defaulted functions
iteration_proxy_value(iteration_proxy_value&&)
noexcept(std::is_nothrow_move_constructible<IteratorType>::value
&& std::is_nothrow_move_constructible<string_type>::value) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor,cppcoreguidelines-noexcept-move-operations)
iteration_proxy_value& operator=(iteration_proxy_value&&)
noexcept(std::is_nothrow_move_assignable<IteratorType>::value
&& std::is_nothrow_move_assignable<string_type>::value) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor,cppcoreguidelines-noexcept-move-operations)
~iteration_proxy_value() = default;
/// dereference operator (needed for range-based for)
const iteration_proxy_value& operator*() const
{
return *this;
}
/// increment operator (needed for range-based for)
iteration_proxy_value& operator++()
{
++anchor;
++array_index;
return *this;
}
iteration_proxy_value operator++(int)& // NOLINT(cert-dcl21-cpp)
{
auto tmp = iteration_proxy_value(anchor, array_index);
++anchor;
++array_index;
return tmp;
}
/// equality operator (needed for InputIterator)
bool operator==(const iteration_proxy_value& o) const
{
return anchor == o.anchor;
}
/// inequality operator (needed for range-based for)
bool operator!=(const iteration_proxy_value& o) const
{
return anchor != o.anchor;
}
/// return key of the iterator
const string_type& key() const
{
JSON_ASSERT(anchor.m_object != nullptr);
switch (anchor.m_object->type())
{
// use integer array index as key
case value_t::array:
{
if (array_index != array_index_last)
{
int_to_string( array_index_str, array_index );
array_index_last = array_index;
}
return array_index_str;
}
// use key from the object
case value_t::object:
return anchor.key();
// use an empty key for all primitive types
case value_t::null:
case value_t::string:
case value_t::boolean:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::number_float:
case value_t::binary:
case value_t::discarded:
default:
return empty_str;
}
}
/// return value of the iterator
typename IteratorType::reference value() const
{
return anchor.value();
}
};
/// proxy class for the items() function
template<typename IteratorType> class iteration_proxy
{
private:
/// the container to iterate
typename IteratorType::pointer container = nullptr;
public:
explicit iteration_proxy() = default;
/// construct iteration proxy from a container
explicit iteration_proxy(typename IteratorType::reference cont) noexcept
: container(&cont) {}
iteration_proxy(iteration_proxy const&) = default;
iteration_proxy& operator=(iteration_proxy const&) = default;
iteration_proxy(iteration_proxy&&) noexcept = default;
iteration_proxy& operator=(iteration_proxy&&) noexcept = default;
~iteration_proxy() = default;
/// return iterator begin (needed for range-based for)
iteration_proxy_value<IteratorType> begin() const noexcept
{
return iteration_proxy_value<IteratorType>(container->begin());
}
/// return iterator end (needed for range-based for)
iteration_proxy_value<IteratorType> end() const noexcept
{
return iteration_proxy_value<IteratorType>(container->end());
}
};
// Structured Bindings Support
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
template<std::size_t N, typename IteratorType, enable_if_t<N == 0, int> = 0>
auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.key())
{
return i.key();
}
// Structured Bindings Support
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
template<std::size_t N, typename IteratorType, enable_if_t<N == 1, int> = 0>
auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.value())
{
return i.value();
}
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END
// The Addition to the STD Namespace is required to add
// Structured Bindings Support to the iteration_proxy_value class
// For further reference see https://blog.tartanllama.xyz/structured-bindings/
// And see https://github.com/nlohmann/json/pull/1391
namespace std
{
#if defined(__clang__)
// Fix: https://github.com/nlohmann/json/issues/1401
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmismatched-tags"
#endif
template<typename IteratorType>
class tuple_size<::nlohmann::detail::iteration_proxy_value<IteratorType>> // NOLINT(cert-dcl58-cpp)
: public std::integral_constant<std::size_t, 2> {};
template<std::size_t N, typename IteratorType>
class tuple_element<N, ::nlohmann::detail::iteration_proxy_value<IteratorType >> // NOLINT(cert-dcl58-cpp)
{
public:
using type = decltype(
get<N>(std::declval <
::nlohmann::detail::iteration_proxy_value<IteratorType >> ()));
};
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
} // namespace std
#if JSON_HAS_RANGES
template <typename IteratorType>
inline constexpr bool ::std::ranges::enable_borrowed_range<::nlohmann::detail::iteration_proxy<IteratorType>> = true;
#endif

View File

@@ -0,0 +1,61 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <iterator> // random_access_iterator_tag
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/meta/void_t.hpp>
#include <nlohmann/detail/meta/cpp_future.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
template<typename It, typename = void>
struct iterator_types {};
template<typename It>
struct iterator_types <
It,
void_t<typename It::difference_type, typename It::value_type, typename It::pointer,
typename It::reference, typename It::iterator_category >>
{
using difference_type = typename It::difference_type;
using value_type = typename It::value_type;
using pointer = typename It::pointer;
using reference = typename It::reference;
using iterator_category = typename It::iterator_category;
};
// This is required as some compilers implement std::iterator_traits in a way that
// doesn't work with SFINAE. See https://github.com/nlohmann/json/issues/1341.
template<typename T, typename = void>
struct iterator_traits
{
};
template<typename T>
struct iterator_traits < T, enable_if_t < !std::is_pointer<T>::value >>
: iterator_types<T>
{
};
template<typename T>
struct iterator_traits<T*, enable_if_t<std::is_object<T>::value>>
{
using iterator_category = std::random_access_iterator_tag;
using value_type = T;
using difference_type = ptrdiff_t;
using pointer = T*;
using reference = T&;
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,130 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef> // ptrdiff_t
#include <iterator> // reverse_iterator
#include <utility> // declval
#include <nlohmann/detail/abi_macros.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
//////////////////////
// reverse_iterator //
//////////////////////
/*!
@brief a template for a reverse iterator class
@tparam Base the base iterator type to reverse. Valid types are @ref
iterator (to create @ref reverse_iterator) and @ref const_iterator (to
create @ref const_reverse_iterator).
@requirement The class satisfies the following concept requirements:
-
[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
The iterator that can be moved can be moved in both directions (i.e.
incremented and decremented).
- [OutputIterator](https://en.cppreference.com/w/cpp/named_req/OutputIterator):
It is possible to write to the pointed-to element (only if @a Base is
@ref iterator).
@since version 1.0.0
*/
template<typename Base>
class json_reverse_iterator : public std::reverse_iterator<Base>
{
public:
using difference_type = std::ptrdiff_t;
/// shortcut to the reverse iterator adapter
using base_iterator = std::reverse_iterator<Base>;
/// the reference type for the pointed-to element
using reference = typename Base::reference;
/// create reverse iterator from iterator
explicit json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
: base_iterator(it) {}
/// create reverse iterator from base class
explicit json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {}
/// post-increment (it++)
json_reverse_iterator operator++(int)& // NOLINT(cert-dcl21-cpp)
{
return static_cast<json_reverse_iterator>(base_iterator::operator++(1));
}
/// pre-increment (++it)
json_reverse_iterator& operator++()
{
return static_cast<json_reverse_iterator&>(base_iterator::operator++());
}
/// post-decrement (it--)
json_reverse_iterator operator--(int)& // NOLINT(cert-dcl21-cpp)
{
return static_cast<json_reverse_iterator>(base_iterator::operator--(1));
}
/// pre-decrement (--it)
json_reverse_iterator& operator--()
{
return static_cast<json_reverse_iterator&>(base_iterator::operator--());
}
/// add to iterator
json_reverse_iterator& operator+=(difference_type i)
{
return static_cast<json_reverse_iterator&>(base_iterator::operator+=(i));
}
/// add to iterator
json_reverse_iterator operator+(difference_type i) const
{
return static_cast<json_reverse_iterator>(base_iterator::operator+(i));
}
/// subtract from iterator
json_reverse_iterator operator-(difference_type i) const
{
return static_cast<json_reverse_iterator>(base_iterator::operator-(i));
}
/// return difference
difference_type operator-(const json_reverse_iterator& other) const
{
return base_iterator(*this) - base_iterator(other);
}
/// access to successor
reference operator[](difference_type n) const
{
return *(this->operator+(n));
}
/// return the key of an object iterator
auto key() const -> decltype(std::declval<Base>().key())
{
auto it = --this->base();
return it.key();
}
/// return the value of an iterator
reference value() const
{
auto it = --this->base();
return it.operator * ();
}
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,132 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef> // ptrdiff_t
#include <limits> // numeric_limits
#include <nlohmann/detail/macro_scope.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
/*
@brief an iterator for primitive JSON types
This class models an iterator for primitive JSON types (boolean, number,
string). It's only purpose is to allow the iterator/const_iterator classes
to "iterate" over primitive values. Internally, the iterator is modeled by
a `difference_type` variable. Value begin_value (`0`) models the begin,
end_value (`1`) models past the end.
*/
class primitive_iterator_t
{
private:
using difference_type = std::ptrdiff_t;
static constexpr difference_type begin_value = 0;
static constexpr difference_type end_value = begin_value + 1;
JSON_PRIVATE_UNLESS_TESTED:
/// iterator as signed integer type
difference_type m_it = (std::numeric_limits<std::ptrdiff_t>::min)();
public:
constexpr difference_type get_value() const noexcept
{
return m_it;
}
/// set iterator to a defined beginning
void set_begin() noexcept
{
m_it = begin_value;
}
/// set iterator to a defined past the end
void set_end() noexcept
{
m_it = end_value;
}
/// return whether the iterator can be dereferenced
constexpr bool is_begin() const noexcept
{
return m_it == begin_value;
}
/// return whether the iterator is at end
constexpr bool is_end() const noexcept
{
return m_it == end_value;
}
friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it == rhs.m_it;
}
friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it < rhs.m_it;
}
primitive_iterator_t operator+(difference_type n) noexcept
{
auto result = *this;
result += n;
return result;
}
friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it - rhs.m_it;
}
primitive_iterator_t& operator++() noexcept
{
++m_it;
return *this;
}
primitive_iterator_t operator++(int)& noexcept // NOLINT(cert-dcl21-cpp)
{
auto result = *this;
++m_it;
return result;
}
primitive_iterator_t& operator--() noexcept
{
--m_it;
return *this;
}
primitive_iterator_t operator--(int)& noexcept // NOLINT(cert-dcl21-cpp)
{
auto result = *this;
--m_it;
return result;
}
primitive_iterator_t& operator+=(difference_type n) noexcept
{
m_it += n;
return *this;
}
primitive_iterator_t& operator-=(difference_type n) noexcept
{
m_it -= n;
return *this;
}
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,39 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <type_traits> // conditional, is_same
#include <nlohmann/detail/abi_macros.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
/*!
@brief Default base class of the @ref basic_json class.
So that the correct implementations of the copy / move ctors / assign operators
of @ref basic_json do not require complex case distinctions
(no base class / custom base class used as customization point),
@ref basic_json always has a base class.
By default, this class is used because it is empty and thus has no effect
on the behavior of @ref basic_json.
*/
struct json_default_base {};
template<class T>
using json_base_class = typename std::conditional <
std::is_same<T, void>::value,
json_default_base,
T
>::type;
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,988 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <algorithm> // all_of
#include <cctype> // isdigit
#include <cerrno> // errno, ERANGE
#include <cstdlib> // strtoull
#ifndef JSON_NO_IO
#include <iosfwd> // ostream
#endif // JSON_NO_IO
#include <limits> // max
#include <numeric> // accumulate
#include <string> // string
#include <utility> // move
#include <vector> // vector
#include <nlohmann/detail/exceptions.hpp>
#include <nlohmann/detail/macro_scope.hpp>
#include <nlohmann/detail/string_concat.hpp>
#include <nlohmann/detail/string_escape.hpp>
#include <nlohmann/detail/value_t.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
/// @brief JSON Pointer defines a string syntax for identifying a specific value within a JSON document
/// @sa https://json.nlohmann.me/api/json_pointer/
template<typename RefStringType>
class json_pointer
{
// allow basic_json to access private members
NLOHMANN_BASIC_JSON_TPL_DECLARATION
friend class basic_json;
template<typename>
friend class json_pointer;
template<typename T>
struct string_t_helper
{
using type = T;
};
NLOHMANN_BASIC_JSON_TPL_DECLARATION
struct string_t_helper<NLOHMANN_BASIC_JSON_TPL>
{
using type = StringType;
};
public:
// for backwards compatibility accept BasicJsonType
using string_t = typename string_t_helper<RefStringType>::type;
/// @brief create JSON pointer
/// @sa https://json.nlohmann.me/api/json_pointer/json_pointer/
explicit json_pointer(const string_t& s = "")
: reference_tokens(split(s))
{}
/// @brief return a string representation of the JSON pointer
/// @sa https://json.nlohmann.me/api/json_pointer/to_string/
string_t to_string() const
{
return std::accumulate(reference_tokens.begin(), reference_tokens.end(),
string_t{},
[](const string_t& a, const string_t& b)
{
return detail::concat(a, '/', detail::escape(b));
});
}
/// @brief return a string representation of the JSON pointer
/// @sa https://json.nlohmann.me/api/json_pointer/operator_string/
JSON_HEDLEY_DEPRECATED_FOR(3.11.0, to_string())
operator string_t() const
{
return to_string();
}
#ifndef JSON_NO_IO
/// @brief write string representation of the JSON pointer to stream
/// @sa https://json.nlohmann.me/api/basic_json/operator_ltlt/
friend std::ostream& operator<<(std::ostream& o, const json_pointer& ptr)
{
o << ptr.to_string();
return o;
}
#endif
/// @brief append another JSON pointer at the end of this JSON pointer
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slasheq/
json_pointer& operator/=(const json_pointer& ptr)
{
reference_tokens.insert(reference_tokens.end(),
ptr.reference_tokens.begin(),
ptr.reference_tokens.end());
return *this;
}
/// @brief append an unescaped reference token at the end of this JSON pointer
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slasheq/
json_pointer& operator/=(string_t token)
{
push_back(std::move(token));
return *this;
}
/// @brief append an array index at the end of this JSON pointer
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slasheq/
json_pointer& operator/=(std::size_t array_idx)
{
return *this /= std::to_string(array_idx);
}
/// @brief create a new JSON pointer by appending the right JSON pointer at the end of the left JSON pointer
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slash/
friend json_pointer operator/(const json_pointer& lhs,
const json_pointer& rhs)
{
return json_pointer(lhs) /= rhs;
}
/// @brief create a new JSON pointer by appending the unescaped token at the end of the JSON pointer
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slash/
friend json_pointer operator/(const json_pointer& lhs, string_t token) // NOLINT(performance-unnecessary-value-param)
{
return json_pointer(lhs) /= std::move(token);
}
/// @brief create a new JSON pointer by appending the array-index-token at the end of the JSON pointer
/// @sa https://json.nlohmann.me/api/json_pointer/operator_slash/
friend json_pointer operator/(const json_pointer& lhs, std::size_t array_idx)
{
return json_pointer(lhs) /= array_idx;
}
/// @brief returns the parent of this JSON pointer
/// @sa https://json.nlohmann.me/api/json_pointer/parent_pointer/
json_pointer parent_pointer() const
{
if (empty())
{
return *this;
}
json_pointer res = *this;
res.pop_back();
return res;
}
/// @brief remove last reference token
/// @sa https://json.nlohmann.me/api/json_pointer/pop_back/
void pop_back()
{
if (JSON_HEDLEY_UNLIKELY(empty()))
{
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent", nullptr));
}
reference_tokens.pop_back();
}
/// @brief return last reference token
/// @sa https://json.nlohmann.me/api/json_pointer/back/
const string_t& back() const
{
if (JSON_HEDLEY_UNLIKELY(empty()))
{
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent", nullptr));
}
return reference_tokens.back();
}
/// @brief append an unescaped token at the end of the reference pointer
/// @sa https://json.nlohmann.me/api/json_pointer/push_back/
void push_back(const string_t& token)
{
reference_tokens.push_back(token);
}
/// @brief append an unescaped token at the end of the reference pointer
/// @sa https://json.nlohmann.me/api/json_pointer/push_back/
void push_back(string_t&& token)
{
reference_tokens.push_back(std::move(token));
}
/// @brief return whether pointer points to the root document
/// @sa https://json.nlohmann.me/api/json_pointer/empty/
bool empty() const noexcept
{
return reference_tokens.empty();
}
private:
/*!
@param[in] s reference token to be converted into an array index
@return integer representation of @a s
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index begins not with a digit
@throw out_of_range.404 if string @a s could not be converted to an integer
@throw out_of_range.410 if an array index exceeds size_type
*/
template<typename BasicJsonType>
static typename BasicJsonType::size_type array_index(const string_t& s)
{
using size_type = typename BasicJsonType::size_type;
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_HEDLEY_UNLIKELY(s.size() > 1 && s[0] == '0'))
{
JSON_THROW(detail::parse_error::create(106, 0, detail::concat("array index '", s, "' must not begin with '0'"), nullptr));
}
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_HEDLEY_UNLIKELY(s.size() > 1 && !(s[0] >= '1' && s[0] <= '9')))
{
JSON_THROW(detail::parse_error::create(109, 0, detail::concat("array index '", s, "' is not a number"), nullptr));
}
const char* p = s.c_str();
char* p_end = nullptr;
errno = 0; // strtoull doesn't reset errno
const unsigned long long res = std::strtoull(p, &p_end, 10); // NOLINT(runtime/int)
if (p == p_end // invalid input or empty string
|| errno == ERANGE // out of range
|| JSON_HEDLEY_UNLIKELY(static_cast<std::size_t>(p_end - p) != s.size())) // incomplete read
{
JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", s, "'"), nullptr));
}
// only triggered on special platforms (like 32bit), see also
// https://github.com/nlohmann/json/pull/2203
if (res >= static_cast<unsigned long long>((std::numeric_limits<size_type>::max)())) // NOLINT(runtime/int)
{
JSON_THROW(detail::out_of_range::create(410, detail::concat("array index ", s, " exceeds size_type"), nullptr)); // LCOV_EXCL_LINE
}
return static_cast<size_type>(res);
}
JSON_PRIVATE_UNLESS_TESTED:
json_pointer top() const
{
if (JSON_HEDLEY_UNLIKELY(empty()))
{
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent", nullptr));
}
json_pointer result = *this;
result.reference_tokens = {reference_tokens[0]};
return result;
}
private:
/*!
@brief create and return a reference to the pointed to value
@complexity Linear in the number of reference tokens.
@throw parse_error.109 if array index is not a number
@throw type_error.313 if value cannot be unflattened
*/
template<typename BasicJsonType>
BasicJsonType& get_and_create(BasicJsonType& j) const
{
auto* result = &j;
// in case no reference tokens exist, return a reference to the JSON value
// j which will be overwritten by a primitive value
for (const auto& reference_token : reference_tokens)
{
switch (result->type())
{
case detail::value_t::null:
{
if (reference_token == "0")
{
// start a new array if reference token is 0
result = &result->operator[](0);
}
else
{
// start a new object otherwise
result = &result->operator[](reference_token);
}
break;
}
case detail::value_t::object:
{
// create an entry in the object
result = &result->operator[](reference_token);
break;
}
case detail::value_t::array:
{
// create an entry in the array
result = &result->operator[](array_index<BasicJsonType>(reference_token));
break;
}
/*
The following code is only reached if there exists a reference
token _and_ the current value is primitive. In this case, we have
an error situation, because primitive values may only occur as
single value; that is, with an empty list of reference tokens.
*/
case detail::value_t::string:
case detail::value_t::boolean:
case detail::value_t::number_integer:
case detail::value_t::number_unsigned:
case detail::value_t::number_float:
case detail::value_t::binary:
case detail::value_t::discarded:
default:
JSON_THROW(detail::type_error::create(313, "invalid value to unflatten", &j));
}
}
return *result;
}
/*!
@brief return a reference to the pointed to value
@note This version does not throw if a value is not present, but tries to
create nested values instead. For instance, calling this function
with pointer `"/this/that"` on a null value is equivalent to calling
`operator[]("this").operator[]("that")` on that value, effectively
changing the null value to an object.
@param[in] ptr a JSON value
@return reference to the JSON value pointed to by the JSON pointer
@complexity Linear in the length of the JSON pointer.
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
template<typename BasicJsonType>
BasicJsonType& get_unchecked(BasicJsonType* ptr) const
{
for (const auto& reference_token : reference_tokens)
{
// convert null values to arrays or objects before continuing
if (ptr->is_null())
{
// check if reference token is a number
const bool nums =
std::all_of(reference_token.begin(), reference_token.end(),
[](const unsigned char x)
{
return std::isdigit(x);
});
// change value to array for numbers or "-" or to object otherwise
*ptr = (nums || reference_token == "-")
? detail::value_t::array
: detail::value_t::object;
}
switch (ptr->type())
{
case detail::value_t::object:
{
// use unchecked object access
ptr = &ptr->operator[](reference_token);
break;
}
case detail::value_t::array:
{
if (reference_token == "-")
{
// explicitly treat "-" as index beyond the end
ptr = &ptr->operator[](ptr->m_data.m_value.array->size());
}
else
{
// convert array index to number; unchecked access
ptr = &ptr->operator[](array_index<BasicJsonType>(reference_token));
}
break;
}
case detail::value_t::null:
case detail::value_t::string:
case detail::value_t::boolean:
case detail::value_t::number_integer:
case detail::value_t::number_unsigned:
case detail::value_t::number_float:
case detail::value_t::binary:
case detail::value_t::discarded:
default:
JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
}
}
return *ptr;
}
/*!
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
template<typename BasicJsonType>
BasicJsonType& get_checked(BasicJsonType* ptr) const
{
for (const auto& reference_token : reference_tokens)
{
switch (ptr->type())
{
case detail::value_t::object:
{
// note: at performs range check
ptr = &ptr->at(reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
{
// "-" always fails the range check
JSON_THROW(detail::out_of_range::create(402, detail::concat(
"array index '-' (", std::to_string(ptr->m_data.m_value.array->size()),
") is out of range"), ptr));
}
// note: at performs range check
ptr = &ptr->at(array_index<BasicJsonType>(reference_token));
break;
}
case detail::value_t::null:
case detail::value_t::string:
case detail::value_t::boolean:
case detail::value_t::number_integer:
case detail::value_t::number_unsigned:
case detail::value_t::number_float:
case detail::value_t::binary:
case detail::value_t::discarded:
default:
JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
}
}
return *ptr;
}
/*!
@brief return a const reference to the pointed to value
@param[in] ptr a JSON value
@return const reference to the JSON value pointed to by the JSON
pointer
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
template<typename BasicJsonType>
const BasicJsonType& get_unchecked(const BasicJsonType* ptr) const
{
for (const auto& reference_token : reference_tokens)
{
switch (ptr->type())
{
case detail::value_t::object:
{
// use unchecked object access
ptr = &ptr->operator[](reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
{
// "-" cannot be used for const access
JSON_THROW(detail::out_of_range::create(402, detail::concat("array index '-' (", std::to_string(ptr->m_data.m_value.array->size()), ") is out of range"), ptr));
}
// use unchecked array access
ptr = &ptr->operator[](array_index<BasicJsonType>(reference_token));
break;
}
case detail::value_t::null:
case detail::value_t::string:
case detail::value_t::boolean:
case detail::value_t::number_integer:
case detail::value_t::number_unsigned:
case detail::value_t::number_float:
case detail::value_t::binary:
case detail::value_t::discarded:
default:
JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
}
}
return *ptr;
}
/*!
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
template<typename BasicJsonType>
const BasicJsonType& get_checked(const BasicJsonType* ptr) const
{
for (const auto& reference_token : reference_tokens)
{
switch (ptr->type())
{
case detail::value_t::object:
{
// note: at performs range check
ptr = &ptr->at(reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
{
// "-" always fails the range check
JSON_THROW(detail::out_of_range::create(402, detail::concat(
"array index '-' (", std::to_string(ptr->m_data.m_value.array->size()),
") is out of range"), ptr));
}
// note: at performs range check
ptr = &ptr->at(array_index<BasicJsonType>(reference_token));
break;
}
case detail::value_t::null:
case detail::value_t::string:
case detail::value_t::boolean:
case detail::value_t::number_integer:
case detail::value_t::number_unsigned:
case detail::value_t::number_float:
case detail::value_t::binary:
case detail::value_t::discarded:
default:
JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
}
}
return *ptr;
}
/*!
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
*/
template<typename BasicJsonType>
bool contains(const BasicJsonType* ptr) const
{
for (const auto& reference_token : reference_tokens)
{
switch (ptr->type())
{
case detail::value_t::object:
{
if (!ptr->contains(reference_token))
{
// we did not find the key in the object
return false;
}
ptr = &ptr->operator[](reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
{
// "-" always fails the range check
return false;
}
if (JSON_HEDLEY_UNLIKELY(reference_token.size() == 1 && !("0" <= reference_token && reference_token <= "9")))
{
// invalid char
return false;
}
if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1))
{
if (JSON_HEDLEY_UNLIKELY(!('1' <= reference_token[0] && reference_token[0] <= '9')))
{
// first char should be between '1' and '9'
return false;
}
for (std::size_t i = 1; i < reference_token.size(); i++)
{
if (JSON_HEDLEY_UNLIKELY(!('0' <= reference_token[i] && reference_token[i] <= '9')))
{
// other char should be between '0' and '9'
return false;
}
}
}
const auto idx = array_index<BasicJsonType>(reference_token);
if (idx >= ptr->size())
{
// index out of range
return false;
}
ptr = &ptr->operator[](idx);
break;
}
case detail::value_t::null:
case detail::value_t::string:
case detail::value_t::boolean:
case detail::value_t::number_integer:
case detail::value_t::number_unsigned:
case detail::value_t::number_float:
case detail::value_t::binary:
case detail::value_t::discarded:
default:
{
// we do not expect primitive values if there is still a
// reference token to process
return false;
}
}
}
// no reference token left means we found a primitive value
return true;
}
/*!
@brief split the string input to reference tokens
@note This function is only called by the json_pointer constructor.
All exceptions below are documented there.
@throw parse_error.107 if the pointer is not empty or begins with '/'
@throw parse_error.108 if character '~' is not followed by '0' or '1'
*/
static std::vector<string_t> split(const string_t& reference_string)
{
std::vector<string_t> result;
// special case: empty reference string -> no reference tokens
if (reference_string.empty())
{
return result;
}
// check if nonempty reference string begins with slash
if (JSON_HEDLEY_UNLIKELY(reference_string[0] != '/'))
{
JSON_THROW(detail::parse_error::create(107, 1, detail::concat("JSON pointer must be empty or begin with '/' - was: '", reference_string, "'"), nullptr));
}
// extract the reference tokens:
// - slash: position of the last read slash (or end of string)
// - start: position after the previous slash
for (
// search for the first slash after the first character
std::size_t slash = reference_string.find_first_of('/', 1),
// set the beginning of the first reference token
start = 1;
// we can stop if start == 0 (if slash == string_t::npos)
start != 0;
// set the beginning of the next reference token
// (will eventually be 0 if slash == string_t::npos)
start = (slash == string_t::npos) ? 0 : slash + 1,
// find next slash
slash = reference_string.find_first_of('/', start))
{
// use the text between the beginning of the reference token
// (start) and the last slash (slash).
auto reference_token = reference_string.substr(start, slash - start);
// check reference tokens are properly escaped
for (std::size_t pos = reference_token.find_first_of('~');
pos != string_t::npos;
pos = reference_token.find_first_of('~', pos + 1))
{
JSON_ASSERT(reference_token[pos] == '~');
// ~ must be followed by 0 or 1
if (JSON_HEDLEY_UNLIKELY(pos == reference_token.size() - 1 ||
(reference_token[pos + 1] != '0' &&
reference_token[pos + 1] != '1')))
{
JSON_THROW(detail::parse_error::create(108, 0, "escape character '~' must be followed with '0' or '1'", nullptr));
}
}
// finally, store the reference token
detail::unescape(reference_token);
result.push_back(reference_token);
}
return result;
}
private:
/*!
@param[in] reference_string the reference string to the current value
@param[in] value the value to consider
@param[in,out] result the result object to insert values to
@note Empty objects or arrays are flattened to `null`.
*/
template<typename BasicJsonType>
static void flatten(const string_t& reference_string,
const BasicJsonType& value,
BasicJsonType& result)
{
switch (value.type())
{
case detail::value_t::array:
{
if (value.m_data.m_value.array->empty())
{
// flatten empty array as null
result[reference_string] = nullptr;
}
else
{
// iterate array and use index as reference string
for (std::size_t i = 0; i < value.m_data.m_value.array->size(); ++i)
{
flatten(detail::concat(reference_string, '/', std::to_string(i)),
value.m_data.m_value.array->operator[](i), result);
}
}
break;
}
case detail::value_t::object:
{
if (value.m_data.m_value.object->empty())
{
// flatten empty object as null
result[reference_string] = nullptr;
}
else
{
// iterate object and use keys as reference string
for (const auto& element : *value.m_data.m_value.object)
{
flatten(detail::concat(reference_string, '/', detail::escape(element.first)), element.second, result);
}
}
break;
}
case detail::value_t::null:
case detail::value_t::string:
case detail::value_t::boolean:
case detail::value_t::number_integer:
case detail::value_t::number_unsigned:
case detail::value_t::number_float:
case detail::value_t::binary:
case detail::value_t::discarded:
default:
{
// add primitive value with its reference string
result[reference_string] = value;
break;
}
}
}
/*!
@param[in] value flattened JSON
@return unflattened JSON
@throw parse_error.109 if array index is not a number
@throw type_error.314 if value is not an object
@throw type_error.315 if object values are not primitive
@throw type_error.313 if value cannot be unflattened
*/
template<typename BasicJsonType>
static BasicJsonType
unflatten(const BasicJsonType& value)
{
if (JSON_HEDLEY_UNLIKELY(!value.is_object()))
{
JSON_THROW(detail::type_error::create(314, "only objects can be unflattened", &value));
}
BasicJsonType result;
// iterate the JSON object values
for (const auto& element : *value.m_data.m_value.object)
{
if (JSON_HEDLEY_UNLIKELY(!element.second.is_primitive()))
{
JSON_THROW(detail::type_error::create(315, "values in object must be primitive", &element.second));
}
// assign value to reference pointed to by JSON pointer; Note that if
// the JSON pointer is "" (i.e., points to the whole value), function
// get_and_create returns a reference to result itself. An assignment
// will then create a primitive value.
json_pointer(element.first).get_and_create(result) = element.second;
}
return result;
}
// can't use conversion operator because of ambiguity
json_pointer<string_t> convert() const&
{
json_pointer<string_t> result;
result.reference_tokens = reference_tokens;
return result;
}
json_pointer<string_t> convert()&&
{
json_pointer<string_t> result;
result.reference_tokens = std::move(reference_tokens);
return result;
}
public:
#if JSON_HAS_THREE_WAY_COMPARISON
/// @brief compares two JSON pointers for equality
/// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
template<typename RefStringTypeRhs>
bool operator==(const json_pointer<RefStringTypeRhs>& rhs) const noexcept
{
return reference_tokens == rhs.reference_tokens;
}
/// @brief compares JSON pointer and string for equality
/// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator==(json_pointer))
bool operator==(const string_t& rhs) const
{
return *this == json_pointer(rhs);
}
/// @brief 3-way compares two JSON pointers
template<typename RefStringTypeRhs>
std::strong_ordering operator<=>(const json_pointer<RefStringTypeRhs>& rhs) const noexcept // *NOPAD*
{
return reference_tokens <=> rhs.reference_tokens; // *NOPAD*
}
#else
/// @brief compares two JSON pointers for equality
/// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
// NOLINTNEXTLINE(readability-redundant-declaration)
friend bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
const json_pointer<RefStringTypeRhs>& rhs) noexcept;
/// @brief compares JSON pointer and string for equality
/// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
template<typename RefStringTypeLhs, typename StringType>
// NOLINTNEXTLINE(readability-redundant-declaration)
friend bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
const StringType& rhs);
/// @brief compares string and JSON pointer for equality
/// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
template<typename RefStringTypeRhs, typename StringType>
// NOLINTNEXTLINE(readability-redundant-declaration)
friend bool operator==(const StringType& lhs,
const json_pointer<RefStringTypeRhs>& rhs);
/// @brief compares two JSON pointers for inequality
/// @sa https://json.nlohmann.me/api/json_pointer/operator_ne/
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
// NOLINTNEXTLINE(readability-redundant-declaration)
friend bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
const json_pointer<RefStringTypeRhs>& rhs) noexcept;
/// @brief compares JSON pointer and string for inequality
/// @sa https://json.nlohmann.me/api/json_pointer/operator_ne/
template<typename RefStringTypeLhs, typename StringType>
// NOLINTNEXTLINE(readability-redundant-declaration)
friend bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
const StringType& rhs);
/// @brief compares string and JSON pointer for inequality
/// @sa https://json.nlohmann.me/api/json_pointer/operator_ne/
template<typename RefStringTypeRhs, typename StringType>
// NOLINTNEXTLINE(readability-redundant-declaration)
friend bool operator!=(const StringType& lhs,
const json_pointer<RefStringTypeRhs>& rhs);
/// @brief compares two JSON pointer for less-than
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
// NOLINTNEXTLINE(readability-redundant-declaration)
friend bool operator<(const json_pointer<RefStringTypeLhs>& lhs,
const json_pointer<RefStringTypeRhs>& rhs) noexcept;
#endif
private:
/// the reference tokens
std::vector<string_t> reference_tokens;
};
#if !JSON_HAS_THREE_WAY_COMPARISON
// functions cannot be defined inside class due to ODR violations
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
inline bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
const json_pointer<RefStringTypeRhs>& rhs) noexcept
{
return lhs.reference_tokens == rhs.reference_tokens;
}
template<typename RefStringTypeLhs,
typename StringType = typename json_pointer<RefStringTypeLhs>::string_t>
JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator==(json_pointer, json_pointer))
inline bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
const StringType& rhs)
{
return lhs == json_pointer<RefStringTypeLhs>(rhs);
}
template<typename RefStringTypeRhs,
typename StringType = typename json_pointer<RefStringTypeRhs>::string_t>
JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator==(json_pointer, json_pointer))
inline bool operator==(const StringType& lhs,
const json_pointer<RefStringTypeRhs>& rhs)
{
return json_pointer<RefStringTypeRhs>(lhs) == rhs;
}
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
inline bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
const json_pointer<RefStringTypeRhs>& rhs) noexcept
{
return !(lhs == rhs);
}
template<typename RefStringTypeLhs,
typename StringType = typename json_pointer<RefStringTypeLhs>::string_t>
JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator!=(json_pointer, json_pointer))
inline bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
const StringType& rhs)
{
return !(lhs == rhs);
}
template<typename RefStringTypeRhs,
typename StringType = typename json_pointer<RefStringTypeRhs>::string_t>
JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator!=(json_pointer, json_pointer))
inline bool operator!=(const StringType& lhs,
const json_pointer<RefStringTypeRhs>& rhs)
{
return !(lhs == rhs);
}
template<typename RefStringTypeLhs, typename RefStringTypeRhs>
inline bool operator<(const json_pointer<RefStringTypeLhs>& lhs,
const json_pointer<RefStringTypeRhs>& rhs) noexcept
{
return lhs.reference_tokens < rhs.reference_tokens;
}
#endif
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,78 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <initializer_list>
#include <utility>
#include <nlohmann/detail/abi_macros.hpp>
#include <nlohmann/detail/meta/type_traits.hpp>
NLOHMANN_JSON_NAMESPACE_BEGIN
namespace detail
{
template<typename BasicJsonType>
class json_ref
{
public:
using value_type = BasicJsonType;
json_ref(value_type&& value)
: owned_value(std::move(value))
{}
json_ref(const value_type& value)
: value_ref(&value)
{}
json_ref(std::initializer_list<json_ref> init)
: owned_value(init)
{}
template <
class... Args,
enable_if_t<std::is_constructible<value_type, Args...>::value, int> = 0 >
json_ref(Args && ... args)
: owned_value(std::forward<Args>(args)...)
{}
// class should be movable only
json_ref(json_ref&&) noexcept = default;
json_ref(const json_ref&) = delete;
json_ref& operator=(const json_ref&) = delete;
json_ref& operator=(json_ref&&) = delete;
~json_ref() = default;
value_type moved_or_copied() const
{
if (value_ref == nullptr)
{
return std::move(owned_value);
}
return *value_ref;
}
value_type const& operator*() const
{
return value_ref ? *value_ref : owned_value;
}
value_type const* operator->() const
{
return &** this;
}
private:
mutable value_type owned_value = nullptr;
value_type const* value_ref = nullptr;
};
} // namespace detail
NLOHMANN_JSON_NAMESPACE_END

View File

@@ -0,0 +1,482 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
#include <utility> // declval, pair
#include <nlohmann/detail/meta/detected.hpp>
#include <nlohmann/thirdparty/hedley/hedley.hpp>
// This file contains all internal macro definitions (except those affecting ABI)
// You MUST include macro_unscope.hpp at the end of json.hpp to undef all of them
#include <nlohmann/detail/abi_macros.hpp>
// exclude unsupported compilers
#if !defined(JSON_SKIP_UNSUPPORTED_COMPILER_CHECK)
#if defined(__clang__)
#if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
#error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
#endif
#elif defined(__GNUC__) && !(defined(__ICC) || defined(__INTEL_COMPILER))
#if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
#error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
#endif
#endif
#endif
// C++ language standard detection
// if the user manually specified the used c++ version this is skipped
#if !defined(JSON_HAS_CPP_20) && !defined(JSON_HAS_CPP_17) && !defined(JSON_HAS_CPP_14) && !defined(JSON_HAS_CPP_11)
#if (defined(__cplusplus) && __cplusplus >= 202002L) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L)
#define JSON_HAS_CPP_20
#define JSON_HAS_CPP_17
#define JSON_HAS_CPP_14
#elif (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464
#define JSON_HAS_CPP_17
#define JSON_HAS_CPP_14
#elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1)
#define JSON_HAS_CPP_14
#endif
// the cpp 11 flag is always specified because it is the minimal required version
#define JSON_HAS_CPP_11
#endif
#ifdef __has_include
#if __has_include(<version>)
#include <version>
#endif
#endif
#if !defined(JSON_HAS_FILESYSTEM) && !defined(JSON_HAS_EXPERIMENTAL_FILESYSTEM)
#ifdef JSON_HAS_CPP_17
#if defined(__cpp_lib_filesystem)
#define JSON_HAS_FILESYSTEM 1
#elif defined(__cpp_lib_experimental_filesystem)
#define JSON_HAS_EXPERIMENTAL_FILESYSTEM 1
#elif !defined(__has_include)
#define JSON_HAS_EXPERIMENTAL_FILESYSTEM 1
#elif __has_include(<filesystem>)
#define JSON_HAS_FILESYSTEM 1
#elif __has_include(<experimental/filesystem>)
#define JSON_HAS_EXPERIMENTAL_FILESYSTEM 1
#endif
// std::filesystem does not work on MinGW GCC 8: https://sourceforge.net/p/mingw-w64/bugs/737/
#if defined(__MINGW32__) && defined(__GNUC__) && __GNUC__ == 8
#undef JSON_HAS_FILESYSTEM
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
#endif
// no filesystem support before GCC 8: https://en.cppreference.com/w/cpp/compiler_support
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 8
#undef JSON_HAS_FILESYSTEM
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
#endif
// no filesystem support before Clang 7: https://en.cppreference.com/w/cpp/compiler_support
#if defined(__clang_major__) && __clang_major__ < 7
#undef JSON_HAS_FILESYSTEM
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
#endif
// no filesystem support before MSVC 19.14: https://en.cppreference.com/w/cpp/compiler_support
#if defined(_MSC_VER) && _MSC_VER < 1914
#undef JSON_HAS_FILESYSTEM
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
#endif
// no filesystem support before iOS 13
#if defined(__IPHONE_OS_VERSION_MIN_REQUIRED) && __IPHONE_OS_VERSION_MIN_REQUIRED < 130000
#undef JSON_HAS_FILESYSTEM
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
#endif
// no filesystem support before macOS Catalina
#if defined(__MAC_OS_X_VERSION_MIN_REQUIRED) && __MAC_OS_X_VERSION_MIN_REQUIRED < 101500
#undef JSON_HAS_FILESYSTEM
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
#endif
#endif
#endif
#ifndef JSON_HAS_EXPERIMENTAL_FILESYSTEM
#define JSON_HAS_EXPERIMENTAL_FILESYSTEM 0
#endif
#ifndef JSON_HAS_FILESYSTEM
#define JSON_HAS_FILESYSTEM 0
#endif
#ifndef JSON_HAS_THREE_WAY_COMPARISON
#if defined(__cpp_impl_three_way_comparison) && __cpp_impl_three_way_comparison >= 201907L \
&& defined(__cpp_lib_three_way_comparison) && __cpp_lib_three_way_comparison >= 201907L
#define JSON_HAS_THREE_WAY_COMPARISON 1
#else
#define JSON_HAS_THREE_WAY_COMPARISON 0
#endif
#endif
#ifndef JSON_HAS_RANGES
// ranges header shipping in GCC 11.1.0 (released 2021-04-27) has syntax error
#if defined(__GLIBCXX__) && __GLIBCXX__ == 20210427
#define JSON_HAS_RANGES 0
#elif defined(__cpp_lib_ranges)
#define JSON_HAS_RANGES 1
#else
#define JSON_HAS_RANGES 0
#endif
#endif
#ifndef JSON_HAS_STATIC_RTTI
#if !defined(_HAS_STATIC_RTTI) || _HAS_STATIC_RTTI != 0
#define JSON_HAS_STATIC_RTTI 1
#else
#define JSON_HAS_STATIC_RTTI 0
#endif
#endif
#ifdef JSON_HAS_CPP_17
#define JSON_INLINE_VARIABLE inline
#else
#define JSON_INLINE_VARIABLE
#endif
#if JSON_HEDLEY_HAS_ATTRIBUTE(no_unique_address)
#define JSON_NO_UNIQUE_ADDRESS [[no_unique_address]]
#else
#define JSON_NO_UNIQUE_ADDRESS
#endif
// disable documentation warnings on clang
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdocumentation"
#pragma clang diagnostic ignored "-Wdocumentation-unknown-command"
#endif
// allow disabling exceptions
#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && !defined(JSON_NOEXCEPTION)
#define JSON_THROW(exception) throw exception
#define JSON_TRY try
#define JSON_CATCH(exception) catch(exception)
#define JSON_INTERNAL_CATCH(exception) catch(exception)
#else
#include <cstdlib>
#define JSON_THROW(exception) std::abort()
#define JSON_TRY if(true)
#define JSON_CATCH(exception) if(false)
#define JSON_INTERNAL_CATCH(exception) if(false)
#endif
// override exception macros
#if defined(JSON_THROW_USER)
#undef JSON_THROW
#define JSON_THROW JSON_THROW_USER
#endif
#if defined(JSON_TRY_USER)
#undef JSON_TRY
#define JSON_TRY JSON_TRY_USER
#endif
#if defined(JSON_CATCH_USER)
#undef JSON_CATCH
#define JSON_CATCH JSON_CATCH_USER
#undef JSON_INTERNAL_CATCH
#define JSON_INTERNAL_CATCH JSON_CATCH_USER
#endif
#if defined(JSON_INTERNAL_CATCH_USER)
#undef JSON_INTERNAL_CATCH
#define JSON_INTERNAL_CATCH JSON_INTERNAL_CATCH_USER
#endif
// allow overriding assert
#if !defined(JSON_ASSERT)
#include <cassert> // assert
#define JSON_ASSERT(x) assert(x)
#endif
// allow to access some private functions (needed by the test suite)
#if defined(JSON_TESTS_PRIVATE)
#define JSON_PRIVATE_UNLESS_TESTED public
#else
#define JSON_PRIVATE_UNLESS_TESTED private
#endif
/*!
@brief macro to briefly define a mapping between an enum and JSON
@def NLOHMANN_JSON_SERIALIZE_ENUM
@since version 3.4.0
*/
#define NLOHMANN_JSON_SERIALIZE_ENUM(ENUM_TYPE, ...) \
template<typename BasicJsonType> \
inline void to_json(BasicJsonType& j, const ENUM_TYPE& e) \
{ \
static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
auto it = std::find_if(std::begin(m), std::end(m), \
[e](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
{ \
return ej_pair.first == e; \
}); \
j = ((it != std::end(m)) ? it : std::begin(m))->second; \
} \
template<typename BasicJsonType> \
inline void from_json(const BasicJsonType& j, ENUM_TYPE& e) \
{ \
static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
auto it = std::find_if(std::begin(m), std::end(m), \
[&j](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
{ \
return ej_pair.second == j; \
}); \
e = ((it != std::end(m)) ? it : std::begin(m))->first; \
}
// Ugly macros to avoid uglier copy-paste when specializing basic_json. They
// may be removed in the future once the class is split.
#define NLOHMANN_BASIC_JSON_TPL_DECLARATION \
template<template<typename, typename, typename...> class ObjectType, \
template<typename, typename...> class ArrayType, \
class StringType, class BooleanType, class NumberIntegerType, \
class NumberUnsignedType, class NumberFloatType, \
template<typename> class AllocatorType, \
template<typename, typename = void> class JSONSerializer, \
class BinaryType, \
class CustomBaseClass>
#define NLOHMANN_BASIC_JSON_TPL \
basic_json<ObjectType, ArrayType, StringType, BooleanType, \
NumberIntegerType, NumberUnsignedType, NumberFloatType, \
AllocatorType, JSONSerializer, BinaryType, CustomBaseClass>
// Macros to simplify conversion from/to types
#define NLOHMANN_JSON_EXPAND( x ) x
#define NLOHMANN_JSON_GET_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, _61, _62, _63, _64, NAME,...) NAME
#define NLOHMANN_JSON_PASTE(...) NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_GET_MACRO(__VA_ARGS__, \
NLOHMANN_JSON_PASTE64, \
NLOHMANN_JSON_PASTE63, \
NLOHMANN_JSON_PASTE62, \
NLOHMANN_JSON_PASTE61, \
NLOHMANN_JSON_PASTE60, \
NLOHMANN_JSON_PASTE59, \
NLOHMANN_JSON_PASTE58, \
NLOHMANN_JSON_PASTE57, \
NLOHMANN_JSON_PASTE56, \
NLOHMANN_JSON_PASTE55, \
NLOHMANN_JSON_PASTE54, \
NLOHMANN_JSON_PASTE53, \
NLOHMANN_JSON_PASTE52, \
NLOHMANN_JSON_PASTE51, \
NLOHMANN_JSON_PASTE50, \
NLOHMANN_JSON_PASTE49, \
NLOHMANN_JSON_PASTE48, \
NLOHMANN_JSON_PASTE47, \
NLOHMANN_JSON_PASTE46, \
NLOHMANN_JSON_PASTE45, \
NLOHMANN_JSON_PASTE44, \
NLOHMANN_JSON_PASTE43, \
NLOHMANN_JSON_PASTE42, \
NLOHMANN_JSON_PASTE41, \
NLOHMANN_JSON_PASTE40, \
NLOHMANN_JSON_PASTE39, \
NLOHMANN_JSON_PASTE38, \
NLOHMANN_JSON_PASTE37, \
NLOHMANN_JSON_PASTE36, \
NLOHMANN_JSON_PASTE35, \
NLOHMANN_JSON_PASTE34, \
NLOHMANN_JSON_PASTE33, \
NLOHMANN_JSON_PASTE32, \
NLOHMANN_JSON_PASTE31, \
NLOHMANN_JSON_PASTE30, \
NLOHMANN_JSON_PASTE29, \
NLOHMANN_JSON_PASTE28, \
NLOHMANN_JSON_PASTE27, \
NLOHMANN_JSON_PASTE26, \
NLOHMANN_JSON_PASTE25, \
NLOHMANN_JSON_PASTE24, \
NLOHMANN_JSON_PASTE23, \
NLOHMANN_JSON_PASTE22, \
NLOHMANN_JSON_PASTE21, \
NLOHMANN_JSON_PASTE20, \
NLOHMANN_JSON_PASTE19, \
NLOHMANN_JSON_PASTE18, \
NLOHMANN_JSON_PASTE17, \
NLOHMANN_JSON_PASTE16, \
NLOHMANN_JSON_PASTE15, \
NLOHMANN_JSON_PASTE14, \
NLOHMANN_JSON_PASTE13, \
NLOHMANN_JSON_PASTE12, \
NLOHMANN_JSON_PASTE11, \
NLOHMANN_JSON_PASTE10, \
NLOHMANN_JSON_PASTE9, \
NLOHMANN_JSON_PASTE8, \
NLOHMANN_JSON_PASTE7, \
NLOHMANN_JSON_PASTE6, \
NLOHMANN_JSON_PASTE5, \
NLOHMANN_JSON_PASTE4, \
NLOHMANN_JSON_PASTE3, \
NLOHMANN_JSON_PASTE2, \
NLOHMANN_JSON_PASTE1)(__VA_ARGS__))
#define NLOHMANN_JSON_PASTE2(func, v1) func(v1)
#define NLOHMANN_JSON_PASTE3(func, v1, v2) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE2(func, v2)
#define NLOHMANN_JSON_PASTE4(func, v1, v2, v3) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE3(func, v2, v3)
#define NLOHMANN_JSON_PASTE5(func, v1, v2, v3, v4) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE4(func, v2, v3, v4)
#define NLOHMANN_JSON_PASTE6(func, v1, v2, v3, v4, v5) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE5(func, v2, v3, v4, v5)
#define NLOHMANN_JSON_PASTE7(func, v1, v2, v3, v4, v5, v6) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE6(func, v2, v3, v4, v5, v6)
#define NLOHMANN_JSON_PASTE8(func, v1, v2, v3, v4, v5, v6, v7) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE7(func, v2, v3, v4, v5, v6, v7)
#define NLOHMANN_JSON_PASTE9(func, v1, v2, v3, v4, v5, v6, v7, v8) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE8(func, v2, v3, v4, v5, v6, v7, v8)
#define NLOHMANN_JSON_PASTE10(func, v1, v2, v3, v4, v5, v6, v7, v8, v9) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE9(func, v2, v3, v4, v5, v6, v7, v8, v9)
#define NLOHMANN_JSON_PASTE11(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE10(func, v2, v3, v4, v5, v6, v7, v8, v9, v10)
#define NLOHMANN_JSON_PASTE12(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE11(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11)
#define NLOHMANN_JSON_PASTE13(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE12(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12)
#define NLOHMANN_JSON_PASTE14(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE13(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13)
#define NLOHMANN_JSON_PASTE15(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE14(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14)
#define NLOHMANN_JSON_PASTE16(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE15(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15)
#define NLOHMANN_JSON_PASTE17(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE16(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16)
#define NLOHMANN_JSON_PASTE18(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE17(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17)
#define NLOHMANN_JSON_PASTE19(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE18(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18)
#define NLOHMANN_JSON_PASTE20(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE19(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19)
#define NLOHMANN_JSON_PASTE21(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE20(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20)
#define NLOHMANN_JSON_PASTE22(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE21(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21)
#define NLOHMANN_JSON_PASTE23(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE22(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22)
#define NLOHMANN_JSON_PASTE24(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE23(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23)
#define NLOHMANN_JSON_PASTE25(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE24(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24)
#define NLOHMANN_JSON_PASTE26(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE25(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25)
#define NLOHMANN_JSON_PASTE27(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE26(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26)
#define NLOHMANN_JSON_PASTE28(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE27(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27)
#define NLOHMANN_JSON_PASTE29(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE28(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28)
#define NLOHMANN_JSON_PASTE30(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE29(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29)
#define NLOHMANN_JSON_PASTE31(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE30(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30)
#define NLOHMANN_JSON_PASTE32(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE31(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31)
#define NLOHMANN_JSON_PASTE33(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE32(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32)
#define NLOHMANN_JSON_PASTE34(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE33(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33)
#define NLOHMANN_JSON_PASTE35(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE34(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34)
#define NLOHMANN_JSON_PASTE36(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE35(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35)
#define NLOHMANN_JSON_PASTE37(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE36(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36)
#define NLOHMANN_JSON_PASTE38(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE37(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37)
#define NLOHMANN_JSON_PASTE39(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE38(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38)
#define NLOHMANN_JSON_PASTE40(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE39(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39)
#define NLOHMANN_JSON_PASTE41(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE40(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40)
#define NLOHMANN_JSON_PASTE42(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE41(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41)
#define NLOHMANN_JSON_PASTE43(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE42(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42)
#define NLOHMANN_JSON_PASTE44(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE43(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43)
#define NLOHMANN_JSON_PASTE45(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE44(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44)
#define NLOHMANN_JSON_PASTE46(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE45(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45)
#define NLOHMANN_JSON_PASTE47(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE46(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46)
#define NLOHMANN_JSON_PASTE48(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE47(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47)
#define NLOHMANN_JSON_PASTE49(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE48(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48)
#define NLOHMANN_JSON_PASTE50(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE49(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49)
#define NLOHMANN_JSON_PASTE51(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE50(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50)
#define NLOHMANN_JSON_PASTE52(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE51(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51)
#define NLOHMANN_JSON_PASTE53(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE52(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52)
#define NLOHMANN_JSON_PASTE54(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE53(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53)
#define NLOHMANN_JSON_PASTE55(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE54(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54)
#define NLOHMANN_JSON_PASTE56(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE55(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55)
#define NLOHMANN_JSON_PASTE57(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE56(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56)
#define NLOHMANN_JSON_PASTE58(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE57(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57)
#define NLOHMANN_JSON_PASTE59(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE58(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58)
#define NLOHMANN_JSON_PASTE60(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE59(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59)
#define NLOHMANN_JSON_PASTE61(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE60(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60)
#define NLOHMANN_JSON_PASTE62(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE61(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61)
#define NLOHMANN_JSON_PASTE63(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE62(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62)
#define NLOHMANN_JSON_PASTE64(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62, v63) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE63(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62, v63)
#define NLOHMANN_JSON_TO(v1) nlohmann_json_j[#v1] = nlohmann_json_t.v1;
#define NLOHMANN_JSON_FROM(v1) nlohmann_json_j.at(#v1).get_to(nlohmann_json_t.v1);
#define NLOHMANN_JSON_FROM_WITH_DEFAULT(v1) nlohmann_json_t.v1 = nlohmann_json_j.value(#v1, nlohmann_json_default_obj.v1);
/*!
@brief macro
@def NLOHMANN_DEFINE_TYPE_INTRUSIVE
@since version 3.9.0
*/
#define NLOHMANN_DEFINE_TYPE_INTRUSIVE(Type, ...) \
friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
friend void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) }
#define NLOHMANN_DEFINE_TYPE_INTRUSIVE_WITH_DEFAULT(Type, ...) \
friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
friend void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) }
#define NLOHMANN_DEFINE_TYPE_INTRUSIVE_ONLY_SERIALIZE(Type, ...) \
friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) }
/*!
@brief macro
@def NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE
@since version 3.9.0
*/
#define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE(Type, ...) \
inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
inline void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) }
#define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_ONLY_SERIALIZE(Type, ...) \
inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) }
#define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_WITH_DEFAULT(Type, ...) \
inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
inline void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) }
// inspired from https://stackoverflow.com/a/26745591
// allows to call any std function as if (e.g. with begin):
// using std::begin; begin(x);
//
// it allows using the detected idiom to retrieve the return type
// of such an expression
#define NLOHMANN_CAN_CALL_STD_FUNC_IMPL(std_name) \
namespace detail { \
using std::std_name; \
\
template<typename... T> \
using result_of_##std_name = decltype(std_name(std::declval<T>()...)); \
} \
\
namespace detail2 { \
struct std_name##_tag \
{ \
}; \
\
template<typename... T> \
std_name##_tag std_name(T&&...); \
\
template<typename... T> \
using result_of_##std_name = decltype(std_name(std::declval<T>()...)); \
\
template<typename... T> \
struct would_call_std_##std_name \
{ \
static constexpr auto const value = ::nlohmann::detail:: \
is_detected_exact<std_name##_tag, result_of_##std_name, T...>::value; \
}; \
} /* namespace detail2 */ \
\
template<typename... T> \
struct would_call_std_##std_name : detail2::would_call_std_##std_name<T...> \
{ \
}
#ifndef JSON_USE_IMPLICIT_CONVERSIONS
#define JSON_USE_IMPLICIT_CONVERSIONS 1
#endif
#if JSON_USE_IMPLICIT_CONVERSIONS
#define JSON_EXPLICIT
#else
#define JSON_EXPLICIT explicit
#endif
#ifndef JSON_DISABLE_ENUM_SERIALIZATION
#define JSON_DISABLE_ENUM_SERIALIZATION 0
#endif
#ifndef JSON_USE_GLOBAL_UDLS
#define JSON_USE_GLOBAL_UDLS 1
#endif

View File

@@ -0,0 +1,45 @@
// __ _____ _____ _____
// __| | __| | | | JSON for Modern C++
// | | |__ | | | | | | version 3.11.3
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
//
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
// SPDX-License-Identifier: MIT
#pragma once
// restore clang diagnostic settings
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
// clean up
#undef JSON_ASSERT
#undef JSON_INTERNAL_CATCH
#undef JSON_THROW
#undef JSON_PRIVATE_UNLESS_TESTED
#undef NLOHMANN_BASIC_JSON_TPL_DECLARATION
#undef NLOHMANN_BASIC_JSON_TPL
#undef JSON_EXPLICIT
#undef NLOHMANN_CAN_CALL_STD_FUNC_IMPL
#undef JSON_INLINE_VARIABLE
#undef JSON_NO_UNIQUE_ADDRESS
#undef JSON_DISABLE_ENUM_SERIALIZATION
#undef JSON_USE_GLOBAL_UDLS
#ifndef JSON_TEST_KEEP_MACROS
#undef JSON_CATCH
#undef JSON_TRY
#undef JSON_HAS_CPP_11
#undef JSON_HAS_CPP_14
#undef JSON_HAS_CPP_17
#undef JSON_HAS_CPP_20
#undef JSON_HAS_FILESYSTEM
#undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
#undef JSON_HAS_THREE_WAY_COMPARISON
#undef JSON_HAS_RANGES
#undef JSON_HAS_STATIC_RTTI
#undef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
#endif
#include <nlohmann/thirdparty/hedley/hedley_undef.hpp>

Some files were not shown because too many files have changed in this diff Show More