Compare commits
6 Commits
b03e84044a
...
cb54f61a69
Author | SHA1 | Date | |
---|---|---|---|
cb54f61a69
|
|||
07d572a98c
|
|||
c4f3e6f19a
|
|||
adc0ca238f
|
|||
b9e76becce
|
|||
85cb447283
|
@@ -8,6 +8,7 @@ namespace bayesnet {
|
||||
void train() override;
|
||||
public:
|
||||
AODE();
|
||||
virtual ~AODE() {};
|
||||
vector<string> graph(string title = "AODE") override;
|
||||
};
|
||||
}
|
||||
|
@@ -14,6 +14,7 @@ namespace bayesnet {
|
||||
void train() override;
|
||||
public:
|
||||
KDB(int k, float theta = 0.03);
|
||||
virtual ~KDB() {};
|
||||
vector<string> graph(string name = "KDB") override;
|
||||
};
|
||||
}
|
||||
|
@@ -1,6 +1,7 @@
|
||||
#ifndef SPODE_H
|
||||
#define SPODE_H
|
||||
#include "Classifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class SPODE : public Classifier {
|
||||
private:
|
||||
@@ -9,6 +10,7 @@ namespace bayesnet {
|
||||
void train() override;
|
||||
public:
|
||||
SPODE(int root);
|
||||
virtual ~SPODE() {};
|
||||
vector<string> graph(string name = "SPODE") override;
|
||||
};
|
||||
}
|
||||
|
@@ -10,6 +10,7 @@ namespace bayesnet {
|
||||
void train() override;
|
||||
public:
|
||||
TAN();
|
||||
virtual ~TAN() {};
|
||||
vector<string> graph(string name = "TAN") override;
|
||||
};
|
||||
}
|
||||
|
@@ -4,5 +4,5 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc)
|
||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc)
|
||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
@@ -2,16 +2,6 @@
|
||||
#include "platformUtils.h"
|
||||
#include "ArffFiles.h"
|
||||
namespace platform {
|
||||
vector<string> split(string text, char delimiter)
|
||||
{
|
||||
vector<string> result;
|
||||
stringstream ss(text);
|
||||
string token;
|
||||
while (getline(ss, token, delimiter)) {
|
||||
result.push_back(token);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Datasets::load()
|
||||
{
|
||||
string line;
|
||||
|
62
src/Platform/DotEnv.h
Normal file
62
src/Platform/DotEnv.h
Normal file
@@ -0,0 +1,62 @@
|
||||
#ifndef DOTENV_H
|
||||
#define DOTENV_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include "platformUtils.h"
|
||||
namespace platform {
|
||||
class DotEnv {
|
||||
private:
|
||||
std::map<std::string, std::string> env;
|
||||
std::string trim(const std::string& str)
|
||||
{
|
||||
std::string result = str;
|
||||
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
|
||||
return !std::isspace(ch);
|
||||
}));
|
||||
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
|
||||
return !std::isspace(ch);
|
||||
}).base(), result.end());
|
||||
return result;
|
||||
}
|
||||
public:
|
||||
DotEnv()
|
||||
{
|
||||
std::ifstream file(".env");
|
||||
if (!file.is_open()) {
|
||||
std::cerr << "File .env not found" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::string line;
|
||||
while (std::getline(file, line)) {
|
||||
line = trim(line);
|
||||
if (line.empty() || line[0] == '#') {
|
||||
continue;
|
||||
}
|
||||
std::istringstream iss(line);
|
||||
std::string key, value;
|
||||
if (std::getline(iss, key, '=') && std::getline(iss, value)) {
|
||||
env[key] = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::string get(const std::string& key)
|
||||
{
|
||||
return env[key];
|
||||
}
|
||||
std::vector<int> getSeeds()
|
||||
{
|
||||
auto seeds = std::vector<int>();
|
||||
auto seeds_str = env["seeds"];
|
||||
seeds_str = trim(seeds_str);
|
||||
seeds_str = seeds_str.substr(1, seeds_str.size() - 2);
|
||||
auto seeds_str_split = split(seeds_str, ',');
|
||||
for (auto seed_str : seeds_str_split) {
|
||||
seeds.push_back(stoi(seed_str));
|
||||
}
|
||||
return seeds;
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,4 +1,6 @@
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "Models.h"
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
@@ -43,7 +45,7 @@ namespace platform {
|
||||
result["discretized"] = discretized;
|
||||
result["stratified"] = stratified;
|
||||
result["folds"] = nfolds;
|
||||
result["seeds"] = random_seeds;
|
||||
result["seeds"] = randomSeeds;
|
||||
result["duration"] = duration;
|
||||
result["results"] = json::array();
|
||||
for (auto& r : results) {
|
||||
@@ -65,6 +67,10 @@ namespace platform {
|
||||
j["test_time_std"] = r.getTestTimeStd();
|
||||
j["time"] = r.getTestTime() + r.getTrainTime();
|
||||
j["time_std"] = r.getTestTimeStd() + r.getTrainTimeStd();
|
||||
j["scores_train"] = r.getScoresTrain();
|
||||
j["scores_test"] = r.getScoresTest();
|
||||
j["times_train"] = r.getTimesTrain();
|
||||
j["times_test"] = r.getTimesTest();
|
||||
j["nodes"] = r.getNodes();
|
||||
j["leaves"] = r.getLeaves();
|
||||
j["depth"] = r.getDepth();
|
||||
@@ -79,51 +85,75 @@ namespace platform {
|
||||
file << data;
|
||||
file.close();
|
||||
}
|
||||
Result cross_validation(Fold* fold, string model_name, torch::Tensor& Xt, torch::Tensor& y, vector<string> features, string className, map<string, vector<int>> states)
|
||||
void Experiment::show()
|
||||
{
|
||||
auto classifiers = map<string, bayesnet::BaseClassifier*>({
|
||||
{ "AODE", new bayesnet::AODE() }, { "KDB", new bayesnet::KDB(2) },
|
||||
{ "SPODE", new bayesnet::SPODE(2) }, { "TAN", new bayesnet::TAN() }
|
||||
json data = build_json();
|
||||
cout << data.dump(4) << endl;
|
||||
}
|
||||
);
|
||||
Result Experiment::cross_validation(const string& path, const string& fileName)
|
||||
{
|
||||
auto datasets = platform::Datasets(path, true, platform::ARFF);
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto samples = datasets.getNSamples(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
||||
// Prepare Result
|
||||
auto result = Result();
|
||||
auto [values, counts] = at::_unique(y);
|
||||
result.setSamples(Xt.size(1)).setFeatures(Xt.size(0)).setClasses(values.size(0));
|
||||
auto k = fold->getNumberOfFolds();
|
||||
auto accuracy_test = torch::zeros({ k }, torch::kFloat64);
|
||||
auto accuracy_train = torch::zeros({ k }, torch::kFloat64);
|
||||
auto train_time = torch::zeros({ k }, torch::kFloat64);
|
||||
auto test_time = torch::zeros({ k }, torch::kFloat64);
|
||||
auto nodes = torch::zeros({ k }, torch::kFloat64);
|
||||
auto edges = torch::zeros({ k }, torch::kFloat64);
|
||||
auto num_states = torch::zeros({ k }, torch::kFloat64);
|
||||
auto [values, counts] = at::_unique(y);;
|
||||
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
||||
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
||||
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto train_time = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto test_time = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto nodes = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto edges = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto num_states = torch::zeros({ nResults }, torch::kFloat64);
|
||||
Timer train_timer, test_timer;
|
||||
cout << "doing Fold: " << flush;
|
||||
for (int i = 0; i < k; i++) {
|
||||
bayesnet::BaseClassifier* model = classifiers[model_name];
|
||||
result.setModelVersion(model->getVersion());
|
||||
int item = 0;
|
||||
for (auto seed : randomSeeds) {
|
||||
cout << "(" << seed << ") doing Fold: " << flush;
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(nfolds, y, seed);
|
||||
else
|
||||
fold = new KFold(nfolds, y.size(0), seed);
|
||||
for (int nfold = 0; nfold < nfolds; nfold++) {
|
||||
auto clf = Models::instance()->create(model);
|
||||
setModelVersion(clf->getVersion());
|
||||
train_timer.start();
|
||||
auto [train, test] = fold->getFold(i);
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = Xt.index({ "...", train_t });
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = Xt.index({ "...", test_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
cout << i + 1 << ", " << flush;
|
||||
model->fit(X_train, y_train, features, className, states);
|
||||
nodes[i] = model->getNumberOfNodes();
|
||||
edges[i] = model->getNumberOfEdges();
|
||||
num_states[i] = model->getNumberOfStates();
|
||||
train_time[i] = train_timer.getDuration();
|
||||
auto accuracy_train_value = model->score(X_train, y_train);
|
||||
cout << nfold + 1 << ", " << flush;
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
nodes[item] = clf->getNumberOfNodes();
|
||||
edges[item] = clf->getNumberOfEdges();
|
||||
num_states[item] = clf->getNumberOfStates();
|
||||
train_time[item] = train_timer.getDuration();
|
||||
auto accuracy_train_value = clf->score(X_train, y_train);
|
||||
test_timer.start();
|
||||
auto accuracy_test_value = model->score(X_test, y_test);
|
||||
test_time[i] = test_timer.getDuration();
|
||||
accuracy_train[i] = accuracy_train_value;
|
||||
accuracy_test[i] = accuracy_test_value;
|
||||
auto accuracy_test_value = clf->score(X_test, y_test);
|
||||
test_time[item] = test_timer.getDuration();
|
||||
accuracy_train[item] = accuracy_train_value;
|
||||
accuracy_test[item] = accuracy_test_value;
|
||||
// Store results and times in vector
|
||||
result.addScoreTrain(accuracy_train_value);
|
||||
result.addScoreTest(accuracy_test_value);
|
||||
result.addTimeTrain(train_time[item].item<double>());
|
||||
result.addTimeTest(test_time[item].item<double>());
|
||||
item++;
|
||||
}
|
||||
cout << "end. " << flush;
|
||||
delete fold;
|
||||
}
|
||||
cout << "end." << endl;
|
||||
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
||||
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
||||
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
|
||||
|
@@ -33,6 +33,7 @@ namespace platform {
|
||||
int samples, features, classes;
|
||||
double score_train, score_test, score_train_std, score_test_std, train_time, train_time_std, test_time, test_time_std;
|
||||
float nodes, leaves, depth;
|
||||
vector<double> scores_train, scores_test, times_train, times_test;
|
||||
public:
|
||||
Result() = default;
|
||||
Result& setDataset(string dataset) { this->dataset = dataset; return *this; }
|
||||
@@ -51,7 +52,10 @@ namespace platform {
|
||||
Result& setNodes(float nodes) { this->nodes = nodes; return *this; }
|
||||
Result& setLeaves(float leaves) { this->leaves = leaves; return *this; }
|
||||
Result& setDepth(float depth) { this->depth = depth; return *this; }
|
||||
Result& setModelVersion(string model_version) { this->model_version = model_version; return *this; }
|
||||
Result& addScoreTrain(double score) { scores_train.push_back(score); return *this; }
|
||||
Result& addScoreTest(double score) { scores_test.push_back(score); return *this; }
|
||||
Result& addTimeTrain(double time) { times_train.push_back(time); return *this; }
|
||||
Result& addTimeTest(double time) { times_test.push_back(time); return *this; }
|
||||
const float get_score_train() const { return score_train; }
|
||||
float get_score_test() { return score_test; }
|
||||
const string& getDataset() const { return dataset; }
|
||||
@@ -70,14 +74,17 @@ namespace platform {
|
||||
const float getNodes() const { return nodes; }
|
||||
const float getLeaves() const { return leaves; }
|
||||
const float getDepth() const { return depth; }
|
||||
const string& getModelVersion() const { return model_version; }
|
||||
const vector<double>& getScoresTrain() const { return scores_train; }
|
||||
const vector<double>& getScoresTest() const { return scores_test; }
|
||||
const vector<double>& getTimesTrain() const { return times_train; }
|
||||
const vector<double>& getTimesTest() const { return times_test; }
|
||||
};
|
||||
class Experiment {
|
||||
private:
|
||||
string title, model, platform, score_name, model_version, language_version, language;
|
||||
bool discretized, stratified;
|
||||
vector<Result> results;
|
||||
vector<int> random_seeds;
|
||||
vector<int> randomSeeds;
|
||||
int nfolds;
|
||||
float duration;
|
||||
json build_json();
|
||||
@@ -94,12 +101,12 @@ namespace platform {
|
||||
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
|
||||
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
|
||||
Experiment& addResult(Result result) { results.push_back(result); return *this; }
|
||||
Experiment& addRandomSeed(int random_seed) { random_seeds.push_back(random_seed); return *this; }
|
||||
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
|
||||
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
|
||||
string get_file_name();
|
||||
void save(string path);
|
||||
void show() { cout << "Showing experiment..." << "Score Test: " << results[0].get_score_test() << " Score Train: " << results[0].get_score_train() << endl; }
|
||||
Result cross_validation(const string& path, const string& fileName);
|
||||
void show();
|
||||
};
|
||||
Result cross_validation(Fold* fold, string model_name, torch::Tensor& X, torch::Tensor& y, vector<string> features, string className, map<string, vector<int>> states);
|
||||
}
|
||||
#endif
|
73
src/Platform/Models.cc
Normal file
73
src/Platform/Models.cc
Normal file
@@ -0,0 +1,73 @@
|
||||
#include "Models.h"
|
||||
namespace platform {
|
||||
using namespace std;
|
||||
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
|
||||
// shared_ptr<bayesnet::BaseClassifier> Models::createInstance(const string& name)
|
||||
// {
|
||||
// bayesnet::BaseClassifier* instance = nullptr;
|
||||
// if (name == "AODE") {
|
||||
// instance = new bayesnet::AODE();
|
||||
// } else if (name == "KDB") {
|
||||
// instance = new bayesnet::KDB(2);
|
||||
// } else if (name == "SPODE") {
|
||||
// instance = new bayesnet::SPODE(2);
|
||||
// } else if (name == "TAN") {
|
||||
// instance = new bayesnet::TAN();
|
||||
// } else {
|
||||
// throw runtime_error("Model " + name + " not found");
|
||||
// }
|
||||
// if (instance != nullptr)
|
||||
// return shared_ptr<bayesnet::BaseClassifier>(instance);
|
||||
// else
|
||||
// return nullptr;
|
||||
// }
|
||||
Models* Models::factory = nullptr;;
|
||||
Models* Models::instance()
|
||||
{
|
||||
//manages singleton
|
||||
if (factory == nullptr)
|
||||
factory = new Models();
|
||||
return factory;
|
||||
}
|
||||
void Models::registerFactoryFunction(const string& name,
|
||||
function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
|
||||
{
|
||||
// register the class factory function
|
||||
functionRegistry[name] = classFactoryFunction;
|
||||
}
|
||||
shared_ptr<bayesnet::BaseClassifier> Models::create(const string& name)
|
||||
{
|
||||
bayesnet::BaseClassifier* instance = nullptr;
|
||||
|
||||
// find name in the registry and call factory method.
|
||||
auto it = functionRegistry.find(name);
|
||||
if (it != functionRegistry.end())
|
||||
instance = it->second();
|
||||
// wrap instance in a shared ptr and return
|
||||
if (instance != nullptr)
|
||||
return shared_ptr<bayesnet::BaseClassifier>(instance);
|
||||
else
|
||||
return nullptr;
|
||||
}
|
||||
vector<string> Models::getNames()
|
||||
{
|
||||
vector<string> names;
|
||||
transform(functionRegistry.begin(), functionRegistry.end(), back_inserter(names),
|
||||
[](const pair<string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
|
||||
return names;
|
||||
}
|
||||
string Models::toString()
|
||||
{
|
||||
string result = "";
|
||||
for (auto& pair : functionRegistry) {
|
||||
result += pair.first + ", ";
|
||||
}
|
||||
return "{" + result.substr(0, result.size() - 2) + "}";
|
||||
}
|
||||
|
||||
Registrar::Registrar(const string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
|
||||
{
|
||||
// register the class factory function
|
||||
Models::instance()->registerFactoryFunction(name, classFactoryFunction);
|
||||
}
|
||||
}
|
32
src/Platform/Models.h
Normal file
32
src/Platform/Models.h
Normal file
@@ -0,0 +1,32 @@
|
||||
#ifndef MODELS_H
|
||||
#define MODELS_H
|
||||
#include <map>
|
||||
#include "BaseClassifier.h"
|
||||
#include "AODE.h"
|
||||
#include "TAN.h"
|
||||
#include "KDB.h"
|
||||
#include "SPODE.h"
|
||||
namespace platform {
|
||||
class Models {
|
||||
private:
|
||||
map<string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
|
||||
static Models* factory; //singleton
|
||||
Models() {};
|
||||
public:
|
||||
Models(Models&) = delete;
|
||||
void operator=(const Models&) = delete;
|
||||
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
|
||||
static Models* instance();
|
||||
shared_ptr<bayesnet::BaseClassifier> create(const string& name);
|
||||
void registerFactoryFunction(const string& name,
|
||||
function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
|
||||
vector<string> getNames();
|
||||
string toString();
|
||||
|
||||
};
|
||||
class Registrar {
|
||||
public:
|
||||
Registrar(const string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -3,33 +3,37 @@
|
||||
#include "platformUtils.h"
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "DotEnv.h"
|
||||
#include "Models.h"
|
||||
|
||||
|
||||
using namespace std;
|
||||
const string PATH_RESULTS = "results";
|
||||
const string PATH_DATASETS = "datasets";
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
argparse::ArgumentParser program("BayesNetSample");
|
||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||
program.add_argument("-p", "--path")
|
||||
.help("folder where the data files are located, default")
|
||||
.default_value(string{ PATH }
|
||||
.default_value(string{ PATH_DATASETS }
|
||||
);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use {AODE, KDB, SPODE, TAN}")
|
||||
.help("Model to use " + platform::Models::instance()->toString())
|
||||
.action([](const std::string& value) {
|
||||
static const vector<string> choices = { "AODE", "KDB", "SPODE", "TAN" };
|
||||
static const vector<string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("Model must be one of {AODE, KDB, SPODE, TAN}");
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
|
||||
}
|
||||
);
|
||||
program.add_argument("--title").required().help("Experiment title");
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
|
||||
program.add_argument("--title").default_value("").help("Experiment title");
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
@@ -43,9 +47,11 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
catch (...) {
|
||||
throw runtime_error("Number of folds must be an integer");
|
||||
}});
|
||||
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
||||
auto seed_values = env.getSeeds();
|
||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||
bool class_last, discretize_dataset, stratified;
|
||||
int n_folds, seed;
|
||||
int n_folds;
|
||||
vector<int> seeds;
|
||||
string model_name, file_name, path, complete_file_name, title;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
@@ -55,10 +61,13 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
discretize_dataset = program.get<bool>("discretize");
|
||||
stratified = program.get<bool>("stratified");
|
||||
n_folds = program.get<int>("folds");
|
||||
seed = program.get<int>("seed");
|
||||
seeds = program.get<vector<int>>("seeds");
|
||||
complete_file_name = path + file_name + ".arff";
|
||||
class_last = false;//datasets[file_name];
|
||||
title = program.get<string>("title");
|
||||
if (title == "" && file_name == "") {
|
||||
throw runtime_error("title is mandatory if dataset is not provided");
|
||||
}
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
@@ -67,29 +76,46 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
}
|
||||
return program;
|
||||
}
|
||||
void registerModels()
|
||||
{
|
||||
static platform::Registrar registrarT("TAN",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
|
||||
static platform::Registrar registrarS("SPODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
|
||||
static platform::Registrar registrarK("KDB",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
|
||||
static platform::Registrar registrarA("AODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
registerModels();
|
||||
auto program = manageArguments(argc, argv);
|
||||
bool saveResults = false;
|
||||
auto file_name = program.get<string>("dataset");
|
||||
auto path = program.get<string>("path");
|
||||
auto model_name = program.get<string>("model");
|
||||
auto discretize_dataset = program.get<bool>("discretize");
|
||||
auto stratified = program.get<bool>("stratified");
|
||||
auto n_folds = program.get<int>("folds");
|
||||
auto seed = program.get<int>("seed");
|
||||
auto seeds = program.get<vector<int>>("seeds");
|
||||
vector<string> filesToProcess;
|
||||
auto datasets = platform::Datasets(path, true, platform::ARFF);
|
||||
auto title = program.get<string>("title");
|
||||
if (file_name != "") {
|
||||
if (!datasets.isDataset(file_name)) {
|
||||
cerr << "Dataset " << file_name << " not found" << endl;
|
||||
exit(1);
|
||||
}
|
||||
if (title == "") {
|
||||
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
|
||||
}
|
||||
filesToProcess.push_back(file_name);
|
||||
} else {
|
||||
filesToProcess = platform::Datasets(path, true, platform::ARFF).getNames();
|
||||
saveResults = true;
|
||||
}
|
||||
auto title = program.get<string>("title");
|
||||
|
||||
/*
|
||||
* Begin Processing
|
||||
@@ -97,31 +123,25 @@ int main(int argc, char** argv)
|
||||
auto experiment = platform::Experiment();
|
||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
|
||||
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform("BayesNet");
|
||||
experiment.setStratified(stratified).setNFolds(n_folds).addRandomSeed(seed).setScoreName("accuracy");
|
||||
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
||||
for (auto seed : seeds) {
|
||||
experiment.addRandomSeed(seed);
|
||||
}
|
||||
platform::Timer timer;
|
||||
cout << "*** Starting experiment: " << title << " ***" << endl;
|
||||
timer.start();
|
||||
for (auto fileName : filesToProcess) {
|
||||
cout << "- " << setw(20) << left << fileName << " " << right << flush;
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto samples = datasets.getNSamples(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(n_folds, samples, seed);
|
||||
auto result = platform::cross_validation(fold, model_name, X, y, features, className, states);
|
||||
auto result = experiment.cross_validation(path, fileName);
|
||||
result.setDataset(fileName);
|
||||
experiment.setModelVersion(result.getModelVersion());
|
||||
experiment.addResult(result);
|
||||
delete fold;
|
||||
cout << endl;
|
||||
}
|
||||
experiment.setDuration(timer.getDuration());
|
||||
if (saveResults)
|
||||
experiment.save(PATH_RESULTS);
|
||||
else
|
||||
experiment.show();
|
||||
cout << "Done!" << endl;
|
||||
return 0;
|
||||
}
|
||||
|
@@ -2,6 +2,17 @@
|
||||
|
||||
using namespace torch;
|
||||
|
||||
vector<string> split(string text, char delimiter)
|
||||
{
|
||||
vector<string> result;
|
||||
stringstream ss(text);
|
||||
string token;
|
||||
while (getline(ss, token, delimiter)) {
|
||||
result.push_back(token);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
|
||||
{
|
||||
vector<mdlp::labels_t> Xd;
|
||||
|
@@ -11,6 +11,7 @@ using namespace std;
|
||||
const string PATH = "../../data/";
|
||||
|
||||
bool file_exists(const std::string& name);
|
||||
vector<string> split(string text, char delimiter);
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features);
|
||||
vector<mdlp::labels_t> discretizeDataset(vector<mdlp::samples_t>& X, mdlp::labels_t& y);
|
||||
pair<torch::Tensor, map<string, vector<int>>> discretizeTorch(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className);
|
||||
|
Reference in New Issue
Block a user