Compare commits
30 Commits
aftermath
...
optimize_m
Author | SHA1 | Date | |
---|---|---|---|
182b52a887
|
|||
405887f833
|
|||
3a85481a5a
|
|||
0ad5505c16
|
|||
323444b74a
|
|||
ef1bffcac3
|
|||
06db8f51ce
|
|||
e74565ba01
|
|||
2da0fb5d8f
|
|||
14ea51648a
|
|||
9e94f4e140
|
|||
1d0fd629c9
|
|||
506ef34c6f
|
|||
7f45495837
|
|||
1a09ccca4c
|
|||
a1c6ab18f3
|
|||
64ac8fb4f2
|
|||
c568ba111d
|
|||
45c1d052ac
|
|||
eb1cec58a3
|
|||
f520b40016
|
|||
cdfb45d2cb
|
|||
f63a9a64f9
|
|||
285f0938a6
|
|||
8f8f9773ce
|
|||
a9ba21560d
|
|||
a18fbe5594
|
|||
adf650d257
|
|||
43bb017d5d
|
|||
53697648e7
|
@@ -13,5 +13,4 @@ HeaderFilterRegex: 'src/*'
|
|||||||
AnalyzeTemporaryDtors: false
|
AnalyzeTemporaryDtors: false
|
||||||
WarningsAsErrors: ''
|
WarningsAsErrors: ''
|
||||||
FormatStyle: file
|
FormatStyle: file
|
||||||
FormatStyleOptions: ''
|
|
||||||
...
|
...
|
||||||
|
18
.vscode/launch.json
vendored
18
.vscode/launch.json
vendored
@@ -10,12 +10,13 @@
|
|||||||
"-d",
|
"-d",
|
||||||
"iris",
|
"iris",
|
||||||
"-m",
|
"-m",
|
||||||
"TAN",
|
"KDB",
|
||||||
|
"-s",
|
||||||
|
"271",
|
||||||
"-p",
|
"-p",
|
||||||
"../../data/",
|
"/Users/rmontanana/Code/discretizbench/datasets/",
|
||||||
"--tensors"
|
|
||||||
],
|
],
|
||||||
"cwd": "${workspaceFolder}/build/sample/",
|
//"cwd": "${workspaceFolder}/build/sample/",
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
@@ -24,17 +25,14 @@
|
|||||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||||
"args": [
|
"args": [
|
||||||
"-m",
|
"-m",
|
||||||
"TAN",
|
"SPODELd",
|
||||||
"-p",
|
"-p",
|
||||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||||
"--discretize",
|
|
||||||
"--stratified",
|
"--stratified",
|
||||||
"--title",
|
|
||||||
"Debug test",
|
|
||||||
"-d",
|
"-d",
|
||||||
"ionosphere"
|
"iris"
|
||||||
],
|
],
|
||||||
"cwd": "${workspaceFolder}/build/src/Platform",
|
"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Build & debug active file",
|
"name": "Build & debug active file",
|
||||||
|
@@ -7,10 +7,14 @@ project(BayesNet
|
|||||||
LANGUAGES CXX
|
LANGUAGES CXX
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if (CODE_COVERAGE AND NOT ENABLE_TESTING)
|
||||||
|
MESSAGE(FATAL_ERROR "Code coverage requires testing enabled")
|
||||||
|
endif (CODE_COVERAGE AND NOT ENABLE_TESTING)
|
||||||
|
|
||||||
find_package(Torch REQUIRED)
|
find_package(Torch REQUIRED)
|
||||||
|
|
||||||
if (POLICY CMP0135)
|
if (POLICY CMP0135)
|
||||||
cmake_policy(SET CMP0135 NEW)
|
cmake_policy(SET CMP0135 NEW)
|
||||||
endif ()
|
endif ()
|
||||||
|
|
||||||
# Global CMake variables
|
# Global CMake variables
|
||||||
@@ -24,24 +28,31 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
|||||||
# Options
|
# Options
|
||||||
# -------
|
# -------
|
||||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||||
option(ENABLE_TESTING "Unit testing build" ON)
|
option(ENABLE_TESTING "Unit testing build" OFF)
|
||||||
option(CODE_COVERAGE "Collect coverage from test library" ON)
|
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||||
|
|
||||||
set(CMAKE_BUILD_TYPE "Debug")
|
|
||||||
|
|
||||||
# CMakes modules
|
# CMakes modules
|
||||||
# --------------
|
# --------------
|
||||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
||||||
|
|
||||||
include(AddGitSubmodule)
|
include(AddGitSubmodule)
|
||||||
include(StaticAnalyzers) # clang-tidy
|
if (CODE_COVERAGE)
|
||||||
include(CodeCoverage)
|
enable_testing()
|
||||||
|
include(CodeCoverage)
|
||||||
|
MESSAGE("Code coverage enabled")
|
||||||
|
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
|
||||||
|
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
|
||||||
|
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||||
|
endif (CODE_COVERAGE)
|
||||||
|
|
||||||
|
if (ENABLE_CLANG_TIDY)
|
||||||
|
include(StaticAnalyzers) # clang-tidy
|
||||||
|
endif (ENABLE_CLANG_TIDY)
|
||||||
|
|
||||||
# External libraries - dependencies of BayesNet
|
# External libraries - dependencies of BayesNet
|
||||||
# ---------------------------------------------
|
# ---------------------------------------------
|
||||||
# include(FetchContent)
|
# include(FetchContent)
|
||||||
add_git_submodule("lib/mdlp")
|
add_git_submodule("lib/mdlp")
|
||||||
add_git_submodule("lib/catch2")
|
|
||||||
add_git_submodule("lib/argparse")
|
add_git_submodule("lib/argparse")
|
||||||
add_git_submodule("lib/json")
|
add_git_submodule("lib/json")
|
||||||
|
|
||||||
@@ -59,18 +70,11 @@ file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform
|
|||||||
|
|
||||||
# Testing
|
# Testing
|
||||||
# -------
|
# -------
|
||||||
|
|
||||||
if (ENABLE_TESTING)
|
if (ENABLE_TESTING)
|
||||||
MESSAGE("Testing enabled")
|
MESSAGE("Testing enabled")
|
||||||
enable_testing()
|
add_git_submodule("lib/catch2")
|
||||||
if (CODE_COVERAGE)
|
|
||||||
#include(CodeCoverage)
|
|
||||||
MESSAGE("Code coverage enabled")
|
|
||||||
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
|
|
||||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
|
|
||||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
|
||||||
endif (CODE_COVERAGE)
|
|
||||||
#find_package(Catch2 3 REQUIRED)
|
|
||||||
include(CTest)
|
include(CTest)
|
||||||
#include(Catch)
|
|
||||||
add_subdirectory(tests)
|
add_subdirectory(tests)
|
||||||
endif (ENABLE_TESTING)
|
endif (ENABLE_TESTING)
|
||||||
|
26
Makefile
26
Makefile
@@ -14,16 +14,30 @@ setup: ## Install dependencies for tests and coverage
|
|||||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
||||||
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||||
|
|
||||||
build: ## Build the project
|
build: ## Build the main and BayesNetSample
|
||||||
@echo ">>> Building BayesNet ...";
|
cmake --build build -t main -t BayesNetSample -j 32
|
||||||
|
|
||||||
|
clean: ## Clean the debug info
|
||||||
|
@echo ">>> Cleaning Debug BayesNet ...";
|
||||||
|
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||||
|
@echo ">>> Done";
|
||||||
|
|
||||||
|
debug: ## Build a debug version of the project
|
||||||
|
@echo ">>> Building Debug BayesNet ...";
|
||||||
@if [ -d ./build ]; then rm -rf ./build; fi
|
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||||
@mkdir build;
|
@mkdir build;
|
||||||
cmake -S . -B build; \
|
cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
|
||||||
cd build; \
|
cmake --build build -j 32;
|
||||||
make; \
|
|
||||||
|
|
||||||
@echo ">>> Done";
|
@echo ">>> Done";
|
||||||
|
|
||||||
|
release: ## Build a Release version of the project
|
||||||
|
@echo ">>> Building Release BayesNet ...";
|
||||||
|
@if [ -d ./build ]; then rm -rf ./build; fi
|
||||||
|
@mkdir build;
|
||||||
|
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
|
||||||
|
cmake --build build -t main -t BayesNetSample -j 32;
|
||||||
|
@echo ">>> Done";
|
||||||
|
|
||||||
test: ## Run tests
|
test: ## Run tests
|
||||||
@echo "* Running tests...";
|
@echo "* Running tests...";
|
||||||
find . -name "*.gcda" -print0 | xargs -0 rm
|
find . -name "*.gcda" -print0 | xargs -0 rm
|
||||||
|
12
TAN_iris.dot
Normal file
12
TAN_iris.dot
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
digraph BayesNet {
|
||||||
|
label=<BayesNet >
|
||||||
|
fontsize=30
|
||||||
|
fontcolor=blue
|
||||||
|
labelloc=t
|
||||||
|
layout=circo
|
||||||
|
class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ]
|
||||||
|
class -> sepallength class -> sepalwidth class -> petallength class -> petalwidth petallength [shape=circle]
|
||||||
|
petallength -> sepallength petalwidth [shape=circle]
|
||||||
|
sepallength [shape=circle]
|
||||||
|
sepallength -> sepalwidth sepalwidth [shape=circle]
|
||||||
|
sepalwidth -> petalwidth }
|
@@ -1,5 +1,4 @@
|
|||||||
filter = src/
|
filter = src/
|
||||||
exclude = external/
|
exclude-directories = build/lib/
|
||||||
exclude = tests/
|
|
||||||
print-summary = yes
|
print-summary = yes
|
||||||
sort-percentage = yes
|
sort-percentage = yes
|
||||||
|
2
lib/mdlp
2
lib/mdlp
Submodule lib/mdlp updated: fbffc3a9c4...5708dc3de9
125
sample/sample.cc
125
sample/sample.cc
@@ -1,7 +1,6 @@
|
|||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <thread>
|
|
||||||
#include <map>
|
#include <map>
|
||||||
#include <argparse/argparse.hpp>
|
#include <argparse/argparse.hpp>
|
||||||
#include "ArffFiles.h"
|
#include "ArffFiles.h"
|
||||||
@@ -42,7 +41,7 @@ bool file_exists(const std::string& name)
|
|||||||
}
|
}
|
||||||
pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y)
|
pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y)
|
||||||
{
|
{
|
||||||
vector<vector<int>> Xr;
|
vector<vector<int>> Xr; // nxm
|
||||||
vector<int> yr;
|
vector<int> yr;
|
||||||
for (int col = 0; col < X.size(); ++col) {
|
for (int col = 0; col < X.size(); ++col) {
|
||||||
Xr.push_back(vector<int>());
|
Xr.push_back(vector<int>());
|
||||||
@@ -96,6 +95,7 @@ int main(int argc, char** argv)
|
|||||||
}
|
}
|
||||||
);
|
);
|
||||||
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||||
|
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||||
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
|
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
|
||||||
@@ -113,7 +113,7 @@ int main(int argc, char** argv)
|
|||||||
throw runtime_error("Number of folds must be an integer");
|
throw runtime_error("Number of folds must be an integer");
|
||||||
}});
|
}});
|
||||||
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
||||||
bool class_last, stratified, tensors;
|
bool class_last, stratified, tensors, dump_cpt;
|
||||||
string model_name, file_name, path, complete_file_name;
|
string model_name, file_name, path, complete_file_name;
|
||||||
int nFolds, seed;
|
int nFolds, seed;
|
||||||
try {
|
try {
|
||||||
@@ -126,6 +126,7 @@ int main(int argc, char** argv)
|
|||||||
tensors = program.get<bool>("tensors");
|
tensors = program.get<bool>("tensors");
|
||||||
nFolds = program.get<int>("folds");
|
nFolds = program.get<int>("folds");
|
||||||
seed = program.get<int>("seed");
|
seed = program.get<int>("seed");
|
||||||
|
dump_cpt = program.get<bool>("dumpcpt");
|
||||||
class_last = datasets[file_name];
|
class_last = datasets[file_name];
|
||||||
if (!file_exists(complete_file_name)) {
|
if (!file_exists(complete_file_name)) {
|
||||||
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
|
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
|
||||||
@@ -161,61 +162,75 @@ int main(int argc, char** argv)
|
|||||||
states[className] = vector<int>(maxes[className]);
|
states[className] = vector<int>(maxes[className]);
|
||||||
auto clf = platform::Models::instance()->create(model_name);
|
auto clf = platform::Models::instance()->create(model_name);
|
||||||
clf->fit(Xd, y, features, className, states);
|
clf->fit(Xd, y, features, className, states);
|
||||||
auto score = clf->score(Xd, y);
|
if (dump_cpt) {
|
||||||
|
cout << "--- CPT Tables ---" << endl;
|
||||||
|
clf->dump_cpt();
|
||||||
|
}
|
||||||
auto lines = clf->show();
|
auto lines = clf->show();
|
||||||
auto graph = clf->graph();
|
|
||||||
for (auto line : lines) {
|
for (auto line : lines) {
|
||||||
cout << line << endl;
|
cout << line << endl;
|
||||||
}
|
}
|
||||||
|
cout << "--- Topological Order ---" << endl;
|
||||||
|
auto order = clf->topological_order();
|
||||||
|
for (auto name : order) {
|
||||||
|
cout << name << ", ";
|
||||||
|
}
|
||||||
|
cout << "end." << endl;
|
||||||
|
auto score = clf->score(Xd, y);
|
||||||
cout << "Score: " << score << endl;
|
cout << "Score: " << score << endl;
|
||||||
auto dot_file = model_name + "_" + file_name;
|
// auto graph = clf->graph();
|
||||||
ofstream file(dot_file + ".dot");
|
// auto dot_file = model_name + "_" + file_name;
|
||||||
file << graph;
|
// ofstream file(dot_file + ".dot");
|
||||||
file.close();
|
// file << graph;
|
||||||
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
|
// file.close();
|
||||||
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
|
// cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
|
||||||
string stratified_string = stratified ? " Stratified" : "";
|
// cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
|
||||||
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
|
// string stratified_string = stratified ? " Stratified" : "";
|
||||||
cout << "==========================================" << endl;
|
// cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
|
||||||
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
// cout << "==========================================" << endl;
|
||||||
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
// torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||||
for (int i = 0; i < features.size(); ++i) {
|
// torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||||
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
// for (int i = 0; i < features.size(); ++i) {
|
||||||
}
|
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||||
float total_score = 0, total_score_train = 0, score_train, score_test;
|
// }
|
||||||
Fold* fold;
|
// float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||||
if (stratified)
|
// Fold* fold;
|
||||||
fold = new StratifiedKFold(nFolds, y, seed);
|
// if (stratified)
|
||||||
else
|
// fold = new StratifiedKFold(nFolds, y, seed);
|
||||||
fold = new KFold(nFolds, y.size(), seed);
|
// else
|
||||||
for (auto i = 0; i < nFolds; ++i) {
|
// fold = new KFold(nFolds, y.size(), seed);
|
||||||
auto [train, test] = fold->getFold(i);
|
// for (auto i = 0; i < nFolds; ++i) {
|
||||||
cout << "Fold: " << i + 1 << endl;
|
// auto [train, test] = fold->getFold(i);
|
||||||
if (tensors) {
|
// cout << "Fold: " << i + 1 << endl;
|
||||||
auto ttrain = torch::tensor(train, torch::kInt64);
|
// if (tensors) {
|
||||||
auto ttest = torch::tensor(test, torch::kInt64);
|
// auto ttrain = torch::tensor(train, torch::kInt64);
|
||||||
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
// auto ttest = torch::tensor(test, torch::kInt64);
|
||||||
torch::Tensor ytraint = yt.index({ ttrain });
|
// torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
||||||
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
// torch::Tensor ytraint = yt.index({ ttrain });
|
||||||
torch::Tensor ytestt = yt.index({ ttest });
|
// torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
||||||
clf->fit(Xtraint, ytraint, features, className, states);
|
// torch::Tensor ytestt = yt.index({ ttest });
|
||||||
score_train = clf->score(Xtraint, ytraint);
|
// clf->fit(Xtraint, ytraint, features, className, states);
|
||||||
score_test = clf->score(Xtestt, ytestt);
|
// auto temp = clf->predict(Xtraint);
|
||||||
} else {
|
// score_train = clf->score(Xtraint, ytraint);
|
||||||
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
// score_test = clf->score(Xtestt, ytestt);
|
||||||
auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
// } else {
|
||||||
clf->fit(Xtrain, ytrain, features, className, states);
|
// auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
||||||
score_train = clf->score(Xtrain, ytrain);
|
// auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
||||||
score_test = clf->score(Xtest, ytest);
|
// clf->fit(Xtrain, ytrain, features, className, states);
|
||||||
}
|
// score_train = clf->score(Xtrain, ytrain);
|
||||||
total_score_train += score_train;
|
// score_test = clf->score(Xtest, ytest);
|
||||||
total_score += score_test;
|
// }
|
||||||
cout << "Score Train: " << score_train << endl;
|
// if (dump_cpt) {
|
||||||
cout << "Score Test : " << score_test << endl;
|
// cout << "--- CPT Tables ---" << endl;
|
||||||
cout << "-------------------------------------------------------------------------------" << endl;
|
// clf->dump_cpt();
|
||||||
}
|
// }
|
||||||
cout << "**********************************************************************************" << endl;
|
// total_score_train += score_train;
|
||||||
cout << "Average Score Train: " << total_score_train / nFolds << endl;
|
// total_score += score_test;
|
||||||
cout << "Average Score Test : " << total_score / nFolds << endl;
|
// cout << "Score Train: " << score_train << endl;
|
||||||
return 0;
|
// cout << "Score Test : " << score_test << endl;
|
||||||
|
// cout << "-------------------------------------------------------------------------------" << endl;
|
||||||
|
// }
|
||||||
|
// cout << "**********************************************************************************" << endl;
|
||||||
|
// cout << "Average Score Train: " << total_score_train / nFolds << endl;
|
||||||
|
// cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
|
||||||
}
|
}
|
@@ -2,14 +2,14 @@
|
|||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
AODE::AODE() : Ensemble() {}
|
AODE::AODE() : Ensemble() {}
|
||||||
void AODE::train()
|
void AODE::buildModel()
|
||||||
{
|
{
|
||||||
models.clear();
|
models.clear();
|
||||||
for (int i = 0; i < features.size(); ++i) {
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
models.push_back(std::make_unique<SPODE>(i));
|
models.push_back(std::make_unique<SPODE>(i));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
vector<string> AODE::graph(string title)
|
vector<string> AODE::graph(const string& title) const
|
||||||
{
|
{
|
||||||
return Ensemble::graph(title);
|
return Ensemble::graph(title);
|
||||||
}
|
}
|
||||||
|
@@ -5,11 +5,11 @@
|
|||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class AODE : public Ensemble {
|
class AODE : public Ensemble {
|
||||||
protected:
|
protected:
|
||||||
void train() override;
|
void buildModel() override;
|
||||||
public:
|
public:
|
||||||
AODE();
|
AODE();
|
||||||
virtual ~AODE() {};
|
virtual ~AODE() {};
|
||||||
vector<string> graph(string title = "AODE") override;
|
vector<string> graph(const string& title = "AODE") const override;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
40
src/BayesNet/AODELd.cc
Normal file
40
src/BayesNet/AODELd.cc
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
#include "AODELd.h"
|
||||||
|
#include "Models.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
using namespace std;
|
||||||
|
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
|
||||||
|
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||||
|
{
|
||||||
|
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||||
|
features = features_;
|
||||||
|
className = className_;
|
||||||
|
Xf = X_;
|
||||||
|
y = y_;
|
||||||
|
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||||
|
states = fit_local_discretization(y);
|
||||||
|
// We have discretized the input data
|
||||||
|
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||||
|
Ensemble::fit(dataset, features, className, states);
|
||||||
|
return *this;
|
||||||
|
|
||||||
|
}
|
||||||
|
void AODELd::buildModel()
|
||||||
|
{
|
||||||
|
models.clear();
|
||||||
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
|
models.push_back(std::make_unique<SPODELd>(i));
|
||||||
|
}
|
||||||
|
n_models = models.size();
|
||||||
|
}
|
||||||
|
void AODELd::trainModel()
|
||||||
|
{
|
||||||
|
for (const auto& model : models) {
|
||||||
|
model->fit(Xf, y, features, className, states);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
vector<string> AODELd::graph(const string& name) const
|
||||||
|
{
|
||||||
|
return Ensemble::graph(name);
|
||||||
|
}
|
||||||
|
}
|
21
src/BayesNet/AODELd.h
Normal file
21
src/BayesNet/AODELd.h
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
#ifndef AODELD_H
|
||||||
|
#define AODELD_H
|
||||||
|
#include "Ensemble.h"
|
||||||
|
#include "Proposal.h"
|
||||||
|
#include "SPODELd.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
using namespace std;
|
||||||
|
class AODELd : public Ensemble, public Proposal {
|
||||||
|
protected:
|
||||||
|
void trainModel() override;
|
||||||
|
void buildModel() override;
|
||||||
|
public:
|
||||||
|
AODELd();
|
||||||
|
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
|
||||||
|
virtual ~AODELd() = default;
|
||||||
|
vector<string> graph(const string& name = "AODE") const override;
|
||||||
|
static inline string version() { return "0.0.1"; };
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif // !AODELD_H
|
@@ -5,19 +5,27 @@
|
|||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
using namespace std;
|
using namespace std;
|
||||||
class BaseClassifier {
|
class BaseClassifier {
|
||||||
|
protected:
|
||||||
|
virtual void trainModel() = 0;
|
||||||
public:
|
public:
|
||||||
|
// X is nxm vector, y is nx1 vector
|
||||||
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||||
|
// X is nxm tensor, y is nx1 tensor
|
||||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||||
|
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
|
||||||
|
virtual ~BaseClassifier() = default;
|
||||||
|
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||||
vector<int> virtual predict(vector<vector<int>>& X) = 0;
|
vector<int> virtual predict(vector<vector<int>>& X) = 0;
|
||||||
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
|
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
|
||||||
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
|
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||||
int virtual getNumberOfNodes() = 0;
|
int virtual getNumberOfNodes()const = 0;
|
||||||
int virtual getNumberOfEdges() = 0;
|
int virtual getNumberOfEdges()const = 0;
|
||||||
int virtual getNumberOfStates() = 0;
|
int virtual getNumberOfStates() const = 0;
|
||||||
vector<string> virtual show() = 0;
|
vector<string> virtual show() const = 0;
|
||||||
vector<string> virtual graph(string title = "") = 0;
|
vector<string> virtual graph(const string& title = "") const = 0;
|
||||||
virtual ~BaseClassifier() = default;
|
|
||||||
const string inline getVersion() const { return "0.1.0"; };
|
const string inline getVersion() const { return "0.1.0"; };
|
||||||
|
vector<string> virtual topological_order() = 0;
|
||||||
|
void virtual dump_cpt()const = 0;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@@ -1,13 +1,15 @@
|
|||||||
#include "BayesMetrics.h"
|
#include "BayesMetrics.h"
|
||||||
#include "Mst.h"
|
#include "Mst.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
Metrics::Metrics(torch::Tensor& samples, vector<string>& features, string& className, int classNumStates)
|
//samples is nxm tensor used to fit the model
|
||||||
|
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
|
||||||
: samples(samples)
|
: samples(samples)
|
||||||
, features(features)
|
, features(features)
|
||||||
, className(className)
|
, className(className)
|
||||||
, classNumStates(classNumStates)
|
, classNumStates(classNumStates)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
|
//samples is nxm vector used to fit the model
|
||||||
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
|
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
|
||||||
: features(features)
|
: features(features)
|
||||||
, className(className)
|
, className(className)
|
||||||
@@ -15,9 +17,9 @@ namespace bayesnet {
|
|||||||
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
|
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
|
||||||
{
|
{
|
||||||
for (int i = 0; i < vsamples.size(); ++i) {
|
for (int i = 0; i < vsamples.size(); ++i) {
|
||||||
samples.index_put_({ "...", i }, torch::tensor(vsamples[i], torch::kInt32));
|
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
|
||||||
}
|
}
|
||||||
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt32));
|
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||||
}
|
}
|
||||||
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
|
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
|
||||||
{
|
{
|
||||||
@@ -39,17 +41,17 @@ namespace bayesnet {
|
|||||||
// Compute class prior
|
// Compute class prior
|
||||||
auto margin = torch::zeros({ classNumStates });
|
auto margin = torch::zeros({ classNumStates });
|
||||||
for (int value = 0; value < classNumStates; ++value) {
|
for (int value = 0; value < classNumStates; ++value) {
|
||||||
auto mask = samples.index({ "...", -1 }) == value;
|
auto mask = samples.index({ -1, "..." }) == value;
|
||||||
margin[value] = mask.sum().item<float>() / samples.sizes()[0];
|
margin[value] = mask.sum().item<float>() / samples.size(1);
|
||||||
}
|
}
|
||||||
for (auto [first, second] : combinations) {
|
for (auto [first, second] : combinations) {
|
||||||
int index_first = find(features.begin(), features.end(), first) - features.begin();
|
int index_first = find(features.begin(), features.end(), first) - features.begin();
|
||||||
int index_second = find(features.begin(), features.end(), second) - features.begin();
|
int index_second = find(features.begin(), features.end(), second) - features.begin();
|
||||||
double accumulated = 0;
|
double accumulated = 0;
|
||||||
for (int value = 0; value < classNumStates; ++value) {
|
for (int value = 0; value < classNumStates; ++value) {
|
||||||
auto mask = samples.index({ "...", -1 }) == value;
|
auto mask = samples.index({ -1, "..." }) == value;
|
||||||
auto first_dataset = samples.index({ mask, index_first });
|
auto first_dataset = samples.index({ index_first, mask });
|
||||||
auto second_dataset = samples.index({ mask, index_second });
|
auto second_dataset = samples.index({ index_second, mask });
|
||||||
auto mi = mutualInformation(first_dataset, second_dataset);
|
auto mi = mutualInformation(first_dataset, second_dataset);
|
||||||
auto pb = margin[value].item<float>();
|
auto pb = margin[value].item<float>();
|
||||||
accumulated += pb * mi;
|
accumulated += pb * mi;
|
||||||
@@ -67,13 +69,14 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return matrix;
|
return matrix;
|
||||||
}
|
}
|
||||||
|
// To use in Python
|
||||||
vector<float> Metrics::conditionalEdgeWeights()
|
vector<float> Metrics::conditionalEdgeWeights()
|
||||||
{
|
{
|
||||||
auto matrix = conditionalEdge();
|
auto matrix = conditionalEdge();
|
||||||
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
||||||
return v;
|
return v;
|
||||||
}
|
}
|
||||||
double Metrics::entropy(torch::Tensor& feature)
|
double Metrics::entropy(const torch::Tensor& feature)
|
||||||
{
|
{
|
||||||
torch::Tensor counts = feature.bincount();
|
torch::Tensor counts = feature.bincount();
|
||||||
int totalWeight = counts.sum().item<int>();
|
int totalWeight = counts.sum().item<int>();
|
||||||
@@ -83,7 +86,7 @@ namespace bayesnet {
|
|||||||
return entropy.nansum().item<double>();
|
return entropy.nansum().item<double>();
|
||||||
}
|
}
|
||||||
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
|
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
|
||||||
double Metrics::conditionalEntropy(torch::Tensor& firstFeature, torch::Tensor& secondFeature)
|
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
|
||||||
{
|
{
|
||||||
int numSamples = firstFeature.sizes()[0];
|
int numSamples = firstFeature.sizes()[0];
|
||||||
torch::Tensor featureCounts = secondFeature.bincount();
|
torch::Tensor featureCounts = secondFeature.bincount();
|
||||||
@@ -112,7 +115,7 @@ namespace bayesnet {
|
|||||||
return entropyValue;
|
return entropyValue;
|
||||||
}
|
}
|
||||||
// I(X;Y) = H(Y) - H(Y|X)
|
// I(X;Y) = H(Y) - H(Y|X)
|
||||||
double Metrics::mutualInformation(torch::Tensor& firstFeature, torch::Tensor& secondFeature)
|
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
|
||||||
{
|
{
|
||||||
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
|
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
|
||||||
}
|
}
|
||||||
@@ -121,7 +124,7 @@ namespace bayesnet {
|
|||||||
and the indices of the weights as nodes of this square matrix using
|
and the indices of the weights as nodes of this square matrix using
|
||||||
Kruskal algorithm
|
Kruskal algorithm
|
||||||
*/
|
*/
|
||||||
vector<pair<int, int>> Metrics::maximumSpanningTree(vector<string> features, Tensor& weights, int root)
|
vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
|
||||||
{
|
{
|
||||||
auto mst = MST(features, weights, root);
|
auto mst = MST(features, weights, root);
|
||||||
return mst.maximumSpanningTree();
|
return mst.maximumSpanningTree();
|
||||||
|
@@ -8,21 +8,21 @@ namespace bayesnet {
|
|||||||
using namespace torch;
|
using namespace torch;
|
||||||
class Metrics {
|
class Metrics {
|
||||||
private:
|
private:
|
||||||
Tensor samples;
|
Tensor samples; // nxm tensor used to fit the model
|
||||||
vector<string> features;
|
vector<string> features;
|
||||||
string className;
|
string className;
|
||||||
int classNumStates = 0;
|
int classNumStates = 0;
|
||||||
public:
|
public:
|
||||||
Metrics() = default;
|
Metrics() = default;
|
||||||
Metrics(Tensor&, vector<string>&, string&, int);
|
Metrics(const Tensor&, const vector<string>&, const string&, const int);
|
||||||
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
|
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
|
||||||
double entropy(Tensor&);
|
double entropy(const Tensor&);
|
||||||
double conditionalEntropy(Tensor&, Tensor&);
|
double conditionalEntropy(const Tensor&, const Tensor&);
|
||||||
double mutualInformation(Tensor&, Tensor&);
|
double mutualInformation(const Tensor&, const Tensor&);
|
||||||
vector<float> conditionalEdgeWeights();
|
vector<float> conditionalEdgeWeights(); // To use in Python
|
||||||
Tensor conditionalEdge();
|
Tensor conditionalEdge();
|
||||||
vector<pair<string, string>> doCombinations(const vector<string>&);
|
vector<pair<string, string>> doCombinations(const vector<string>&);
|
||||||
vector<pair<int, int>> maximumSpanningTree(vector<string> features, Tensor& weights, int root);
|
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@@ -1,2 +1,7 @@
|
|||||||
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc Mst.cc)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||||
target_link_libraries(BayesNet "${TORCH_LIBRARIES}")
|
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||||
|
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||||
|
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||||
|
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
|
||||||
|
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||||
|
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}")
|
@@ -7,54 +7,65 @@ namespace bayesnet {
|
|||||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||||
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
|
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
|
||||||
{
|
{
|
||||||
dataset = torch::cat({ X, y.view({y.size(0), 1}) }, 1);
|
|
||||||
this->features = features;
|
this->features = features;
|
||||||
this->className = className;
|
this->className = className;
|
||||||
this->states = states;
|
this->states = states;
|
||||||
|
m = dataset.size(1);
|
||||||
|
n = dataset.size(0) - 1;
|
||||||
checkFitParameters();
|
checkFitParameters();
|
||||||
auto n_classes = states[className].size();
|
auto n_classes = states[className].size();
|
||||||
metrics = Metrics(dataset, features, className, n_classes);
|
metrics = Metrics(dataset, features, className, n_classes);
|
||||||
train();
|
model.initialize();
|
||||||
if (Xv == vector<vector<int>>()) {
|
buildModel();
|
||||||
// fit with tensors
|
trainModel();
|
||||||
model.fit(X, y, features, className);
|
|
||||||
} else {
|
|
||||||
// fit with vectors
|
|
||||||
model.fit(Xv, yv, features, className);
|
|
||||||
}
|
|
||||||
fitted = true;
|
fitted = true;
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void Classifier::buildDataset(Tensor& ytmp)
|
||||||
|
{
|
||||||
|
try {
|
||||||
|
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
|
||||||
|
dataset = torch::cat({ dataset, yresized }, 0);
|
||||||
|
}
|
||||||
|
catch (const std::exception& e) {
|
||||||
|
std::cerr << e.what() << '\n';
|
||||||
|
cout << "X dimensions: " << dataset.sizes() << "\n";
|
||||||
|
cout << "y dimensions: " << ytmp.sizes() << "\n";
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void Classifier::trainModel()
|
||||||
|
{
|
||||||
|
model.fit(dataset, features, className, states);
|
||||||
|
}
|
||||||
|
// X is nxm where n is the number of features and m the number of samples
|
||||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||||
{
|
{
|
||||||
this->X = torch::transpose(X, 0, 1);
|
dataset = X;
|
||||||
this->y = y;
|
buildDataset(y);
|
||||||
Xv = vector<vector<int>>();
|
|
||||||
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
|
|
||||||
return build(features, className, states);
|
return build(features, className, states);
|
||||||
}
|
}
|
||||||
|
// X is nxm where n is the number of features and m the number of samples
|
||||||
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||||
{
|
{
|
||||||
this->X = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, kInt32);
|
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
|
||||||
Xv = X;
|
|
||||||
for (int i = 0; i < X.size(); ++i) {
|
for (int i = 0; i < X.size(); ++i) {
|
||||||
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt32));
|
dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
|
||||||
}
|
}
|
||||||
this->y = torch::tensor(y, kInt32);
|
auto ytmp = torch::tensor(y, kInt32);
|
||||||
yv = y;
|
buildDataset(ytmp);
|
||||||
|
return build(features, className, states);
|
||||||
|
}
|
||||||
|
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
|
||||||
|
{
|
||||||
|
this->dataset = dataset;
|
||||||
return build(features, className, states);
|
return build(features, className, states);
|
||||||
}
|
}
|
||||||
void Classifier::checkFitParameters()
|
void Classifier::checkFitParameters()
|
||||||
{
|
{
|
||||||
auto sizes = X.sizes();
|
|
||||||
m = sizes[0];
|
|
||||||
n = sizes[1];
|
|
||||||
if (m != y.size(0)) {
|
|
||||||
throw invalid_argument("X and y must have the same number of samples");
|
|
||||||
}
|
|
||||||
if (n != features.size()) {
|
if (n != features.size()) {
|
||||||
throw invalid_argument("X and features must have the same number of features");
|
throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
|
||||||
}
|
}
|
||||||
if (states.find(className) == states.end()) {
|
if (states.find(className) == states.end()) {
|
||||||
throw invalid_argument("className not found in states");
|
throw invalid_argument("className not found in states");
|
||||||
@@ -65,23 +76,12 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Tensor Classifier::predict(Tensor& X)
|
Tensor Classifier::predict(Tensor& X)
|
||||||
{
|
{
|
||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
throw logic_error("Classifier has not been fitted");
|
throw logic_error("Classifier has not been fitted");
|
||||||
}
|
}
|
||||||
auto m_ = X.size(0);
|
return model.predict(X);
|
||||||
auto n_ = X.size(1);
|
|
||||||
//auto Xt = torch::transpose(X, 0, 1);
|
|
||||||
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
|
||||||
for (auto i = 0; i < n_; i++) {
|
|
||||||
auto temp = X.index({ "...", i });
|
|
||||||
Xd[i] = vector<int>(temp.data_ptr<int>(), temp.data_ptr<int>() + temp.numel());
|
|
||||||
}
|
|
||||||
auto yp = model.predict(Xd);
|
|
||||||
auto ypred = torch::tensor(yp, torch::kInt32);
|
|
||||||
return ypred;
|
|
||||||
}
|
}
|
||||||
vector<int> Classifier::predict(vector<vector<int>>& X)
|
vector<int> Classifier::predict(vector<vector<int>>& X)
|
||||||
{
|
{
|
||||||
@@ -102,8 +102,7 @@ namespace bayesnet {
|
|||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
throw logic_error("Classifier has not been fitted");
|
throw logic_error("Classifier has not been fitted");
|
||||||
}
|
}
|
||||||
auto Xt = torch::transpose(X, 0, 1);
|
Tensor y_pred = predict(X);
|
||||||
Tensor y_pred = predict(Xt);
|
|
||||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||||
}
|
}
|
||||||
float Classifier::score(vector<vector<int>>& X, vector<int>& y)
|
float Classifier::score(vector<vector<int>>& X, vector<int>& y)
|
||||||
@@ -111,37 +110,39 @@ namespace bayesnet {
|
|||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
throw logic_error("Classifier has not been fitted");
|
throw logic_error("Classifier has not been fitted");
|
||||||
}
|
}
|
||||||
auto m_ = X[0].size();
|
return model.score(X, y);
|
||||||
auto n_ = X.size();
|
|
||||||
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
|
||||||
for (auto i = 0; i < n_; i++) {
|
|
||||||
Xd[i] = vector<int>(X[i].begin(), X[i].end());
|
|
||||||
}
|
|
||||||
return model.score(Xd, y);
|
|
||||||
}
|
}
|
||||||
vector<string> Classifier::show()
|
vector<string> Classifier::show() const
|
||||||
{
|
{
|
||||||
return model.show();
|
return model.show();
|
||||||
}
|
}
|
||||||
void Classifier::addNodes()
|
void Classifier::addNodes()
|
||||||
{
|
{
|
||||||
// Add all nodes to the network
|
// Add all nodes to the network
|
||||||
for (auto feature : features) {
|
for (const auto& feature : features) {
|
||||||
model.addNode(feature, states[feature].size());
|
model.addNode(feature);
|
||||||
}
|
}
|
||||||
model.addNode(className, states[className].size());
|
model.addNode(className);
|
||||||
}
|
}
|
||||||
int Classifier::getNumberOfNodes()
|
int Classifier::getNumberOfNodes() const
|
||||||
{
|
{
|
||||||
// Features does not include class
|
// Features does not include class
|
||||||
return fitted ? model.getFeatures().size() + 1 : 0;
|
return fitted ? model.getFeatures().size() + 1 : 0;
|
||||||
}
|
}
|
||||||
int Classifier::getNumberOfEdges()
|
int Classifier::getNumberOfEdges() const
|
||||||
{
|
{
|
||||||
return fitted ? model.getEdges().size() : 0;
|
return fitted ? model.getNumEdges() : 0;
|
||||||
}
|
}
|
||||||
int Classifier::getNumberOfStates()
|
int Classifier::getNumberOfStates() const
|
||||||
{
|
{
|
||||||
return fitted ? model.getStates() : 0;
|
return fitted ? model.getStates() : 0;
|
||||||
}
|
}
|
||||||
|
vector<string> Classifier::topological_order()
|
||||||
|
{
|
||||||
|
return model.topological_sort();
|
||||||
|
}
|
||||||
|
void Classifier::dump_cpt() const
|
||||||
|
{
|
||||||
|
model.dump_cpt();
|
||||||
|
}
|
||||||
}
|
}
|
@@ -10,36 +10,37 @@ using namespace torch;
|
|||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class Classifier : public BaseClassifier {
|
class Classifier : public BaseClassifier {
|
||||||
private:
|
private:
|
||||||
bool fitted;
|
void buildDataset(torch::Tensor& y);
|
||||||
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
||||||
protected:
|
protected:
|
||||||
|
bool fitted;
|
||||||
Network model;
|
Network model;
|
||||||
int m, n; // m: number of samples, n: number of features
|
int m, n; // m: number of samples, n: number of features
|
||||||
Tensor X;
|
Tensor dataset; // (n+1)xm tensor
|
||||||
vector<vector<int>> Xv;
|
|
||||||
Tensor y;
|
|
||||||
vector<int> yv;
|
|
||||||
Tensor dataset;
|
|
||||||
Metrics metrics;
|
Metrics metrics;
|
||||||
vector<string> features;
|
vector<string> features;
|
||||||
string className;
|
string className;
|
||||||
map<string, vector<int>> states;
|
map<string, vector<int>> states;
|
||||||
void checkFitParameters();
|
void checkFitParameters();
|
||||||
virtual void train() = 0;
|
virtual void buildModel() = 0;
|
||||||
|
void trainModel() override;
|
||||||
public:
|
public:
|
||||||
Classifier(Network model);
|
Classifier(Network model);
|
||||||
virtual ~Classifier() = default;
|
virtual ~Classifier() = default;
|
||||||
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||||
|
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||||
void addNodes();
|
void addNodes();
|
||||||
int getNumberOfNodes() override;
|
int getNumberOfNodes() const override;
|
||||||
int getNumberOfEdges() override;
|
int getNumberOfEdges() const override;
|
||||||
int getNumberOfStates() override;
|
int getNumberOfStates() const override;
|
||||||
Tensor predict(Tensor& X);
|
Tensor predict(Tensor& X) override;
|
||||||
vector<int> predict(vector<vector<int>>& X) override;
|
vector<int> predict(vector<vector<int>>& X) override;
|
||||||
float score(Tensor& X, Tensor& y) override;
|
float score(Tensor& X, Tensor& y) override;
|
||||||
float score(vector<vector<int>>& X, vector<int>& y) override;
|
float score(vector<vector<int>>& X, vector<int>& y) override;
|
||||||
vector<string> show() override;
|
vector<string> show() const override;
|
||||||
|
vector<string> topological_order() override;
|
||||||
|
void dump_cpt() const override;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@@ -3,69 +3,52 @@
|
|||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
using namespace torch;
|
using namespace torch;
|
||||||
|
|
||||||
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()), fitted(false) {}
|
Ensemble::Ensemble() : Classifier(Network()) {}
|
||||||
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
|
|
||||||
|
void Ensemble::trainModel()
|
||||||
{
|
{
|
||||||
dataset = cat({ X, y.view({y.size(0), 1}) }, 1);
|
|
||||||
this->features = features;
|
|
||||||
this->className = className;
|
|
||||||
this->states = states;
|
|
||||||
auto n_classes = states[className].size();
|
|
||||||
metrics = Metrics(dataset, features, className, n_classes);
|
|
||||||
// Build models
|
|
||||||
train();
|
|
||||||
// Train models
|
|
||||||
n_models = models.size();
|
n_models = models.size();
|
||||||
for (auto i = 0; i < n_models; ++i) {
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
models[i]->fit(Xv, yv, features, className, states);
|
// fit with vectors
|
||||||
|
models[i]->fit(dataset, features, className, states);
|
||||||
}
|
}
|
||||||
fitted = true;
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
Ensemble& Ensemble::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
|
||||||
{
|
|
||||||
this->X = X;
|
|
||||||
this->y = y;
|
|
||||||
Xv = vector<vector<int>>();
|
|
||||||
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
|
|
||||||
return build(features, className, states);
|
|
||||||
}
|
|
||||||
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
|
|
||||||
{
|
|
||||||
this->X = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, kInt32);
|
|
||||||
Xv = X;
|
|
||||||
for (int i = 0; i < X.size(); ++i) {
|
|
||||||
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt32));
|
|
||||||
}
|
|
||||||
this->y = torch::tensor(y, kInt32);
|
|
||||||
yv = y;
|
|
||||||
return build(features, className, states);
|
|
||||||
}
|
|
||||||
Tensor Ensemble::predict(Tensor& X)
|
|
||||||
{
|
|
||||||
if (!fitted) {
|
|
||||||
throw logic_error("Ensemble has not been fitted");
|
|
||||||
}
|
|
||||||
Tensor y_pred = torch::zeros({ X.size(0), n_models }, kInt32);
|
|
||||||
for (auto i = 0; i < n_models; ++i) {
|
|
||||||
y_pred.index_put_({ "...", i }, models[i]->predict(X));
|
|
||||||
}
|
|
||||||
return torch::tensor(voting(y_pred));
|
|
||||||
}
|
}
|
||||||
vector<int> Ensemble::voting(Tensor& y_pred)
|
vector<int> Ensemble::voting(Tensor& y_pred)
|
||||||
{
|
{
|
||||||
auto y_pred_ = y_pred.accessor<int, 2>();
|
auto y_pred_ = y_pred.accessor<int, 2>();
|
||||||
vector<int> y_pred_final;
|
vector<int> y_pred_final;
|
||||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||||
vector<float> votes(states[className].size(), 0);
|
vector<float> votes(y_pred.size(1), 0);
|
||||||
for (int j = 0; j < y_pred.size(1); ++j) {
|
for (int j = 0; j < y_pred.size(1); ++j) {
|
||||||
votes[y_pred_[i][j]] += 1;
|
votes[y_pred_[i][j]] += 1;
|
||||||
}
|
}
|
||||||
|
// argsort in descending order
|
||||||
auto indices = argsort(votes);
|
auto indices = argsort(votes);
|
||||||
y_pred_final.push_back(indices[0]);
|
y_pred_final.push_back(indices[0]);
|
||||||
}
|
}
|
||||||
return y_pred_final;
|
return y_pred_final;
|
||||||
}
|
}
|
||||||
|
Tensor Ensemble::predict(Tensor& X)
|
||||||
|
{
|
||||||
|
if (!fitted) {
|
||||||
|
throw logic_error("Ensemble has not been fitted");
|
||||||
|
}
|
||||||
|
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
||||||
|
//Create a threadpool
|
||||||
|
auto threads{ vector<thread>() };
|
||||||
|
mutex mtx;
|
||||||
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
threads.push_back(thread([&, i]() {
|
||||||
|
auto ypredict = models[i]->predict(X);
|
||||||
|
lock_guard<mutex> lock(mtx);
|
||||||
|
y_pred.index_put_({ "...", i }, ypredict);
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
for (auto& thread : threads) {
|
||||||
|
thread.join();
|
||||||
|
}
|
||||||
|
return torch::tensor(voting(y_pred));
|
||||||
|
}
|
||||||
vector<int> Ensemble::predict(vector<vector<int>>& X)
|
vector<int> Ensemble::predict(vector<vector<int>>& X)
|
||||||
{
|
{
|
||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
@@ -110,9 +93,8 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
return (double)correct / y_pred.size();
|
return (double)correct / y_pred.size();
|
||||||
|
|
||||||
}
|
}
|
||||||
vector<string> Ensemble::show()
|
vector<string> Ensemble::show() const
|
||||||
{
|
{
|
||||||
auto result = vector<string>();
|
auto result = vector<string>();
|
||||||
for (auto i = 0; i < n_models; ++i) {
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
@@ -121,7 +103,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
vector<string> Ensemble::graph(string title)
|
vector<string> Ensemble::graph(const string& title) const
|
||||||
{
|
{
|
||||||
auto result = vector<string>();
|
auto result = vector<string>();
|
||||||
for (auto i = 0; i < n_models; ++i) {
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
@@ -130,7 +112,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
int Ensemble::getNumberOfNodes()
|
int Ensemble::getNumberOfNodes() const
|
||||||
{
|
{
|
||||||
int nodes = 0;
|
int nodes = 0;
|
||||||
for (auto i = 0; i < n_models; ++i) {
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
@@ -138,7 +120,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return nodes;
|
return nodes;
|
||||||
}
|
}
|
||||||
int Ensemble::getNumberOfEdges()
|
int Ensemble::getNumberOfEdges() const
|
||||||
{
|
{
|
||||||
int edges = 0;
|
int edges = 0;
|
||||||
for (auto i = 0; i < n_models; ++i) {
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
@@ -146,7 +128,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return edges;
|
return edges;
|
||||||
}
|
}
|
||||||
int Ensemble::getNumberOfStates()
|
int Ensemble::getNumberOfStates() const
|
||||||
{
|
{
|
||||||
int nstates = 0;
|
int nstates = 0;
|
||||||
for (auto i = 0; i < n_models; ++i) {
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
@@ -8,39 +8,33 @@ using namespace std;
|
|||||||
using namespace torch;
|
using namespace torch;
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class Ensemble : public BaseClassifier {
|
class Ensemble : public Classifier {
|
||||||
private:
|
private:
|
||||||
bool fitted;
|
|
||||||
long n_models;
|
|
||||||
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
|
||||||
protected:
|
protected:
|
||||||
|
unsigned n_models;
|
||||||
vector<unique_ptr<Classifier>> models;
|
vector<unique_ptr<Classifier>> models;
|
||||||
int m, n; // m: number of samples, n: number of features
|
void trainModel() override;
|
||||||
Tensor X;
|
|
||||||
vector<vector<int>> Xv;
|
|
||||||
Tensor y;
|
|
||||||
vector<int> yv;
|
|
||||||
Tensor dataset;
|
|
||||||
Metrics metrics;
|
|
||||||
vector<string> features;
|
|
||||||
string className;
|
|
||||||
map<string, vector<int>> states;
|
|
||||||
void virtual train() = 0;
|
|
||||||
vector<int> voting(Tensor& y_pred);
|
vector<int> voting(Tensor& y_pred);
|
||||||
public:
|
public:
|
||||||
Ensemble();
|
Ensemble();
|
||||||
virtual ~Ensemble() = default;
|
virtual ~Ensemble() = default;
|
||||||
Ensemble& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
Tensor predict(Tensor& X) override;
|
||||||
Ensemble& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
|
||||||
Tensor predict(Tensor& X);
|
|
||||||
vector<int> predict(vector<vector<int>>& X) override;
|
vector<int> predict(vector<vector<int>>& X) override;
|
||||||
float score(Tensor& X, Tensor& y) override;
|
float score(Tensor& X, Tensor& y) override;
|
||||||
float score(vector<vector<int>>& X, vector<int>& y) override;
|
float score(vector<vector<int>>& X, vector<int>& y) override;
|
||||||
int getNumberOfNodes() override;
|
int getNumberOfNodes() const override;
|
||||||
int getNumberOfEdges() override;
|
int getNumberOfEdges() const override;
|
||||||
int getNumberOfStates() override;
|
int getNumberOfStates() const override;
|
||||||
vector<string> show() override;
|
vector<string> show() const override;
|
||||||
vector<string> graph(string title) override;
|
vector<string> graph(const string& title) const override;
|
||||||
|
vector<string> topological_order() override
|
||||||
|
{
|
||||||
|
return vector<string>();
|
||||||
|
}
|
||||||
|
void dump_cpt() const override
|
||||||
|
{
|
||||||
|
}
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@@ -4,7 +4,7 @@ namespace bayesnet {
|
|||||||
using namespace torch;
|
using namespace torch;
|
||||||
|
|
||||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
|
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
|
||||||
void KDB::train()
|
void KDB::buildModel()
|
||||||
{
|
{
|
||||||
/*
|
/*
|
||||||
1. For each feature Xi, compute mutual information, I(X;C),
|
1. For each feature Xi, compute mutual information, I(X;C),
|
||||||
@@ -27,9 +27,11 @@ namespace bayesnet {
|
|||||||
*/
|
*/
|
||||||
// 1. For each feature Xi, compute mutual information, I(X;C),
|
// 1. For each feature Xi, compute mutual information, I(X;C),
|
||||||
// where C is the class.
|
// where C is the class.
|
||||||
|
addNodes();
|
||||||
|
const Tensor& y = dataset.index({ -1, "..." });
|
||||||
vector <float> mi;
|
vector <float> mi;
|
||||||
for (auto i = 0; i < features.size(); i++) {
|
for (auto i = 0; i < features.size(); i++) {
|
||||||
Tensor firstFeature = X.index({ "...", i });
|
Tensor firstFeature = dataset.index({ i, "..." });
|
||||||
mi.push_back(metrics.mutualInformation(firstFeature, y));
|
mi.push_back(metrics.mutualInformation(firstFeature, y));
|
||||||
}
|
}
|
||||||
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
|
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
|
||||||
@@ -38,14 +40,12 @@ namespace bayesnet {
|
|||||||
vector<int> S;
|
vector<int> S;
|
||||||
// 4. Let the DAG network being constructed, BN, begin with a single
|
// 4. Let the DAG network being constructed, BN, begin with a single
|
||||||
// class node, C.
|
// class node, C.
|
||||||
model.addNode(className, states[className].size());
|
|
||||||
// 5. Repeat until S includes all domain features
|
// 5. Repeat until S includes all domain features
|
||||||
// 5.1. Select feature Xmax which is not in S and has the largest value
|
// 5.1. Select feature Xmax which is not in S and has the largest value
|
||||||
// I(Xmax;C).
|
// I(Xmax;C).
|
||||||
auto order = argsort(mi);
|
auto order = argsort(mi);
|
||||||
for (auto idx : order) {
|
for (auto idx : order) {
|
||||||
// 5.2. Add a node to BN representing Xmax.
|
// 5.2. Add a node to BN representing Xmax.
|
||||||
model.addNode(features[idx], states[features[idx]].size());
|
|
||||||
// 5.3. Add an arc from C to Xmax in BN.
|
// 5.3. Add an arc from C to Xmax in BN.
|
||||||
model.addEdge(className, features[idx]);
|
model.addEdge(className, features[idx]);
|
||||||
// 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with
|
// 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with
|
||||||
@@ -79,11 +79,12 @@ namespace bayesnet {
|
|||||||
exit_cond = num == n_edges || candidates.size(0) == 0;
|
exit_cond = num == n_edges || candidates.size(0) == 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
vector<string> KDB::graph(string title)
|
vector<string> KDB::graph(const string& title) const
|
||||||
{
|
{
|
||||||
|
string header{ title };
|
||||||
if (title == "KDB") {
|
if (title == "KDB") {
|
||||||
title += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
|
header += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
|
||||||
}
|
}
|
||||||
return model.graph(title);
|
return model.graph(header);
|
||||||
}
|
}
|
||||||
}
|
}
|
@@ -11,11 +11,11 @@ namespace bayesnet {
|
|||||||
float theta;
|
float theta;
|
||||||
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
|
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
|
||||||
protected:
|
protected:
|
||||||
void train() override;
|
void buildModel() override;
|
||||||
public:
|
public:
|
||||||
explicit KDB(int k, float theta = 0.03);
|
explicit KDB(int k, float theta = 0.03);
|
||||||
virtual ~KDB() {};
|
virtual ~KDB() {};
|
||||||
vector<string> graph(string name = "KDB") override;
|
vector<string> graph(const string& name = "KDB") const override;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
30
src/BayesNet/KDBLd.cc
Normal file
30
src/BayesNet/KDBLd.cc
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
#include "KDBLd.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
using namespace std;
|
||||||
|
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
|
||||||
|
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||||
|
{
|
||||||
|
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||||
|
features = features_;
|
||||||
|
className = className_;
|
||||||
|
Xf = X_;
|
||||||
|
y = y_;
|
||||||
|
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||||
|
states = fit_local_discretization(y);
|
||||||
|
// We have discretized the input data
|
||||||
|
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
||||||
|
KDB::fit(dataset, features, className, states);
|
||||||
|
states = localDiscretizationProposal(states, model);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
Tensor KDBLd::predict(Tensor& X)
|
||||||
|
{
|
||||||
|
auto Xt = prepareX(X);
|
||||||
|
return KDB::predict(Xt);
|
||||||
|
}
|
||||||
|
vector<string> KDBLd::graph(const string& name) const
|
||||||
|
{
|
||||||
|
return KDB::graph(name);
|
||||||
|
}
|
||||||
|
}
|
19
src/BayesNet/KDBLd.h
Normal file
19
src/BayesNet/KDBLd.h
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
#ifndef KDBLD_H
|
||||||
|
#define KDBLD_H
|
||||||
|
#include "KDB.h"
|
||||||
|
#include "Proposal.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
using namespace std;
|
||||||
|
class KDBLd : public KDB, public Proposal {
|
||||||
|
private:
|
||||||
|
public:
|
||||||
|
explicit KDBLd(int k);
|
||||||
|
virtual ~KDBLd() = default;
|
||||||
|
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||||
|
vector<string> graph(const string& name = "KDB") const override;
|
||||||
|
Tensor predict(Tensor& X) override;
|
||||||
|
static inline string version() { return "0.0.1"; };
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif // !KDBLD_H
|
@@ -94,7 +94,7 @@ namespace bayesnet {
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
MST::MST(vector<string>& features, Tensor& weights, int root) : features(features), weights(weights), root(root) {}
|
MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
|
||||||
vector<pair<int, int>> MST::maximumSpanningTree()
|
vector<pair<int, int>> MST::maximumSpanningTree()
|
||||||
{
|
{
|
||||||
auto num_features = features.size();
|
auto num_features = features.size();
|
||||||
|
@@ -13,7 +13,7 @@ namespace bayesnet {
|
|||||||
int root = 0;
|
int root = 0;
|
||||||
public:
|
public:
|
||||||
MST() = default;
|
MST() = default;
|
||||||
MST(vector<string>& features, Tensor& weights, int root);
|
MST(const vector<string>& features, const Tensor& weights, const int root);
|
||||||
vector<pair<int, int>> maximumSpanningTree();
|
vector<pair<int, int>> maximumSpanningTree();
|
||||||
};
|
};
|
||||||
class Graph {
|
class Graph {
|
||||||
|
@@ -3,15 +3,25 @@
|
|||||||
#include "Network.h"
|
#include "Network.h"
|
||||||
#include "bayesnetUtils.h"
|
#include "bayesnetUtils.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
Network::Network() : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(0.8), fitted(false) {}
|
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {}
|
||||||
Network::Network(float maxT) : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
||||||
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
|
||||||
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.getmaxThreads()), fitted(other.fitted)
|
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
|
||||||
|
getmaxThreads()), fitted(other.fitted)
|
||||||
{
|
{
|
||||||
for (const auto& pair : other.nodes) {
|
for (const auto& pair : other.nodes) {
|
||||||
nodes[pair.first] = std::make_unique<Node>(*pair.second);
|
nodes[pair.first] = std::make_unique<Node>(*pair.second);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
void Network::initialize()
|
||||||
|
{
|
||||||
|
features = vector<string>();
|
||||||
|
className = "";
|
||||||
|
classNumStates = 0;
|
||||||
|
fitted = false;
|
||||||
|
nodes.clear();
|
||||||
|
samples = torch::Tensor();
|
||||||
|
}
|
||||||
float Network::getmaxThreads()
|
float Network::getmaxThreads()
|
||||||
{
|
{
|
||||||
return maxThreads;
|
return maxThreads;
|
||||||
@@ -20,28 +30,28 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
return samples;
|
return samples;
|
||||||
}
|
}
|
||||||
void Network::addNode(const string& name, int numStates)
|
void Network::addNode(const string& name)
|
||||||
{
|
{
|
||||||
|
if (name == "") {
|
||||||
|
throw invalid_argument("Node name cannot be empty");
|
||||||
|
}
|
||||||
|
if (nodes.find(name) != nodes.end()) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
if (find(features.begin(), features.end(), name) == features.end()) {
|
if (find(features.begin(), features.end(), name) == features.end()) {
|
||||||
features.push_back(name);
|
features.push_back(name);
|
||||||
}
|
}
|
||||||
if (nodes.find(name) != nodes.end()) {
|
nodes[name] = std::make_unique<Node>(name);
|
||||||
// if node exists update its number of states and remove parents, children and CPT
|
|
||||||
nodes[name]->clear();
|
|
||||||
nodes[name]->setNumStates(numStates);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
nodes[name] = std::make_unique<Node>(name, numStates);
|
|
||||||
}
|
}
|
||||||
vector<string> Network::getFeatures()
|
vector<string> Network::getFeatures() const
|
||||||
{
|
{
|
||||||
return features;
|
return features;
|
||||||
}
|
}
|
||||||
int Network::getClassNumStates()
|
int Network::getClassNumStates() const
|
||||||
{
|
{
|
||||||
return classNumStates;
|
return classNumStates;
|
||||||
}
|
}
|
||||||
int Network::getStates()
|
int Network::getStates() const
|
||||||
{
|
{
|
||||||
int result = 0;
|
int result = 0;
|
||||||
for (auto& node : nodes) {
|
for (auto& node : nodes) {
|
||||||
@@ -49,7 +59,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
string Network::getClassName()
|
string Network::getClassName() const
|
||||||
{
|
{
|
||||||
return className;
|
return className;
|
||||||
}
|
}
|
||||||
@@ -94,45 +104,72 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
return nodes;
|
return nodes;
|
||||||
}
|
}
|
||||||
void Network::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& featureNames, const string& className)
|
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||||
{
|
{
|
||||||
features = featureNames;
|
if (n_samples != n_samples_y) {
|
||||||
this->className = className;
|
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
|
||||||
dataset.clear();
|
}
|
||||||
// Specific part
|
if (n_features != featureNames.size()) {
|
||||||
classNumStates = torch::max(y).item<int>() + 1;
|
throw invalid_argument("X and features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(featureNames.size()) + ")");
|
||||||
samples = torch::cat({ X, y.view({ y.size(0), 1 }) }, 1);
|
}
|
||||||
for (int i = 0; i < featureNames.size(); ++i) {
|
if (n_features != features.size() - 1) {
|
||||||
auto column = torch::flatten(X.index({ "...", i }));
|
throw invalid_argument("X and local features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(features.size() - 1) + ")");
|
||||||
auto k = vector<int>();
|
}
|
||||||
for (auto z = 0; z < X.size(0); ++z) {
|
if (find(features.begin(), features.end(), className) == features.end()) {
|
||||||
k.push_back(column[z].item<int>());
|
throw invalid_argument("className not found in Network::features");
|
||||||
|
}
|
||||||
|
for (auto& feature : featureNames) {
|
||||||
|
if (find(features.begin(), features.end(), feature) == features.end()) {
|
||||||
|
throw invalid_argument("Feature " + feature + " not found in Network::features");
|
||||||
|
}
|
||||||
|
if (states.find(feature) == states.end()) {
|
||||||
|
throw invalid_argument("Feature " + feature + " not found in states");
|
||||||
}
|
}
|
||||||
dataset[featureNames[i]] = k;
|
|
||||||
}
|
}
|
||||||
dataset[className] = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
|
|
||||||
completeFit();
|
|
||||||
}
|
}
|
||||||
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className)
|
void Network::setStates(const map<string, vector<int>>& states)
|
||||||
{
|
{
|
||||||
features = featureNames;
|
// Set states to every Node in the network
|
||||||
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
|
nodes[features[i]]->setNumStates(states.at(features[i]).size());
|
||||||
|
}
|
||||||
|
classNumStates = nodes[className]->getNumStates();
|
||||||
|
}
|
||||||
|
// X comes in nxm, where n is the number of features and m the number of samples
|
||||||
|
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||||
|
{
|
||||||
|
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states);
|
||||||
this->className = className;
|
this->className = className;
|
||||||
dataset.clear();
|
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
|
||||||
// Specific part
|
samples = torch::cat({ X , ytmp }, 0);
|
||||||
classNumStates = *max_element(labels.begin(), labels.end()) + 1;
|
|
||||||
// Build dataset & tensor of samples
|
|
||||||
samples = torch::zeros({ static_cast<int>(input_data[0].size()), static_cast<int>(input_data.size() + 1) }, torch::kInt32);
|
|
||||||
for (int i = 0; i < featureNames.size(); ++i) {
|
for (int i = 0; i < featureNames.size(); ++i) {
|
||||||
dataset[featureNames[i]] = input_data[i];
|
auto row_feature = X.index({ i, "..." });
|
||||||
samples.index_put_({ "...", i }, torch::tensor(input_data[i], torch::kInt32));
|
|
||||||
}
|
}
|
||||||
dataset[className] = labels;
|
completeFit(states);
|
||||||
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt32));
|
|
||||||
completeFit();
|
|
||||||
}
|
}
|
||||||
void Network::completeFit()
|
void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||||
{
|
{
|
||||||
|
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states);
|
||||||
|
this->className = className;
|
||||||
|
this->samples = samples;
|
||||||
|
completeFit(states);
|
||||||
|
}
|
||||||
|
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||||
|
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
|
||||||
|
{
|
||||||
|
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states);
|
||||||
|
this->className = className;
|
||||||
|
// Build tensor of samples (nxm) (n+1 because of the class)
|
||||||
|
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
|
||||||
|
for (int i = 0; i < featureNames.size(); ++i) {
|
||||||
|
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
|
||||||
|
}
|
||||||
|
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||||
|
completeFit(states);
|
||||||
|
}
|
||||||
|
void Network::completeFit(const map<string, vector<int>>& states)
|
||||||
|
{
|
||||||
|
setStates(states);
|
||||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
||||||
if (maxThreadsRunning < 1) {
|
if (maxThreadsRunning < 1) {
|
||||||
maxThreadsRunning = 1;
|
maxThreadsRunning = 1;
|
||||||
@@ -154,7 +191,7 @@ namespace bayesnet {
|
|||||||
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
||||||
++nextNodeIndex;
|
++nextNodeIndex;
|
||||||
lock.unlock();
|
lock.unlock();
|
||||||
pair.second->computeCPT(dataset, laplaceSmoothing);
|
pair.second->computeCPT(samples, features, laplaceSmoothing);
|
||||||
lock.lock();
|
lock.lock();
|
||||||
nodes[pair.first] = std::move(pair.second);
|
nodes[pair.first] = std::move(pair.second);
|
||||||
lock.unlock();
|
lock.unlock();
|
||||||
@@ -170,7 +207,39 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
fitted = true;
|
fitted = true;
|
||||||
}
|
}
|
||||||
|
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||||
|
{
|
||||||
|
if (!fitted) {
|
||||||
|
throw logic_error("You must call fit() before calling predict()");
|
||||||
|
}
|
||||||
|
torch::Tensor result;
|
||||||
|
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
|
||||||
|
for (int i = 0; i < samples.size(1); ++i) {
|
||||||
|
const Tensor sample = samples.index({ "...", i });
|
||||||
|
auto psample = predict_sample(sample);
|
||||||
|
auto temp = torch::tensor(psample, torch::kFloat64);
|
||||||
|
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
|
||||||
|
result.index_put_({ i, "..." }, temp);
|
||||||
|
}
|
||||||
|
if (proba)
|
||||||
|
return result;
|
||||||
|
else
|
||||||
|
return result.argmax(1);
|
||||||
|
}
|
||||||
|
// Return mxn tensor of probabilities
|
||||||
|
Tensor Network::predict_proba(const Tensor& samples)
|
||||||
|
{
|
||||||
|
return predict_tensor(samples, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Return mxn tensor of probabilities
|
||||||
|
Tensor Network::predict(const Tensor& samples)
|
||||||
|
{
|
||||||
|
return predict_tensor(samples, false);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Return mx1 vector of predictions
|
||||||
|
// tsamples is nxm vector of samples
|
||||||
vector<int> Network::predict(const vector<vector<int>>& tsamples)
|
vector<int> Network::predict(const vector<vector<int>>& tsamples)
|
||||||
{
|
{
|
||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
@@ -191,6 +260,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return predictions;
|
return predictions;
|
||||||
}
|
}
|
||||||
|
// Return mxn vector of probabilities
|
||||||
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
|
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
|
||||||
{
|
{
|
||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
@@ -218,12 +288,13 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return (double)correct / y_pred.size();
|
return (double)correct / y_pred.size();
|
||||||
}
|
}
|
||||||
|
// Return 1xn vector of probabilities
|
||||||
vector<double> Network::predict_sample(const vector<int>& sample)
|
vector<double> Network::predict_sample(const vector<int>& sample)
|
||||||
{
|
{
|
||||||
// Ensure the sample size is equal to the number of features
|
// Ensure the sample size is equal to the number of features
|
||||||
if (sample.size() != features.size()) {
|
if (sample.size() != features.size() - 1) {
|
||||||
throw invalid_argument("Sample size (" + to_string(sample.size()) +
|
throw invalid_argument("Sample size (" + to_string(sample.size()) +
|
||||||
") does not match the number of features (" + to_string(features.size()) + ")");
|
") does not match the number of features (" + to_string(features.size() - 1) + ")");
|
||||||
}
|
}
|
||||||
map<string, int> evidence;
|
map<string, int> evidence;
|
||||||
for (int i = 0; i < sample.size(); ++i) {
|
for (int i = 0; i < sample.size(); ++i) {
|
||||||
@@ -231,6 +302,20 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return exactInference(evidence);
|
return exactInference(evidence);
|
||||||
}
|
}
|
||||||
|
// Return 1xn vector of probabilities
|
||||||
|
vector<double> Network::predict_sample(const Tensor& sample)
|
||||||
|
{
|
||||||
|
// Ensure the sample size is equal to the number of features
|
||||||
|
if (sample.size(0) != features.size() - 1) {
|
||||||
|
throw invalid_argument("Sample size (" + to_string(sample.size(0)) +
|
||||||
|
") does not match the number of features (" + to_string(features.size() - 1) + ")");
|
||||||
|
}
|
||||||
|
map<string, int> evidence;
|
||||||
|
for (int i = 0; i < sample.size(0); ++i) {
|
||||||
|
evidence[features[i]] = sample[i].item<int>();
|
||||||
|
}
|
||||||
|
return exactInference(evidence);
|
||||||
|
}
|
||||||
double Network::computeFactor(map<string, int>& completeEvidence)
|
double Network::computeFactor(map<string, int>& completeEvidence)
|
||||||
{
|
{
|
||||||
double result = 1.0;
|
double result = 1.0;
|
||||||
@@ -256,13 +341,12 @@ namespace bayesnet {
|
|||||||
for (auto& thread : threads) {
|
for (auto& thread : threads) {
|
||||||
thread.join();
|
thread.join();
|
||||||
}
|
}
|
||||||
|
|
||||||
// Normalize result
|
// Normalize result
|
||||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||||
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
|
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
vector<string> Network::show()
|
vector<string> Network::show() const
|
||||||
{
|
{
|
||||||
vector<string> result;
|
vector<string> result;
|
||||||
// Draw the network
|
// Draw the network
|
||||||
@@ -275,7 +359,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
vector<string> Network::graph(const string& title)
|
vector<string> Network::graph(const string& title) const
|
||||||
{
|
{
|
||||||
auto output = vector<string>();
|
auto output = vector<string>();
|
||||||
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
|
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
|
||||||
@@ -289,7 +373,7 @@ namespace bayesnet {
|
|||||||
output.push_back("}\n");
|
output.push_back("}\n");
|
||||||
return output;
|
return output;
|
||||||
}
|
}
|
||||||
vector<pair<string, string>> Network::getEdges()
|
vector<pair<string, string>> Network::getEdges() const
|
||||||
{
|
{
|
||||||
auto edges = vector<pair<string, string>>();
|
auto edges = vector<pair<string, string>>();
|
||||||
for (const auto& node : nodes) {
|
for (const auto& node : nodes) {
|
||||||
@@ -301,4 +385,52 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return edges;
|
return edges;
|
||||||
}
|
}
|
||||||
|
int Network::getNumEdges() const
|
||||||
|
{
|
||||||
|
return getEdges().size();
|
||||||
|
}
|
||||||
|
vector<string> Network::topological_sort()
|
||||||
|
{
|
||||||
|
/* Check if al the fathers of every node are before the node */
|
||||||
|
auto result = features;
|
||||||
|
result.erase(remove(result.begin(), result.end(), className), result.end());
|
||||||
|
bool ending{ false };
|
||||||
|
int idx = 0;
|
||||||
|
while (!ending) {
|
||||||
|
ending = true;
|
||||||
|
for (auto feature : features) {
|
||||||
|
auto fathers = nodes[feature]->getParents();
|
||||||
|
for (const auto& father : fathers) {
|
||||||
|
auto fatherName = father->getName();
|
||||||
|
if (fatherName == className) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
// Check if father is placed before the actual feature
|
||||||
|
auto it = find(result.begin(), result.end(), fatherName);
|
||||||
|
if (it != result.end()) {
|
||||||
|
auto it2 = find(result.begin(), result.end(), feature);
|
||||||
|
if (it2 != result.end()) {
|
||||||
|
if (distance(it, it2) < 0) {
|
||||||
|
// if it is not, insert it before the feature
|
||||||
|
result.erase(remove(result.begin(), result.end(), fatherName), result.end());
|
||||||
|
result.insert(it2, fatherName);
|
||||||
|
ending = false;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
throw logic_error("Error in topological sort because of node " + feature + " is not in result");
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
throw logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
void Network::dump_cpt() const
|
||||||
|
{
|
||||||
|
for (auto& node : nodes) {
|
||||||
|
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@@ -8,23 +8,21 @@ namespace bayesnet {
|
|||||||
class Network {
|
class Network {
|
||||||
private:
|
private:
|
||||||
map<string, unique_ptr<Node>> nodes;
|
map<string, unique_ptr<Node>> nodes;
|
||||||
map<string, vector<int>> dataset;
|
|
||||||
bool fitted;
|
bool fitted;
|
||||||
float maxThreads;
|
float maxThreads = 0.95;
|
||||||
int classNumStates;
|
int classNumStates;
|
||||||
vector<string> features;
|
vector<string> features; // Including classname
|
||||||
string className;
|
string className;
|
||||||
int laplaceSmoothing;
|
int laplaceSmoothing = 1;
|
||||||
torch::Tensor samples;
|
torch::Tensor samples; // nxm tensor used to fit the model
|
||||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||||
vector<double> predict_sample(const vector<int>&);
|
vector<double> predict_sample(const vector<int>&);
|
||||||
|
vector<double> predict_sample(const torch::Tensor&);
|
||||||
vector<double> exactInference(map<string, int>&);
|
vector<double> exactInference(map<string, int>&);
|
||||||
double computeFactor(map<string, int>&);
|
double computeFactor(map<string, int>&);
|
||||||
double mutual_info(torch::Tensor&, torch::Tensor&);
|
void completeFit(const map<string, vector<int>>&);
|
||||||
double entropy(torch::Tensor&);
|
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>&);
|
||||||
double conditionalEntropy(torch::Tensor&, torch::Tensor&);
|
void setStates(const map<string, vector<int>>&);
|
||||||
double mutualInformation(torch::Tensor&, torch::Tensor&);
|
|
||||||
void completeFit();
|
|
||||||
public:
|
public:
|
||||||
Network();
|
Network();
|
||||||
explicit Network(float, int);
|
explicit Network(float, int);
|
||||||
@@ -32,23 +30,29 @@ namespace bayesnet {
|
|||||||
explicit Network(Network&);
|
explicit Network(Network&);
|
||||||
torch::Tensor& getSamples();
|
torch::Tensor& getSamples();
|
||||||
float getmaxThreads();
|
float getmaxThreads();
|
||||||
void addNode(const string&, int);
|
void addNode(const string&);
|
||||||
void addEdge(const string&, const string&);
|
void addEdge(const string&, const string&);
|
||||||
map<string, std::unique_ptr<Node>>& getNodes();
|
map<string, std::unique_ptr<Node>>& getNodes();
|
||||||
vector<string> getFeatures();
|
vector<string> getFeatures() const;
|
||||||
int getStates();
|
int getStates() const;
|
||||||
vector<pair<string, string>> getEdges();
|
vector<pair<string, string>> getEdges() const;
|
||||||
int getClassNumStates();
|
int getNumEdges() const;
|
||||||
string getClassName();
|
int getClassNumStates() const;
|
||||||
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
|
string getClassName() const;
|
||||||
void fit(torch::Tensor&, torch::Tensor&, const vector<string>&, const string&);
|
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||||
vector<int> predict(const vector<vector<int>>&);
|
void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||||
//Computes the conditional edge weight of variable index u and v conditioned on class_node
|
void fit(const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
|
||||||
torch::Tensor conditionalEdgeWeight();
|
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
|
||||||
vector<vector<double>> predict_proba(const vector<vector<int>>&);
|
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||||
|
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||||
|
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
|
||||||
|
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
|
||||||
double score(const vector<vector<int>>&, const vector<int>&);
|
double score(const vector<vector<int>>&, const vector<int>&);
|
||||||
vector<string> show();
|
vector<string> topological_sort();
|
||||||
vector<string> graph(const string& title); // Returns a vector of strings representing the graph in graphviz format
|
vector<string> show() const;
|
||||||
|
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
|
||||||
|
void initialize();
|
||||||
|
void dump_cpt() const;
|
||||||
inline string version() { return "0.1.0"; }
|
inline string version() { return "0.1.0"; }
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
@@ -2,8 +2,8 @@
|
|||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
|
|
||||||
Node::Node(const std::string& name, int numStates)
|
Node::Node(const std::string& name)
|
||||||
: name(name), numStates(numStates), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
|
: name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
void Node::clear()
|
void Node::clear()
|
||||||
@@ -84,8 +84,9 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing)
|
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing)
|
||||||
{
|
{
|
||||||
|
dimensions.clear();
|
||||||
// Get dimensions of the CPT
|
// Get dimensions of the CPT
|
||||||
dimensions.push_back(numStates);
|
dimensions.push_back(numStates);
|
||||||
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||||
@@ -93,10 +94,22 @@ namespace bayesnet {
|
|||||||
// Create a tensor of zeros with the dimensions of the CPT
|
// Create a tensor of zeros with the dimensions of the CPT
|
||||||
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
|
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
|
||||||
// Fill table with counts
|
// Fill table with counts
|
||||||
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
|
auto pos = find(features.begin(), features.end(), name);
|
||||||
|
if (pos == features.end()) {
|
||||||
|
throw logic_error("Feature " + name + " not found in dataset");
|
||||||
|
}
|
||||||
|
int name_index = pos - features.begin();
|
||||||
|
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||||
torch::List<c10::optional<torch::Tensor>> coordinates;
|
torch::List<c10::optional<torch::Tensor>> coordinates;
|
||||||
coordinates.push_back(torch::tensor(dataset[name][n_sample]));
|
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
||||||
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&dataset, &n_sample](const auto& parent) { return torch::tensor(dataset[parent->getName()][n_sample]); });
|
for (auto parent : parents) {
|
||||||
|
pos = find(features.begin(), features.end(), parent->getName());
|
||||||
|
if (pos == features.end()) {
|
||||||
|
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
||||||
|
}
|
||||||
|
int parent_index = pos - features.begin();
|
||||||
|
coordinates.push_back(dataset.index({ parent_index, n_sample }));
|
||||||
|
}
|
||||||
// Increment the count of the corresponding coordinate
|
// Increment the count of the corresponding coordinate
|
||||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
|
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
|
||||||
}
|
}
|
||||||
|
@@ -16,7 +16,7 @@ namespace bayesnet {
|
|||||||
vector<int64_t> dimensions; // dimensions of the cpTable
|
vector<int64_t> dimensions; // dimensions of the cpTable
|
||||||
public:
|
public:
|
||||||
vector<pair<string, string>> combinations(const vector<string>&);
|
vector<pair<string, string>> combinations(const vector<string>&);
|
||||||
Node(const string&, int);
|
explicit Node(const string&);
|
||||||
void clear();
|
void clear();
|
||||||
void addParent(Node*);
|
void addParent(Node*);
|
||||||
void addChild(Node*);
|
void addChild(Node*);
|
||||||
@@ -26,7 +26,7 @@ namespace bayesnet {
|
|||||||
vector<Node*>& getParents();
|
vector<Node*>& getParents();
|
||||||
vector<Node*>& getChildren();
|
vector<Node*>& getChildren();
|
||||||
torch::Tensor& getCPT();
|
torch::Tensor& getCPT();
|
||||||
void computeCPT(map<string, vector<int>>&, const int);
|
void computeCPT(const torch::Tensor&, const vector<string>&, const int);
|
||||||
int getNumStates() const;
|
int getNumStates() const;
|
||||||
void setNumStates(int);
|
void setNumStates(int);
|
||||||
unsigned minFill();
|
unsigned minFill();
|
||||||
|
109
src/BayesNet/Proposal.cc
Normal file
109
src/BayesNet/Proposal.cc
Normal file
@@ -0,0 +1,109 @@
|
|||||||
|
#include "Proposal.h"
|
||||||
|
#include "ArffFiles.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
|
||||||
|
Proposal::~Proposal()
|
||||||
|
{
|
||||||
|
for (auto& [key, value] : discretizers) {
|
||||||
|
delete value;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
|
||||||
|
{
|
||||||
|
// order of local discretization is important. no good 0, 1, 2...
|
||||||
|
// although we rediscretize features after the local discretization of every feature
|
||||||
|
auto order = model.topological_sort();
|
||||||
|
auto& nodes = model.getNodes();
|
||||||
|
map<string, vector<int>> states = oldStates;
|
||||||
|
vector<int> indicesToReDiscretize;
|
||||||
|
bool upgrade = false; // Flag to check if we need to upgrade the model
|
||||||
|
for (auto feature : order) {
|
||||||
|
auto nodeParents = nodes[feature]->getParents();
|
||||||
|
if (nodeParents.size() < 2) continue; // Only has class as parent
|
||||||
|
upgrade = true;
|
||||||
|
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
|
||||||
|
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
|
||||||
|
vector<string> parents;
|
||||||
|
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
|
||||||
|
// Remove class as parent as it will be added later
|
||||||
|
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
|
||||||
|
// Get the indices of the parents
|
||||||
|
vector<int> indices;
|
||||||
|
indices.push_back(-1); // Add class index
|
||||||
|
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
|
||||||
|
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
|
||||||
|
vector<string> yJoinParents(Xf.size(1));
|
||||||
|
for (auto idx : indices) {
|
||||||
|
for (int i = 0; i < Xf.size(1); ++i) {
|
||||||
|
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
auto arff = ArffFiles();
|
||||||
|
auto yxv = arff.factorize(yJoinParents);
|
||||||
|
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||||
|
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||||
|
discretizers[feature]->fit(xvf, yxv);
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// auto tmp = discretizers[feature]->transform(xvf);
|
||||||
|
// Xv[index] = tmp;
|
||||||
|
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||||
|
// iota(xStates.begin(), xStates.end(), 0);
|
||||||
|
// //Update new states of the feature/node
|
||||||
|
// states[feature] = xStates;
|
||||||
|
}
|
||||||
|
if (upgrade) {
|
||||||
|
// Discretize again X (only the affected indices) with the new fitted discretizers
|
||||||
|
for (auto index : indicesToReDiscretize) {
|
||||||
|
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
|
||||||
|
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||||
|
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
|
||||||
|
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
|
||||||
|
iota(xStates.begin(), xStates.end(), 0);
|
||||||
|
//Update new states of the feature/node
|
||||||
|
states[pFeatures[index]] = xStates;
|
||||||
|
}
|
||||||
|
model.fit(pDataset, pFeatures, pClassName, states);
|
||||||
|
}
|
||||||
|
return states;
|
||||||
|
}
|
||||||
|
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
|
||||||
|
{
|
||||||
|
// Discretize the continuous input data and build pDataset (Classifier::dataset)
|
||||||
|
int m = Xf.size(1);
|
||||||
|
int n = Xf.size(0);
|
||||||
|
map<string, vector<int>> states;
|
||||||
|
pDataset = torch::zeros({ n + 1, m }, kInt32);
|
||||||
|
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
|
||||||
|
// discretize input data by feature(row)
|
||||||
|
for (auto i = 0; i < pFeatures.size(); ++i) {
|
||||||
|
auto* discretizer = new mdlp::CPPFImdlp();
|
||||||
|
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
|
||||||
|
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
|
||||||
|
discretizer->fit(Xt, yv);
|
||||||
|
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
|
||||||
|
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
|
||||||
|
iota(xStates.begin(), xStates.end(), 0);
|
||||||
|
states[pFeatures[i]] = xStates;
|
||||||
|
discretizers[pFeatures[i]] = discretizer;
|
||||||
|
}
|
||||||
|
int n_classes = torch::max(y).item<int>() + 1;
|
||||||
|
auto yStates = vector<int>(n_classes);
|
||||||
|
iota(yStates.begin(), yStates.end(), 0);
|
||||||
|
states[pClassName] = yStates;
|
||||||
|
pDataset.index_put_({ n, "..." }, y);
|
||||||
|
return states;
|
||||||
|
}
|
||||||
|
torch::Tensor Proposal::prepareX(torch::Tensor& X)
|
||||||
|
{
|
||||||
|
auto Xtd = torch::zeros_like(X, torch::kInt32);
|
||||||
|
for (int i = 0; i < X.size(0); ++i) {
|
||||||
|
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
|
||||||
|
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
|
||||||
|
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
|
||||||
|
}
|
||||||
|
return Xtd;
|
||||||
|
}
|
||||||
|
}
|
29
src/BayesNet/Proposal.h
Normal file
29
src/BayesNet/Proposal.h
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
#ifndef PROPOSAL_H
|
||||||
|
#define PROPOSAL_H
|
||||||
|
#include <string>
|
||||||
|
#include <map>
|
||||||
|
#include <torch/torch.h>
|
||||||
|
#include "Network.h"
|
||||||
|
#include "CPPFImdlp.h"
|
||||||
|
#include "Classifier.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
class Proposal {
|
||||||
|
public:
|
||||||
|
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
|
||||||
|
virtual ~Proposal();
|
||||||
|
protected:
|
||||||
|
torch::Tensor prepareX(torch::Tensor& X);
|
||||||
|
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
|
||||||
|
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
|
||||||
|
torch::Tensor Xf; // X continuous nxm tensor
|
||||||
|
torch::Tensor y; // y discrete nx1 tensor
|
||||||
|
map<string, mdlp::CPPFImdlp*> discretizers;
|
||||||
|
private:
|
||||||
|
torch::Tensor& pDataset; // (n+1)xm tensor
|
||||||
|
vector<string>& pFeatures;
|
||||||
|
string& pClassName;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
@@ -4,7 +4,7 @@ namespace bayesnet {
|
|||||||
|
|
||||||
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
|
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
|
||||||
|
|
||||||
void SPODE::train()
|
void SPODE::buildModel()
|
||||||
{
|
{
|
||||||
// 0. Add all nodes to the model
|
// 0. Add all nodes to the model
|
||||||
addNodes();
|
addNodes();
|
||||||
@@ -17,7 +17,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
vector<string> SPODE::graph(string name )
|
vector<string> SPODE::graph(const string& name) const
|
||||||
{
|
{
|
||||||
return model.graph(name);
|
return model.graph(name);
|
||||||
}
|
}
|
||||||
|
@@ -7,11 +7,11 @@ namespace bayesnet {
|
|||||||
private:
|
private:
|
||||||
int root;
|
int root;
|
||||||
protected:
|
protected:
|
||||||
void train() override;
|
void buildModel() override;
|
||||||
public:
|
public:
|
||||||
explicit SPODE(int root);
|
explicit SPODE(int root);
|
||||||
virtual ~SPODE() {};
|
virtual ~SPODE() {};
|
||||||
vector<string> graph(string name = "SPODE") override;
|
vector<string> graph(const string& name = "SPODE") const override;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
47
src/BayesNet/SPODELd.cc
Normal file
47
src/BayesNet/SPODELd.cc
Normal file
@@ -0,0 +1,47 @@
|
|||||||
|
#include "SPODELd.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
using namespace std;
|
||||||
|
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
||||||
|
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||||
|
{
|
||||||
|
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||||
|
features = features_;
|
||||||
|
className = className_;
|
||||||
|
Xf = X_;
|
||||||
|
y = y_;
|
||||||
|
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||||
|
states = fit_local_discretization(y);
|
||||||
|
// We have discretized the input data
|
||||||
|
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||||
|
SPODE::fit(dataset, features, className, states);
|
||||||
|
states = localDiscretizationProposal(states, model);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||||
|
{
|
||||||
|
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||||
|
cout << "Xf " << Xf.sizes() << " dtype: " << Xf.dtype() << endl;
|
||||||
|
y = dataset.index({ -1, "..." }).clone();
|
||||||
|
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||||
|
features = features_;
|
||||||
|
className = className_;
|
||||||
|
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||||
|
states = fit_local_discretization(y);
|
||||||
|
// We have discretized the input data
|
||||||
|
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||||
|
SPODE::fit(dataset, features, className, states);
|
||||||
|
states = localDiscretizationProposal(states, model);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
Tensor SPODELd::predict(Tensor& X)
|
||||||
|
{
|
||||||
|
auto Xt = prepareX(X);
|
||||||
|
return SPODE::predict(Xt);
|
||||||
|
}
|
||||||
|
vector<string> SPODELd::graph(const string& name) const
|
||||||
|
{
|
||||||
|
return SPODE::graph(name);
|
||||||
|
}
|
||||||
|
}
|
19
src/BayesNet/SPODELd.h
Normal file
19
src/BayesNet/SPODELd.h
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
#ifndef SPODELD_H
|
||||||
|
#define SPODELD_H
|
||||||
|
#include "SPODE.h"
|
||||||
|
#include "Proposal.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
using namespace std;
|
||||||
|
class SPODELd : public SPODE, public Proposal {
|
||||||
|
public:
|
||||||
|
explicit SPODELd(int root);
|
||||||
|
virtual ~SPODELd() = default;
|
||||||
|
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||||
|
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||||
|
vector<string> graph(const string& name = "SPODE") const override;
|
||||||
|
Tensor predict(Tensor& X) override;
|
||||||
|
static inline string version() { return "0.0.1"; };
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif // !SPODELD_H
|
@@ -5,16 +5,16 @@ namespace bayesnet {
|
|||||||
|
|
||||||
TAN::TAN() : Classifier(Network()) {}
|
TAN::TAN() : Classifier(Network()) {}
|
||||||
|
|
||||||
void TAN::train()
|
void TAN::buildModel()
|
||||||
{
|
{
|
||||||
// 0. Add all nodes to the model
|
// 0. Add all nodes to the model
|
||||||
addNodes();
|
addNodes();
|
||||||
// 1. Compute mutual information between each feature and the class and set the root node
|
// 1. Compute mutual information between each feature and the class and set the root node
|
||||||
// as the highest mutual information with the class
|
// as the highest mutual information with the class
|
||||||
auto mi = vector <pair<int, float >>();
|
auto mi = vector <pair<int, float >>();
|
||||||
Tensor class_dataset = dataset.index({ "...", -1 });
|
Tensor class_dataset = dataset.index({ -1, "..." });
|
||||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||||
Tensor feature_dataset = dataset.index({ "...", i });
|
Tensor feature_dataset = dataset.index({ i, "..." });
|
||||||
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
|
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
|
||||||
mi.push_back({ i, mi_value });
|
mi.push_back({ i, mi_value });
|
||||||
}
|
}
|
||||||
@@ -34,7 +34,7 @@ namespace bayesnet {
|
|||||||
model.addEdge(className, feature);
|
model.addEdge(className, feature);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
vector<string> TAN::graph(string title)
|
vector<string> TAN::graph(const string& title) const
|
||||||
{
|
{
|
||||||
return model.graph(title);
|
return model.graph(title);
|
||||||
}
|
}
|
||||||
|
@@ -7,11 +7,11 @@ namespace bayesnet {
|
|||||||
class TAN : public Classifier {
|
class TAN : public Classifier {
|
||||||
private:
|
private:
|
||||||
protected:
|
protected:
|
||||||
void train() override;
|
void buildModel() override;
|
||||||
public:
|
public:
|
||||||
TAN();
|
TAN();
|
||||||
virtual ~TAN() {};
|
virtual ~TAN() {};
|
||||||
vector<string> graph(string name = "TAN") override;
|
vector<string> graph(const string& name = "TAN") const override;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
31
src/BayesNet/TANLd.cc
Normal file
31
src/BayesNet/TANLd.cc
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
#include "TANLd.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
using namespace std;
|
||||||
|
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
|
||||||
|
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
|
||||||
|
{
|
||||||
|
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
|
||||||
|
features = features_;
|
||||||
|
className = className_;
|
||||||
|
Xf = X_;
|
||||||
|
y = y_;
|
||||||
|
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||||
|
states = fit_local_discretization(y);
|
||||||
|
// We have discretized the input data
|
||||||
|
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||||
|
TAN::fit(dataset, features, className, states);
|
||||||
|
states = localDiscretizationProposal(states, model);
|
||||||
|
return *this;
|
||||||
|
|
||||||
|
}
|
||||||
|
Tensor TANLd::predict(Tensor& X)
|
||||||
|
{
|
||||||
|
auto Xt = prepareX(X);
|
||||||
|
return TAN::predict(Xt);
|
||||||
|
}
|
||||||
|
vector<string> TANLd::graph(const string& name) const
|
||||||
|
{
|
||||||
|
return TAN::graph(name);
|
||||||
|
}
|
||||||
|
}
|
19
src/BayesNet/TANLd.h
Normal file
19
src/BayesNet/TANLd.h
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
#ifndef TANLD_H
|
||||||
|
#define TANLD_H
|
||||||
|
#include "TAN.h"
|
||||||
|
#include "Proposal.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
using namespace std;
|
||||||
|
class TANLd : public TAN, public Proposal {
|
||||||
|
private:
|
||||||
|
public:
|
||||||
|
TANLd();
|
||||||
|
virtual ~TANLd() = default;
|
||||||
|
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
|
||||||
|
vector<string> graph(const string& name = "TAN") const override;
|
||||||
|
Tensor predict(Tensor& X) override;
|
||||||
|
static inline string version() { return "0.0.1"; };
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif // !TANLD_H
|
@@ -3,6 +3,7 @@
|
|||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace torch;
|
using namespace torch;
|
||||||
|
// Return the indices in descending order
|
||||||
vector<int> argsort(vector<float>& nums)
|
vector<int> argsort(vector<float>& nums)
|
||||||
{
|
{
|
||||||
int n = nums.size();
|
int n = nums.size();
|
||||||
|
@@ -4,5 +4,5 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
|||||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||||
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc)
|
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc)
|
||||||
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
@@ -207,9 +207,9 @@ namespace platform {
|
|||||||
if (discretize) {
|
if (discretize) {
|
||||||
Xd = discretizeDataset(Xv, yv);
|
Xd = discretizeDataset(Xv, yv);
|
||||||
computeStates();
|
computeStates();
|
||||||
n_samples = Xd[0].size();
|
|
||||||
n_features = Xd.size();
|
|
||||||
}
|
}
|
||||||
|
n_samples = Xv[0].size();
|
||||||
|
n_features = Xv.size();
|
||||||
loaded = true;
|
loaded = true;
|
||||||
}
|
}
|
||||||
void Dataset::buildTensors()
|
void Dataset::buildTensors()
|
||||||
|
@@ -1,6 +1,7 @@
|
|||||||
#include "Experiment.h"
|
#include "Experiment.h"
|
||||||
#include "Datasets.h"
|
#include "Datasets.h"
|
||||||
#include "Models.h"
|
#include "Models.h"
|
||||||
|
#include "Report.h"
|
||||||
|
|
||||||
namespace platform {
|
namespace platform {
|
||||||
using json = nlohmann::json;
|
using json = nlohmann::json;
|
||||||
@@ -86,6 +87,13 @@ namespace platform {
|
|||||||
file.close();
|
file.close();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void Experiment::report()
|
||||||
|
{
|
||||||
|
json data = build_json();
|
||||||
|
Report report(data);
|
||||||
|
report.show();
|
||||||
|
}
|
||||||
|
|
||||||
void Experiment::show()
|
void Experiment::show()
|
||||||
{
|
{
|
||||||
json data = build_json();
|
json data = build_json();
|
||||||
@@ -104,7 +112,7 @@ namespace platform {
|
|||||||
|
|
||||||
void Experiment::cross_validation(const string& path, const string& fileName)
|
void Experiment::cross_validation(const string& path, const string& fileName)
|
||||||
{
|
{
|
||||||
auto datasets = platform::Datasets(path, true, platform::ARFF);
|
auto datasets = platform::Datasets(path, discretized, platform::ARFF);
|
||||||
// Get dataset
|
// Get dataset
|
||||||
auto [X, y] = datasets.getTensors(fileName);
|
auto [X, y] = datasets.getTensors(fileName);
|
||||||
auto states = datasets.getStates(fileName);
|
auto states = datasets.getStates(fileName);
|
||||||
@@ -114,7 +122,7 @@ namespace platform {
|
|||||||
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
||||||
// Prepare Result
|
// Prepare Result
|
||||||
auto result = Result();
|
auto result = Result();
|
||||||
auto [values, counts] = at::_unique(y);;
|
auto [values, counts] = at::_unique(y);
|
||||||
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
||||||
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
||||||
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
||||||
|
@@ -108,6 +108,7 @@ namespace platform {
|
|||||||
void cross_validation(const string& path, const string& fileName);
|
void cross_validation(const string& path, const string& fileName);
|
||||||
void go(vector<string> filesToProcess, const string& path);
|
void go(vector<string> filesToProcess, const string& path);
|
||||||
void show();
|
void show();
|
||||||
|
void report();
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@@ -6,6 +6,10 @@
|
|||||||
#include "TAN.h"
|
#include "TAN.h"
|
||||||
#include "KDB.h"
|
#include "KDB.h"
|
||||||
#include "SPODE.h"
|
#include "SPODE.h"
|
||||||
|
#include "TANLd.h"
|
||||||
|
#include "KDBLd.h"
|
||||||
|
#include "SPODELd.h"
|
||||||
|
#include "AODELd.h"
|
||||||
namespace platform {
|
namespace platform {
|
||||||
class Models {
|
class Models {
|
||||||
private:
|
private:
|
||||||
|
67
src/Platform/Report.cc
Normal file
67
src/Platform/Report.cc
Normal file
@@ -0,0 +1,67 @@
|
|||||||
|
#include "Report.h"
|
||||||
|
|
||||||
|
namespace platform {
|
||||||
|
string headerLine(const string& text)
|
||||||
|
{
|
||||||
|
int n = MAXL - text.length() - 3;
|
||||||
|
n = n < 0 ? 0 : n;
|
||||||
|
return "* " + text + string(n, ' ') + "*\n";
|
||||||
|
}
|
||||||
|
string Report::fromVector(const string& key)
|
||||||
|
{
|
||||||
|
string result = "";
|
||||||
|
|
||||||
|
for (auto& item : data[key]) {
|
||||||
|
result += to_string(item) + ", ";
|
||||||
|
}
|
||||||
|
return "[" + result.substr(0, result.size() - 2) + "]";
|
||||||
|
}
|
||||||
|
string fVector(const json& data)
|
||||||
|
{
|
||||||
|
string result = "";
|
||||||
|
for (const auto& item : data) {
|
||||||
|
result += to_string(item) + ", ";
|
||||||
|
}
|
||||||
|
return "[" + result.substr(0, result.size() - 2) + "]";
|
||||||
|
}
|
||||||
|
void Report::show()
|
||||||
|
{
|
||||||
|
header();
|
||||||
|
body();
|
||||||
|
}
|
||||||
|
void Report::header()
|
||||||
|
{
|
||||||
|
cout << string(MAXL, '*') << endl;
|
||||||
|
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
|
||||||
|
cout << headerLine(data["title"].get<string>());
|
||||||
|
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
|
||||||
|
cout << headerLine("Execution took " + to_string(data["duration"].get<float>()) + " seconds, " + to_string(data["duration"].get<float>() / 3600) + " hours, on " + data["platform"].get<string>());
|
||||||
|
cout << headerLine("Score is " + data["score_name"].get<string>());
|
||||||
|
cout << string(MAXL, '*') << endl;
|
||||||
|
cout << endl;
|
||||||
|
}
|
||||||
|
void Report::body()
|
||||||
|
{
|
||||||
|
cout << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
|
||||||
|
cout << "============================== ====== ===== === ======= ======= ======= =============== ================= ===============" << endl;
|
||||||
|
for (const auto& r : data["results"]) {
|
||||||
|
cout << setw(30) << left << r["dataset"].get<string>() << " ";
|
||||||
|
cout << setw(6) << right << r["samples"].get<int>() << " ";
|
||||||
|
cout << setw(5) << right << r["features"].get<int>() << " ";
|
||||||
|
cout << setw(3) << right << r["classes"].get<int>() << " ";
|
||||||
|
cout << setw(7) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
|
||||||
|
cout << setw(7) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
|
||||||
|
cout << setw(7) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
|
||||||
|
cout << setw(8) << right << setprecision(6) << fixed << r["score_test"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_test_std"].get<double>() << " ";
|
||||||
|
cout << setw(10) << right << setprecision(6) << fixed << r["test_time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["test_time_std"].get<double>() << " ";
|
||||||
|
cout << " " << r["hyperparameters"].get<string>();
|
||||||
|
cout << endl;
|
||||||
|
cout << string(MAXL, '*') << endl;
|
||||||
|
cout << headerLine("Train scores: " + fVector(r["scores_train"]));
|
||||||
|
cout << headerLine("Test scores: " + fVector(r["scores_test"]));
|
||||||
|
cout << headerLine("Train times: " + fVector(r["times_train"]));
|
||||||
|
cout << headerLine("Test times: " + fVector(r["times_test"]));
|
||||||
|
cout << string(MAXL, '*') << endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
23
src/Platform/Report.h
Normal file
23
src/Platform/Report.h
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
#ifndef REPORT_H
|
||||||
|
#define REPORT_H
|
||||||
|
#include <string>
|
||||||
|
#include <iostream>
|
||||||
|
#include <nlohmann/json.hpp>
|
||||||
|
|
||||||
|
using json = nlohmann::json;
|
||||||
|
const int MAXL = 121;
|
||||||
|
namespace platform {
|
||||||
|
using namespace std;
|
||||||
|
class Report {
|
||||||
|
public:
|
||||||
|
explicit Report(json data_) { data = data_; };
|
||||||
|
virtual ~Report() = default;
|
||||||
|
void show();
|
||||||
|
private:
|
||||||
|
void header();
|
||||||
|
void body();
|
||||||
|
string fromVector(const string& key);
|
||||||
|
json data;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
#endif
|
@@ -99,13 +99,13 @@ int main(int argc, char** argv)
|
|||||||
filesToTest = platform::Datasets(path, true, platform::ARFF).getNames();
|
filesToTest = platform::Datasets(path, true, platform::ARFF).getNames();
|
||||||
saveResults = true;
|
saveResults = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Begin Processing
|
* Begin Processing
|
||||||
*/
|
*/
|
||||||
|
auto env = platform::DotEnv();
|
||||||
auto experiment = platform::Experiment();
|
auto experiment = platform::Experiment();
|
||||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
|
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
|
||||||
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform("BayesNet");
|
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
|
||||||
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
||||||
for (auto seed : seeds) {
|
for (auto seed : seeds) {
|
||||||
experiment.addRandomSeed(seed);
|
experiment.addRandomSeed(seed);
|
||||||
@@ -117,7 +117,7 @@ int main(int argc, char** argv)
|
|||||||
if (saveResults)
|
if (saveResults)
|
||||||
experiment.save(PATH_RESULTS);
|
experiment.save(PATH_RESULTS);
|
||||||
else
|
else
|
||||||
experiment.show();
|
experiment.report();
|
||||||
cout << "Done!" << endl;
|
cout << "Done!" << endl;
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
@@ -2,10 +2,18 @@
|
|||||||
#define MODEL_REGISTER_H
|
#define MODEL_REGISTER_H
|
||||||
static platform::Registrar registrarT("TAN",
|
static platform::Registrar registrarT("TAN",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
|
||||||
|
static platform::Registrar registrarTLD("TANLd",
|
||||||
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
|
||||||
static platform::Registrar registrarS("SPODE",
|
static platform::Registrar registrarS("SPODE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
|
||||||
|
static platform::Registrar registrarSLD("SPODELd",
|
||||||
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
|
||||||
static platform::Registrar registrarK("KDB",
|
static platform::Registrar registrarK("KDB",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
|
||||||
|
static platform::Registrar registrarKLD("KDBLd",
|
||||||
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
|
||||||
static platform::Registrar registrarA("AODE",
|
static platform::Registrar registrarA("AODE",
|
||||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
|
||||||
|
static platform::Registrar registrarALD("AODELd",
|
||||||
|
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
|
||||||
#endif
|
#endif
|
@@ -9,29 +9,21 @@ TEST_CASE("Test Bayesian Network")
|
|||||||
{
|
{
|
||||||
auto [Xd, y, features, className, states] = loadFile("iris");
|
auto [Xd, y, features, className, states] = loadFile("iris");
|
||||||
|
|
||||||
SECTION("Test Update Nodes")
|
|
||||||
{
|
|
||||||
auto net = bayesnet::Network();
|
|
||||||
net.addNode("A", 3);
|
|
||||||
REQUIRE(net.getStates() == 3);
|
|
||||||
net.addNode("A", 5);
|
|
||||||
REQUIRE(net.getStates() == 5);
|
|
||||||
}
|
|
||||||
SECTION("Test get features")
|
SECTION("Test get features")
|
||||||
{
|
{
|
||||||
auto net = bayesnet::Network();
|
auto net = bayesnet::Network();
|
||||||
net.addNode("A", 3);
|
net.addNode("A");
|
||||||
net.addNode("B", 5);
|
net.addNode("B");
|
||||||
REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
|
REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
|
||||||
net.addNode("C", 2);
|
net.addNode("C");
|
||||||
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
|
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
|
||||||
}
|
}
|
||||||
SECTION("Test get edges")
|
SECTION("Test get edges")
|
||||||
{
|
{
|
||||||
auto net = bayesnet::Network();
|
auto net = bayesnet::Network();
|
||||||
net.addNode("A", 3);
|
net.addNode("A");
|
||||||
net.addNode("B", 5);
|
net.addNode("B");
|
||||||
net.addNode("C", 2);
|
net.addNode("C");
|
||||||
net.addEdge("A", "B");
|
net.addEdge("A", "B");
|
||||||
net.addEdge("B", "C");
|
net.addEdge("B", "C");
|
||||||
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });
|
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });
|
||||||
|
Reference in New Issue
Block a user