Compare commits

...

30 Commits

Author SHA1 Message Date
182b52a887 Add states as result in Proposal methods 2023-08-12 16:16:17 +02:00
405887f833 Solved Ld poor results 2023-08-12 11:49:18 +02:00
3a85481a5a Redo pass states to Network Fit needed in crossval
fix mistake in headerline (report)
2023-08-12 11:10:53 +02:00
0ad5505c16 Spodeld working with poor accuracy 2023-08-10 02:06:18 +02:00
323444b74a const functions 2023-08-08 01:53:41 +02:00
ef1bffcac3 Fixed normal classifiers 2023-08-07 13:50:11 +02:00
06db8f51ce Refactor library and models to lighten data stored
Refactro Ensemble to inherit from Classifier insted of BaseClassifier
2023-08-07 12:49:37 +02:00
e74565ba01 update clang-tidy 2023-08-07 00:44:12 +02:00
2da0fb5d8f Merge branch 'main' into TANNew 2023-08-06 11:40:10 +02:00
14ea51648a Complete AODELd 2023-08-06 11:31:44 +02:00
9e94f4e140 Rename suffix of proposal classifier to Ld 2023-08-05 23:23:31 +02:00
1d0fd629c9 Add SPODENew to models 2023-08-05 23:11:36 +02:00
506ef34c6f Add report output to main 2023-08-05 20:29:05 +02:00
7f45495837 Refactor New classifiers to extract predict 2023-08-05 18:39:48 +02:00
1a09ccca4c Add KDBNew fix computeCPT error 2023-08-05 14:40:42 +02:00
a1c6ab18f3 TANNew restructured with poor results 2023-08-04 20:11:22 +02:00
64ac8fb4f2 TANNew as a TAN variant working 2023-08-04 19:42:18 +02:00
c568ba111d Add Proposal class 2023-08-04 13:05:12 +02:00
45c1d052ac Compile TANNew with poor accuracy 2023-08-04 01:35:45 +02:00
eb1cec58a3 Complete nxm 2023-08-03 20:22:33 +02:00
f520b40016 Almost complete proposal in TANNew 2023-08-02 02:21:55 +02:00
cdfb45d2cb Add topological order to Network 2023-08-02 00:56:52 +02:00
f63a9a64f9 Update Makefile to add Release & Debug build 2023-08-01 19:02:37 +02:00
285f0938a6 Update mdlp library 2023-08-01 17:33:01 +02:00
8f8f9773ce Make TANNew same as TAN with local discretization 2023-08-01 13:17:12 +02:00
a9ba21560d Add environment platform to experiment result 2023-08-01 10:55:53 +02:00
a18fbe5594 Begin implementation 2023-07-31 19:53:55 +02:00
adf650d257 Max threading 2023-07-31 18:49:18 +02:00
43bb017d5d Fix problem with tensors way 2023-07-30 19:00:02 +02:00
53697648e7 Merge branch 'aftermath' into main 2023-07-30 01:05:31 +02:00
51 changed files with 1043 additions and 390 deletions

View File

@@ -13,5 +13,4 @@ HeaderFilterRegex: 'src/*'
AnalyzeTemporaryDtors: false AnalyzeTemporaryDtors: false
WarningsAsErrors: '' WarningsAsErrors: ''
FormatStyle: file FormatStyle: file
FormatStyleOptions: ''
... ...

18
.vscode/launch.json vendored
View File

@@ -10,12 +10,13 @@
"-d", "-d",
"iris", "iris",
"-m", "-m",
"TAN", "KDB",
"-s",
"271",
"-p", "-p",
"../../data/", "/Users/rmontanana/Code/discretizbench/datasets/",
"--tensors"
], ],
"cwd": "${workspaceFolder}/build/sample/", //"cwd": "${workspaceFolder}/build/sample/",
}, },
{ {
"type": "lldb", "type": "lldb",
@@ -24,17 +25,14 @@
"program": "${workspaceFolder}/build/src/Platform/main", "program": "${workspaceFolder}/build/src/Platform/main",
"args": [ "args": [
"-m", "-m",
"TAN", "SPODELd",
"-p", "-p",
"/Users/rmontanana/Code/discretizbench/datasets", "/Users/rmontanana/Code/discretizbench/datasets",
"--discretize",
"--stratified", "--stratified",
"--title",
"Debug test",
"-d", "-d",
"ionosphere" "iris"
], ],
"cwd": "${workspaceFolder}/build/src/Platform", "cwd": "/Users/rmontanana/Code/discretizbench",
}, },
{ {
"name": "Build & debug active file", "name": "Build & debug active file",

View File

@@ -7,10 +7,14 @@ project(BayesNet
LANGUAGES CXX LANGUAGES CXX
) )
if (CODE_COVERAGE AND NOT ENABLE_TESTING)
MESSAGE(FATAL_ERROR "Code coverage requires testing enabled")
endif (CODE_COVERAGE AND NOT ENABLE_TESTING)
find_package(Torch REQUIRED) find_package(Torch REQUIRED)
if (POLICY CMP0135) if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW) cmake_policy(SET CMP0135 NEW)
endif () endif ()
# Global CMake variables # Global CMake variables
@@ -24,24 +28,31 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
# Options # Options
# ------- # -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF) option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" ON) option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" ON) option(CODE_COVERAGE "Collect coverage from test library" OFF)
set(CMAKE_BUILD_TYPE "Debug")
# CMakes modules # CMakes modules
# -------------- # --------------
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH}) set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
include(AddGitSubmodule) include(AddGitSubmodule)
include(StaticAnalyzers) # clang-tidy if (CODE_COVERAGE)
include(CodeCoverage) enable_testing()
include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
if (ENABLE_CLANG_TIDY)
include(StaticAnalyzers) # clang-tidy
endif (ENABLE_CLANG_TIDY)
# External libraries - dependencies of BayesNet # External libraries - dependencies of BayesNet
# --------------------------------------------- # ---------------------------------------------
# include(FetchContent) # include(FetchContent)
add_git_submodule("lib/mdlp") add_git_submodule("lib/mdlp")
add_git_submodule("lib/catch2")
add_git_submodule("lib/argparse") add_git_submodule("lib/argparse")
add_git_submodule("lib/json") add_git_submodule("lib/json")
@@ -59,18 +70,11 @@ file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform
# Testing # Testing
# ------- # -------
if (ENABLE_TESTING) if (ENABLE_TESTING)
MESSAGE("Testing enabled") MESSAGE("Testing enabled")
enable_testing() add_git_submodule("lib/catch2")
if (CODE_COVERAGE)
#include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_C_FLAGS " ${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
#find_package(Catch2 3 REQUIRED)
include(CTest) include(CTest)
#include(Catch)
add_subdirectory(tests) add_subdirectory(tests)
endif (ENABLE_TESTING) endif (ENABLE_TESTING)

View File

@@ -14,14 +14,28 @@ setup: ## Install dependencies for tests and coverage
dependency: ## Create a dependency graph diagram of the project (build/dependency.png) dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the project build: ## Build the main and BayesNetSample
@echo ">>> Building BayesNet ..."; cmake --build build -t main -t BayesNetSample -j 32
clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ...";
find . -name "*.gcda" -print0 | xargs -0 rm
@echo ">>> Done";
debug: ## Build a debug version of the project
@echo ">>> Building Debug BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi @if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build; @mkdir build;
cmake -S . -B build; \ cmake -S . -B build -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON; \
cd build; \ cmake --build build -j 32;
make; \ @echo ">>> Done";
release: ## Build a Release version of the project
@echo ">>> Building Release BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
cmake --build build -t main -t BayesNetSample -j 32;
@echo ">>> Done"; @echo ">>> Done";
test: ## Run tests test: ## Run tests

12
TAN_iris.dot Normal file
View File

@@ -0,0 +1,12 @@
digraph BayesNet {
label=<BayesNet >
fontsize=30
fontcolor=blue
labelloc=t
layout=circo
class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ]
class -> sepallength class -> sepalwidth class -> petallength class -> petalwidth petallength [shape=circle]
petallength -> sepallength petalwidth [shape=circle]
sepallength [shape=circle]
sepallength -> sepalwidth sepalwidth [shape=circle]
sepalwidth -> petalwidth }

View File

@@ -1,5 +1,4 @@
filter = src/ filter = src/
exclude = external/ exclude-directories = build/lib/
exclude = tests/
print-summary = yes print-summary = yes
sort-percentage = yes sort-percentage = yes

View File

@@ -1,7 +1,6 @@
#include <iostream> #include <iostream>
#include <torch/torch.h> #include <torch/torch.h>
#include <string> #include <string>
#include <thread>
#include <map> #include <map>
#include <argparse/argparse.hpp> #include <argparse/argparse.hpp>
#include "ArffFiles.h" #include "ArffFiles.h"
@@ -42,7 +41,7 @@ bool file_exists(const std::string& name)
} }
pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y) pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vector<vector<int>> X, vector<int> y)
{ {
vector<vector<int>> Xr; vector<vector<int>> Xr; // nxm
vector<int> yr; vector<int> yr;
for (int col = 0; col < X.size(); ++col) { for (int col = 0; col < X.size(); ++col) {
Xr.push_back(vector<int>()); Xr.push_back(vector<int>());
@@ -96,6 +95,7 @@ int main(int argc, char** argv)
} }
); );
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true); program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true); program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true); program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) { program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
@@ -113,7 +113,7 @@ int main(int argc, char** argv)
throw runtime_error("Number of folds must be an integer"); throw runtime_error("Number of folds must be an integer");
}}); }});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>(); program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, stratified, tensors; bool class_last, stratified, tensors, dump_cpt;
string model_name, file_name, path, complete_file_name; string model_name, file_name, path, complete_file_name;
int nFolds, seed; int nFolds, seed;
try { try {
@@ -126,6 +126,7 @@ int main(int argc, char** argv)
tensors = program.get<bool>("tensors"); tensors = program.get<bool>("tensors");
nFolds = program.get<int>("folds"); nFolds = program.get<int>("folds");
seed = program.get<int>("seed"); seed = program.get<int>("seed");
dump_cpt = program.get<bool>("dumpcpt");
class_last = datasets[file_name]; class_last = datasets[file_name];
if (!file_exists(complete_file_name)) { if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist"); throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
@@ -161,61 +162,75 @@ int main(int argc, char** argv)
states[className] = vector<int>(maxes[className]); states[className] = vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name); auto clf = platform::Models::instance()->create(model_name);
clf->fit(Xd, y, features, className, states); clf->fit(Xd, y, features, className, states);
auto score = clf->score(Xd, y); if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
auto lines = clf->show(); auto lines = clf->show();
auto graph = clf->graph();
for (auto line : lines) { for (auto line : lines) {
cout << line << endl; cout << line << endl;
} }
cout << "--- Topological Order ---" << endl;
auto order = clf->topological_order();
for (auto name : order) {
cout << name << ", ";
}
cout << "end." << endl;
auto score = clf->score(Xd, y);
cout << "Score: " << score << endl; cout << "Score: " << score << endl;
auto dot_file = model_name + "_" + file_name; // auto graph = clf->graph();
ofstream file(dot_file + ".dot"); // auto dot_file = model_name + "_" + file_name;
file << graph; // ofstream file(dot_file + ".dot");
file.close(); // file << graph;
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl; // file.close();
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl; // cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
string stratified_string = stratified ? " Stratified" : ""; // cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl; // string stratified_string = stratified ? " Stratified" : "";
cout << "==========================================" << endl; // cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32); // cout << "==========================================" << endl;
torch::Tensor yt = torch::tensor(y, torch::kInt32); // torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
for (int i = 0; i < features.size(); ++i) { // torch::Tensor yt = torch::tensor(y, torch::kInt32);
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32)); // for (int i = 0; i < features.size(); ++i) {
} // Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
float total_score = 0, total_score_train = 0, score_train, score_test; // }
Fold* fold; // float total_score = 0, total_score_train = 0, score_train, score_test;
if (stratified) // Fold* fold;
fold = new StratifiedKFold(nFolds, y, seed); // if (stratified)
else // fold = new StratifiedKFold(nFolds, y, seed);
fold = new KFold(nFolds, y.size(), seed); // else
for (auto i = 0; i < nFolds; ++i) { // fold = new KFold(nFolds, y.size(), seed);
auto [train, test] = fold->getFold(i); // for (auto i = 0; i < nFolds; ++i) {
cout << "Fold: " << i + 1 << endl; // auto [train, test] = fold->getFold(i);
if (tensors) { // cout << "Fold: " << i + 1 << endl;
auto ttrain = torch::tensor(train, torch::kInt64); // if (tensors) {
auto ttest = torch::tensor(test, torch::kInt64); // auto ttrain = torch::tensor(train, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain); // auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor ytraint = yt.index({ ttrain }); // torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest); // torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor ytestt = yt.index({ ttest }); // torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
clf->fit(Xtraint, ytraint, features, className, states); // torch::Tensor ytestt = yt.index({ ttest });
score_train = clf->score(Xtraint, ytraint); // clf->fit(Xtraint, ytraint, features, className, states);
score_test = clf->score(Xtestt, ytestt); // auto temp = clf->predict(Xtraint);
} else { // score_train = clf->score(Xtraint, ytraint);
auto [Xtrain, ytrain] = extract_indices(train, Xd, y); // score_test = clf->score(Xtestt, ytestt);
auto [Xtest, ytest] = extract_indices(test, Xd, y); // } else {
clf->fit(Xtrain, ytrain, features, className, states); // auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
score_train = clf->score(Xtrain, ytrain); // auto [Xtest, ytest] = extract_indices(test, Xd, y);
score_test = clf->score(Xtest, ytest); // clf->fit(Xtrain, ytrain, features, className, states);
} // score_train = clf->score(Xtrain, ytrain);
total_score_train += score_train; // score_test = clf->score(Xtest, ytest);
total_score += score_test; // }
cout << "Score Train: " << score_train << endl; // if (dump_cpt) {
cout << "Score Test : " << score_test << endl; // cout << "--- CPT Tables ---" << endl;
cout << "-------------------------------------------------------------------------------" << endl; // clf->dump_cpt();
} // }
cout << "**********************************************************************************" << endl; // total_score_train += score_train;
cout << "Average Score Train: " << total_score_train / nFolds << endl; // total_score += score_test;
cout << "Average Score Test : " << total_score / nFolds << endl; // cout << "Score Train: " << score_train << endl;
return 0; // cout << "Score Test : " << score_test << endl;
// cout << "-------------------------------------------------------------------------------" << endl;
// }
// cout << "**********************************************************************************" << endl;
// cout << "Average Score Train: " << total_score_train / nFolds << endl;
// cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
} }

View File

@@ -2,14 +2,14 @@
namespace bayesnet { namespace bayesnet {
AODE::AODE() : Ensemble() {} AODE::AODE() : Ensemble() {}
void AODE::train() void AODE::buildModel()
{ {
models.clear(); models.clear();
for (int i = 0; i < features.size(); ++i) { for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i)); models.push_back(std::make_unique<SPODE>(i));
} }
} }
vector<string> AODE::graph(string title) vector<string> AODE::graph(const string& title) const
{ {
return Ensemble::graph(title); return Ensemble::graph(title);
} }

View File

@@ -5,11 +5,11 @@
namespace bayesnet { namespace bayesnet {
class AODE : public Ensemble { class AODE : public Ensemble {
protected: protected:
void train() override; void buildModel() override;
public: public:
AODE(); AODE();
virtual ~AODE() {}; virtual ~AODE() {};
vector<string> graph(string title = "AODE") override; vector<string> graph(const string& title = "AODE") const override;
}; };
} }
#endif #endif

40
src/BayesNet/AODELd.cc Normal file
View File

@@ -0,0 +1,40 @@
#include "AODELd.h"
#include "Models.h"
namespace bayesnet {
using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
Ensemble::fit(dataset, features, className, states);
return *this;
}
void AODELd::buildModel()
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODELd>(i));
}
n_models = models.size();
}
void AODELd::trainModel()
{
for (const auto& model : models) {
model->fit(Xf, y, features, className, states);
}
}
vector<string> AODELd::graph(const string& name) const
{
return Ensemble::graph(name);
}
}

21
src/BayesNet/AODELd.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef AODELD_H
#define AODELD_H
#include "Ensemble.h"
#include "Proposal.h"
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
class AODELd : public Ensemble, public Proposal {
protected:
void trainModel() override;
void buildModel() override;
public:
AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
virtual ~AODELd() = default;
vector<string> graph(const string& name = "AODE") const override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !AODELD_H

View File

@@ -5,19 +5,27 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
class BaseClassifier { class BaseClassifier {
protected:
virtual void trainModel() = 0;
public: public:
// X is nxm vector, y is nx1 vector
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0; virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0;
vector<int> virtual predict(vector<vector<int>>& X) = 0; vector<int> virtual predict(vector<vector<int>>& X) = 0;
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0; float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0; float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
int virtual getNumberOfNodes() = 0; int virtual getNumberOfNodes()const = 0;
int virtual getNumberOfEdges() = 0; int virtual getNumberOfEdges()const = 0;
int virtual getNumberOfStates() = 0; int virtual getNumberOfStates() const = 0;
vector<string> virtual show() = 0; vector<string> virtual show() const = 0;
vector<string> virtual graph(string title = "") = 0; vector<string> virtual graph(const string& title = "") const = 0;
virtual ~BaseClassifier() = default;
const string inline getVersion() const { return "0.1.0"; }; const string inline getVersion() const { return "0.1.0"; };
vector<string> virtual topological_order() = 0;
void virtual dump_cpt()const = 0;
}; };
} }
#endif #endif

View File

@@ -1,13 +1,15 @@
#include "BayesMetrics.h" #include "BayesMetrics.h"
#include "Mst.h" #include "Mst.h"
namespace bayesnet { namespace bayesnet {
Metrics::Metrics(torch::Tensor& samples, vector<string>& features, string& className, int classNumStates) //samples is nxm tensor used to fit the model
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
: samples(samples) : samples(samples)
, features(features) , features(features)
, className(className) , className(className)
, classNumStates(classNumStates) , classNumStates(classNumStates)
{ {
} }
//samples is nxm vector used to fit the model
Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates) Metrics::Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates)
: features(features) : features(features)
, className(className) , className(className)
@@ -15,9 +17,9 @@ namespace bayesnet {
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32)) , samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
{ {
for (int i = 0; i < vsamples.size(); ++i) { for (int i = 0; i < vsamples.size(); ++i) {
samples.index_put_({ "...", i }, torch::tensor(vsamples[i], torch::kInt32)); samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
} }
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt32)); samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
} }
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source) vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
{ {
@@ -39,17 +41,17 @@ namespace bayesnet {
// Compute class prior // Compute class prior
auto margin = torch::zeros({ classNumStates }); auto margin = torch::zeros({ classNumStates });
for (int value = 0; value < classNumStates; ++value) { for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ "...", -1 }) == value; auto mask = samples.index({ -1, "..." }) == value;
margin[value] = mask.sum().item<float>() / samples.sizes()[0]; margin[value] = mask.sum().item<float>() / samples.size(1);
} }
for (auto [first, second] : combinations) { for (auto [first, second] : combinations) {
int index_first = find(features.begin(), features.end(), first) - features.begin(); int index_first = find(features.begin(), features.end(), first) - features.begin();
int index_second = find(features.begin(), features.end(), second) - features.begin(); int index_second = find(features.begin(), features.end(), second) - features.begin();
double accumulated = 0; double accumulated = 0;
for (int value = 0; value < classNumStates; ++value) { for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ "...", -1 }) == value; auto mask = samples.index({ -1, "..." }) == value;
auto first_dataset = samples.index({ mask, index_first }); auto first_dataset = samples.index({ index_first, mask });
auto second_dataset = samples.index({ mask, index_second }); auto second_dataset = samples.index({ index_second, mask });
auto mi = mutualInformation(first_dataset, second_dataset); auto mi = mutualInformation(first_dataset, second_dataset);
auto pb = margin[value].item<float>(); auto pb = margin[value].item<float>();
accumulated += pb * mi; accumulated += pb * mi;
@@ -67,13 +69,14 @@ namespace bayesnet {
} }
return matrix; return matrix;
} }
// To use in Python
vector<float> Metrics::conditionalEdgeWeights() vector<float> Metrics::conditionalEdgeWeights()
{ {
auto matrix = conditionalEdge(); auto matrix = conditionalEdge();
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel()); std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v; return v;
} }
double Metrics::entropy(torch::Tensor& feature) double Metrics::entropy(const torch::Tensor& feature)
{ {
torch::Tensor counts = feature.bincount(); torch::Tensor counts = feature.bincount();
int totalWeight = counts.sum().item<int>(); int totalWeight = counts.sum().item<int>();
@@ -83,7 +86,7 @@ namespace bayesnet {
return entropy.nansum().item<double>(); return entropy.nansum().item<double>();
} }
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x) // H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(torch::Tensor& firstFeature, torch::Tensor& secondFeature) double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
{ {
int numSamples = firstFeature.sizes()[0]; int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount(); torch::Tensor featureCounts = secondFeature.bincount();
@@ -112,7 +115,7 @@ namespace bayesnet {
return entropyValue; return entropyValue;
} }
// I(X;Y) = H(Y) - H(Y|X) // I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(torch::Tensor& firstFeature, torch::Tensor& secondFeature) double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature)
{ {
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature); return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
} }
@@ -121,7 +124,7 @@ namespace bayesnet {
and the indices of the weights as nodes of this square matrix using and the indices of the weights as nodes of this square matrix using
Kruskal algorithm Kruskal algorithm
*/ */
vector<pair<int, int>> Metrics::maximumSpanningTree(vector<string> features, Tensor& weights, int root) vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
{ {
auto mst = MST(features, weights, root); auto mst = MST(features, weights, root);
return mst.maximumSpanningTree(); return mst.maximumSpanningTree();

View File

@@ -8,21 +8,21 @@ namespace bayesnet {
using namespace torch; using namespace torch;
class Metrics { class Metrics {
private: private:
Tensor samples; Tensor samples; // nxm tensor used to fit the model
vector<string> features; vector<string> features;
string className; string className;
int classNumStates = 0; int classNumStates = 0;
public: public:
Metrics() = default; Metrics() = default;
Metrics(Tensor&, vector<string>&, string&, int); Metrics(const Tensor&, const vector<string>&, const string&, const int);
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int); Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
double entropy(Tensor&); double entropy(const Tensor&);
double conditionalEntropy(Tensor&, Tensor&); double conditionalEntropy(const Tensor&, const Tensor&);
double mutualInformation(Tensor&, Tensor&); double mutualInformation(const Tensor&, const Tensor&);
vector<float> conditionalEdgeWeights(); vector<float> conditionalEdgeWeights(); // To use in Python
Tensor conditionalEdge(); Tensor conditionalEdge();
vector<pair<string, string>> doCombinations(const vector<string>&); vector<pair<string, string>> doCombinations(const vector<string>&);
vector<pair<int, int>> maximumSpanningTree(vector<string> features, Tensor& weights, int root); vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
}; };
} }
#endif #endif

View File

@@ -1,2 +1,7 @@
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc Mst.cc) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
target_link_libraries(BayesNet "${TORCH_LIBRARIES}") include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}")

View File

@@ -7,54 +7,65 @@ namespace bayesnet {
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {} Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
{ {
dataset = torch::cat({ X, y.view({y.size(0), 1}) }, 1);
this->features = features; this->features = features;
this->className = className; this->className = className;
this->states = states; this->states = states;
m = dataset.size(1);
n = dataset.size(0) - 1;
checkFitParameters(); checkFitParameters();
auto n_classes = states[className].size(); auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes); metrics = Metrics(dataset, features, className, n_classes);
train(); model.initialize();
if (Xv == vector<vector<int>>()) { buildModel();
// fit with tensors trainModel();
model.fit(X, y, features, className);
} else {
// fit with vectors
model.fit(Xv, yv, features, className);
}
fitted = true; fitted = true;
return *this; return *this;
} }
void Classifier::buildDataset(Tensor& ytmp)
{
try {
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
dataset = torch::cat({ dataset, yresized }, 0);
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
cout << "X dimensions: " << dataset.sizes() << "\n";
cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
}
}
void Classifier::trainModel()
{
model.fit(dataset, features, className, states);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{ {
this->X = torch::transpose(X, 0, 1); dataset = X;
this->y = y; buildDataset(y);
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
return build(features, className, states); return build(features, className, states);
} }
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{ {
this->X = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, kInt32); dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
Xv = X;
for (int i = 0; i < X.size(); ++i) { for (int i = 0; i < X.size(); ++i) {
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt32)); dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
} }
this->y = torch::tensor(y, kInt32); auto ytmp = torch::tensor(y, kInt32);
yv = y; buildDataset(ytmp);
return build(features, className, states);
}
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->dataset = dataset;
return build(features, className, states); return build(features, className, states);
} }
void Classifier::checkFitParameters() void Classifier::checkFitParameters()
{ {
auto sizes = X.sizes();
m = sizes[0];
n = sizes[1];
if (m != y.size(0)) {
throw invalid_argument("X and y must have the same number of samples");
}
if (n != features.size()) { if (n != features.size()) {
throw invalid_argument("X and features must have the same number of features"); throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
} }
if (states.find(className) == states.end()) { if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states"); throw invalid_argument("className not found in states");
@@ -65,23 +76,12 @@ namespace bayesnet {
} }
} }
} }
Tensor Classifier::predict(Tensor& X) Tensor Classifier::predict(Tensor& X)
{ {
if (!fitted) { if (!fitted) {
throw logic_error("Classifier has not been fitted"); throw logic_error("Classifier has not been fitted");
} }
auto m_ = X.size(0); return model.predict(X);
auto n_ = X.size(1);
//auto Xt = torch::transpose(X, 0, 1);
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
auto temp = X.index({ "...", i });
Xd[i] = vector<int>(temp.data_ptr<int>(), temp.data_ptr<int>() + temp.numel());
}
auto yp = model.predict(Xd);
auto ypred = torch::tensor(yp, torch::kInt32);
return ypred;
} }
vector<int> Classifier::predict(vector<vector<int>>& X) vector<int> Classifier::predict(vector<vector<int>>& X)
{ {
@@ -102,8 +102,7 @@ namespace bayesnet {
if (!fitted) { if (!fitted) {
throw logic_error("Classifier has not been fitted"); throw logic_error("Classifier has not been fitted");
} }
auto Xt = torch::transpose(X, 0, 1); Tensor y_pred = predict(X);
Tensor y_pred = predict(Xt);
return (y_pred == y).sum().item<float>() / y.size(0); return (y_pred == y).sum().item<float>() / y.size(0);
} }
float Classifier::score(vector<vector<int>>& X, vector<int>& y) float Classifier::score(vector<vector<int>>& X, vector<int>& y)
@@ -111,37 +110,39 @@ namespace bayesnet {
if (!fitted) { if (!fitted) {
throw logic_error("Classifier has not been fitted"); throw logic_error("Classifier has not been fitted");
} }
auto m_ = X[0].size(); return model.score(X, y);
auto n_ = X.size();
vector<vector<int>> Xd(n_, vector<int>(m_, 0));
for (auto i = 0; i < n_; i++) {
Xd[i] = vector<int>(X[i].begin(), X[i].end());
}
return model.score(Xd, y);
} }
vector<string> Classifier::show() vector<string> Classifier::show() const
{ {
return model.show(); return model.show();
} }
void Classifier::addNodes() void Classifier::addNodes()
{ {
// Add all nodes to the network // Add all nodes to the network
for (auto feature : features) { for (const auto& feature : features) {
model.addNode(feature, states[feature].size()); model.addNode(feature);
} }
model.addNode(className, states[className].size()); model.addNode(className);
} }
int Classifier::getNumberOfNodes() int Classifier::getNumberOfNodes() const
{ {
// Features does not include class // Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0; return fitted ? model.getFeatures().size() + 1 : 0;
} }
int Classifier::getNumberOfEdges() int Classifier::getNumberOfEdges() const
{ {
return fitted ? model.getEdges().size() : 0; return fitted ? model.getNumEdges() : 0;
} }
int Classifier::getNumberOfStates() int Classifier::getNumberOfStates() const
{ {
return fitted ? model.getStates() : 0; return fitted ? model.getStates() : 0;
} }
vector<string> Classifier::topological_order()
{
return model.topological_sort();
}
void Classifier::dump_cpt() const
{
model.dump_cpt();
}
} }

View File

@@ -10,36 +10,37 @@ using namespace torch;
namespace bayesnet { namespace bayesnet {
class Classifier : public BaseClassifier { class Classifier : public BaseClassifier {
private: private:
bool fitted; void buildDataset(torch::Tensor& y);
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states); Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected: protected:
bool fitted;
Network model; Network model;
int m, n; // m: number of samples, n: number of features int m, n; // m: number of samples, n: number of features
Tensor X; Tensor dataset; // (n+1)xm tensor
vector<vector<int>> Xv;
Tensor y;
vector<int> yv;
Tensor dataset;
Metrics metrics; Metrics metrics;
vector<string> features; vector<string> features;
string className; string className;
map<string, vector<int>> states; map<string, vector<int>> states;
void checkFitParameters(); void checkFitParameters();
virtual void train() = 0; virtual void buildModel() = 0;
void trainModel() override;
public: public:
Classifier(Network model); Classifier(Network model);
virtual ~Classifier() = default; virtual ~Classifier() = default;
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
void addNodes(); void addNodes();
int getNumberOfNodes() override; int getNumberOfNodes() const override;
int getNumberOfEdges() override; int getNumberOfEdges() const override;
int getNumberOfStates() override; int getNumberOfStates() const override;
Tensor predict(Tensor& X); Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override; vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override; float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override; float score(vector<vector<int>>& X, vector<int>& y) override;
vector<string> show() override; vector<string> show() const override;
vector<string> topological_order() override;
void dump_cpt() const override;
}; };
} }
#endif #endif

View File

@@ -3,69 +3,52 @@
namespace bayesnet { namespace bayesnet {
using namespace torch; using namespace torch;
Ensemble::Ensemble() : m(0), n(0), n_models(0), metrics(Metrics()), fitted(false) {} Ensemble::Ensemble() : Classifier(Network()) {}
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
void Ensemble::trainModel()
{ {
dataset = cat({ X, y.view({y.size(0), 1}) }, 1);
this->features = features;
this->className = className;
this->states = states;
auto n_classes = states[className].size();
metrics = Metrics(dataset, features, className, n_classes);
// Build models
train();
// Train models
n_models = models.size(); n_models = models.size();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
models[i]->fit(Xv, yv, features, className, states); // fit with vectors
models[i]->fit(dataset, features, className, states);
} }
fitted = true;
return *this;
}
Ensemble& Ensemble::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = X;
this->y = y;
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
return build(features, className, states);
}
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = torch::zeros({ static_cast<int>(X[0].size()), static_cast<int>(X.size()) }, kInt32);
Xv = X;
for (int i = 0; i < X.size(); ++i) {
this->X.index_put_({ "...", i }, torch::tensor(X[i], kInt32));
}
this->y = torch::tensor(y, kInt32);
yv = y;
return build(features, className, states);
}
Tensor Ensemble::predict(Tensor& X)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
Tensor y_pred = torch::zeros({ X.size(0), n_models }, kInt32);
for (auto i = 0; i < n_models; ++i) {
y_pred.index_put_({ "...", i }, models[i]->predict(X));
}
return torch::tensor(voting(y_pred));
} }
vector<int> Ensemble::voting(Tensor& y_pred) vector<int> Ensemble::voting(Tensor& y_pred)
{ {
auto y_pred_ = y_pred.accessor<int, 2>(); auto y_pred_ = y_pred.accessor<int, 2>();
vector<int> y_pred_final; vector<int> y_pred_final;
for (int i = 0; i < y_pred.size(0); ++i) { for (int i = 0; i < y_pred.size(0); ++i) {
vector<float> votes(states[className].size(), 0); vector<float> votes(y_pred.size(1), 0);
for (int j = 0; j < y_pred.size(1); ++j) { for (int j = 0; j < y_pred.size(1); ++j) {
votes[y_pred_[i][j]] += 1; votes[y_pred_[i][j]] += 1;
} }
// argsort in descending order
auto indices = argsort(votes); auto indices = argsort(votes);
y_pred_final.push_back(indices[0]); y_pred_final.push_back(indices[0]);
} }
return y_pred_final; return y_pred_final;
} }
Tensor Ensemble::predict(Tensor& X)
{
if (!fitted) {
throw logic_error("Ensemble has not been fitted");
}
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
//Create a threadpool
auto threads{ vector<thread>() };
mutex mtx;
for (auto i = 0; i < n_models; ++i) {
threads.push_back(thread([&, i]() {
auto ypredict = models[i]->predict(X);
lock_guard<mutex> lock(mtx);
y_pred.index_put_({ "...", i }, ypredict);
}));
}
for (auto& thread : threads) {
thread.join();
}
return torch::tensor(voting(y_pred));
}
vector<int> Ensemble::predict(vector<vector<int>>& X) vector<int> Ensemble::predict(vector<vector<int>>& X)
{ {
if (!fitted) { if (!fitted) {
@@ -110,9 +93,8 @@ namespace bayesnet {
} }
} }
return (double)correct / y_pred.size(); return (double)correct / y_pred.size();
} }
vector<string> Ensemble::show() vector<string> Ensemble::show() const
{ {
auto result = vector<string>(); auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -121,7 +103,7 @@ namespace bayesnet {
} }
return result; return result;
} }
vector<string> Ensemble::graph(string title) vector<string> Ensemble::graph(const string& title) const
{ {
auto result = vector<string>(); auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -130,7 +112,7 @@ namespace bayesnet {
} }
return result; return result;
} }
int Ensemble::getNumberOfNodes() int Ensemble::getNumberOfNodes() const
{ {
int nodes = 0; int nodes = 0;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -138,7 +120,7 @@ namespace bayesnet {
} }
return nodes; return nodes;
} }
int Ensemble::getNumberOfEdges() int Ensemble::getNumberOfEdges() const
{ {
int edges = 0; int edges = 0;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {
@@ -146,7 +128,7 @@ namespace bayesnet {
} }
return edges; return edges;
} }
int Ensemble::getNumberOfStates() int Ensemble::getNumberOfStates() const
{ {
int nstates = 0; int nstates = 0;
for (auto i = 0; i < n_models; ++i) { for (auto i = 0; i < n_models; ++i) {

View File

@@ -8,39 +8,33 @@ using namespace std;
using namespace torch; using namespace torch;
namespace bayesnet { namespace bayesnet {
class Ensemble : public BaseClassifier { class Ensemble : public Classifier {
private: private:
bool fitted;
long n_models;
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states); Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected: protected:
unsigned n_models;
vector<unique_ptr<Classifier>> models; vector<unique_ptr<Classifier>> models;
int m, n; // m: number of samples, n: number of features void trainModel() override;
Tensor X;
vector<vector<int>> Xv;
Tensor y;
vector<int> yv;
Tensor dataset;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void virtual train() = 0;
vector<int> voting(Tensor& y_pred); vector<int> voting(Tensor& y_pred);
public: public:
Ensemble(); Ensemble();
virtual ~Ensemble() = default; virtual ~Ensemble() = default;
Ensemble& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override; Tensor predict(Tensor& X) override;
Ensemble& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Tensor predict(Tensor& X);
vector<int> predict(vector<vector<int>>& X) override; vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override; float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override; float score(vector<vector<int>>& X, vector<int>& y) override;
int getNumberOfNodes() override; int getNumberOfNodes() const override;
int getNumberOfEdges() override; int getNumberOfEdges() const override;
int getNumberOfStates() override; int getNumberOfStates() const override;
vector<string> show() override; vector<string> show() const override;
vector<string> graph(string title) override; vector<string> graph(const string& title) const override;
vector<string> topological_order() override
{
return vector<string>();
}
void dump_cpt() const override
{
}
}; };
} }
#endif #endif

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
using namespace torch; using namespace torch;
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {} KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::train() void KDB::buildModel()
{ {
/* /*
1. For each feature Xi, compute mutual information, I(X;C), 1. For each feature Xi, compute mutual information, I(X;C),
@@ -27,9 +27,11 @@ namespace bayesnet {
*/ */
// 1. For each feature Xi, compute mutual information, I(X;C), // 1. For each feature Xi, compute mutual information, I(X;C),
// where C is the class. // where C is the class.
addNodes();
const Tensor& y = dataset.index({ -1, "..." });
vector <float> mi; vector <float> mi;
for (auto i = 0; i < features.size(); i++) { for (auto i = 0; i < features.size(); i++) {
Tensor firstFeature = X.index({ "...", i }); Tensor firstFeature = dataset.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y)); mi.push_back(metrics.mutualInformation(firstFeature, y));
} }
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each // 2. Compute class conditional mutual information I(Xi;XjIC), f or each
@@ -38,14 +40,12 @@ namespace bayesnet {
vector<int> S; vector<int> S;
// 4. Let the DAG network being constructed, BN, begin with a single // 4. Let the DAG network being constructed, BN, begin with a single
// class node, C. // class node, C.
model.addNode(className, states[className].size());
// 5. Repeat until S includes all domain features // 5. Repeat until S includes all domain features
// 5.1. Select feature Xmax which is not in S and has the largest value // 5.1. Select feature Xmax which is not in S and has the largest value
// I(Xmax;C). // I(Xmax;C).
auto order = argsort(mi); auto order = argsort(mi);
for (auto idx : order) { for (auto idx : order) {
// 5.2. Add a node to BN representing Xmax. // 5.2. Add a node to BN representing Xmax.
model.addNode(features[idx], states[features[idx]].size());
// 5.3. Add an arc from C to Xmax in BN. // 5.3. Add an arc from C to Xmax in BN.
model.addEdge(className, features[idx]); model.addEdge(className, features[idx]);
// 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with // 5.4. Add m = min(lSl,/c) arcs from m distinct features Xj in S with
@@ -79,11 +79,12 @@ namespace bayesnet {
exit_cond = num == n_edges || candidates.size(0) == 0; exit_cond = num == n_edges || candidates.size(0) == 0;
} }
} }
vector<string> KDB::graph(string title) vector<string> KDB::graph(const string& title) const
{ {
string header{ title };
if (title == "KDB") { if (title == "KDB") {
title += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")"; header += " (k=" + to_string(k) + ", theta=" + to_string(theta) + ")";
} }
return model.graph(title); return model.graph(header);
} }
} }

View File

@@ -11,11 +11,11 @@ namespace bayesnet {
float theta; float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights); void add_m_edges(int idx, vector<int>& S, Tensor& weights);
protected: protected:
void train() override; void buildModel() override;
public: public:
explicit KDB(int k, float theta = 0.03); explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {}; virtual ~KDB() {};
vector<string> graph(string name = "KDB") override; vector<string> graph(const string& name = "KDB") const override;
}; };
} }
#endif #endif

30
src/BayesNet/KDBLd.cc Normal file
View File

@@ -0,0 +1,30 @@
#include "KDBLd.h"
namespace bayesnet {
using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
KDB::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor KDBLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return KDB::predict(Xt);
}
vector<string> KDBLd::graph(const string& name) const
{
return KDB::graph(name);
}
}

19
src/BayesNet/KDBLd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef KDBLD_H
#define KDBLD_H
#include "KDB.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class KDBLd : public KDB, public Proposal {
private:
public:
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !KDBLD_H

View File

@@ -94,7 +94,7 @@ namespace bayesnet {
return result; return result;
} }
MST::MST(vector<string>& features, Tensor& weights, int root) : features(features), weights(weights), root(root) {} MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
vector<pair<int, int>> MST::maximumSpanningTree() vector<pair<int, int>> MST::maximumSpanningTree()
{ {
auto num_features = features.size(); auto num_features = features.size();

View File

@@ -13,7 +13,7 @@ namespace bayesnet {
int root = 0; int root = 0;
public: public:
MST() = default; MST() = default;
MST(vector<string>& features, Tensor& weights, int root); MST(const vector<string>& features, const Tensor& weights, const int root);
vector<pair<int, int>> maximumSpanningTree(); vector<pair<int, int>> maximumSpanningTree();
}; };
class Graph { class Graph {

View File

@@ -3,15 +3,25 @@
#include "Network.h" #include "Network.h"
#include "bayesnetUtils.h" #include "bayesnetUtils.h"
namespace bayesnet { namespace bayesnet {
Network::Network() : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(0.8), fitted(false) {} Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {}
Network::Network(float maxT) : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {} Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {} Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.getmaxThreads()), fitted(other.fitted) Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
getmaxThreads()), fitted(other.fitted)
{ {
for (const auto& pair : other.nodes) { for (const auto& pair : other.nodes) {
nodes[pair.first] = std::make_unique<Node>(*pair.second); nodes[pair.first] = std::make_unique<Node>(*pair.second);
} }
} }
void Network::initialize()
{
features = vector<string>();
className = "";
classNumStates = 0;
fitted = false;
nodes.clear();
samples = torch::Tensor();
}
float Network::getmaxThreads() float Network::getmaxThreads()
{ {
return maxThreads; return maxThreads;
@@ -20,28 +30,28 @@ namespace bayesnet {
{ {
return samples; return samples;
} }
void Network::addNode(const string& name, int numStates) void Network::addNode(const string& name)
{ {
if (name == "") {
throw invalid_argument("Node name cannot be empty");
}
if (nodes.find(name) != nodes.end()) {
return;
}
if (find(features.begin(), features.end(), name) == features.end()) { if (find(features.begin(), features.end(), name) == features.end()) {
features.push_back(name); features.push_back(name);
} }
if (nodes.find(name) != nodes.end()) { nodes[name] = std::make_unique<Node>(name);
// if node exists update its number of states and remove parents, children and CPT
nodes[name]->clear();
nodes[name]->setNumStates(numStates);
return;
}
nodes[name] = std::make_unique<Node>(name, numStates);
} }
vector<string> Network::getFeatures() vector<string> Network::getFeatures() const
{ {
return features; return features;
} }
int Network::getClassNumStates() int Network::getClassNumStates() const
{ {
return classNumStates; return classNumStates;
} }
int Network::getStates() int Network::getStates() const
{ {
int result = 0; int result = 0;
for (auto& node : nodes) { for (auto& node : nodes) {
@@ -49,7 +59,7 @@ namespace bayesnet {
} }
return result; return result;
} }
string Network::getClassName() string Network::getClassName() const
{ {
return className; return className;
} }
@@ -94,45 +104,72 @@ namespace bayesnet {
{ {
return nodes; return nodes;
} }
void Network::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& featureNames, const string& className) void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{ {
features = featureNames; if (n_samples != n_samples_y) {
this->className = className; throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
dataset.clear(); }
// Specific part if (n_features != featureNames.size()) {
classNumStates = torch::max(y).item<int>() + 1; throw invalid_argument("X and features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(featureNames.size()) + ")");
samples = torch::cat({ X, y.view({ y.size(0), 1 }) }, 1); }
for (int i = 0; i < featureNames.size(); ++i) { if (n_features != features.size() - 1) {
auto column = torch::flatten(X.index({ "...", i })); throw invalid_argument("X and local features must have the same number of features in Network::fit (" + to_string(n_features) + " != " + to_string(features.size() - 1) + ")");
auto k = vector<int>(); }
for (auto z = 0; z < X.size(0); ++z) { if (find(features.begin(), features.end(), className) == features.end()) {
k.push_back(column[z].item<int>()); throw invalid_argument("className not found in Network::features");
}
for (auto& feature : featureNames) {
if (find(features.begin(), features.end(), feature) == features.end()) {
throw invalid_argument("Feature " + feature + " not found in Network::features");
}
if (states.find(feature) == states.end()) {
throw invalid_argument("Feature " + feature + " not found in states");
} }
dataset[featureNames[i]] = k;
} }
dataset[className] = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
completeFit();
} }
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className) void Network::setStates(const map<string, vector<int>>& states)
{ {
features = featureNames; // Set states to every Node in the network
for (int i = 0; i < features.size(); ++i) {
nodes[features[i]]->setNumStates(states.at(features[i]).size());
}
classNumStates = nodes[className]->getNumStates();
}
// X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states);
this->className = className; this->className = className;
dataset.clear(); Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
// Specific part samples = torch::cat({ X , ytmp }, 0);
classNumStates = *max_element(labels.begin(), labels.end()) + 1;
// Build dataset & tensor of samples
samples = torch::zeros({ static_cast<int>(input_data[0].size()), static_cast<int>(input_data.size() + 1) }, torch::kInt32);
for (int i = 0; i < featureNames.size(); ++i) { for (int i = 0; i < featureNames.size(); ++i) {
dataset[featureNames[i]] = input_data[i]; auto row_feature = X.index({ i, "..." });
samples.index_put_({ "...", i }, torch::tensor(input_data[i], torch::kInt32));
} }
dataset[className] = labels; completeFit(states);
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt32));
completeFit();
} }
void Network::completeFit() void Network::fit(const torch::Tensor& samples, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{ {
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states);
this->className = className;
this->samples = samples;
completeFit(states);
}
// input_data comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states);
this->className = className;
// Build tensor of samples (nxm) (n+1 because of the class)
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
for (int i = 0; i < featureNames.size(); ++i) {
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
}
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
completeFit(states);
}
void Network::completeFit(const map<string, vector<int>>& states)
{
setStates(states);
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads); int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
if (maxThreadsRunning < 1) { if (maxThreadsRunning < 1) {
maxThreadsRunning = 1; maxThreadsRunning = 1;
@@ -154,7 +191,7 @@ namespace bayesnet {
auto& pair = *std::next(nodes.begin(), nextNodeIndex); auto& pair = *std::next(nodes.begin(), nextNodeIndex);
++nextNodeIndex; ++nextNodeIndex;
lock.unlock(); lock.unlock();
pair.second->computeCPT(dataset, laplaceSmoothing); pair.second->computeCPT(samples, features, laplaceSmoothing);
lock.lock(); lock.lock();
nodes[pair.first] = std::move(pair.second); nodes[pair.first] = std::move(pair.second);
lock.unlock(); lock.unlock();
@@ -170,7 +207,39 @@ namespace bayesnet {
} }
fitted = true; fitted = true;
} }
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
{
if (!fitted) {
throw logic_error("You must call fit() before calling predict()");
}
torch::Tensor result;
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
for (int i = 0; i < samples.size(1); ++i) {
const Tensor sample = samples.index({ "...", i });
auto psample = predict_sample(sample);
auto temp = torch::tensor(psample, torch::kFloat64);
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
result.index_put_({ i, "..." }, temp);
}
if (proba)
return result;
else
return result.argmax(1);
}
// Return mxn tensor of probabilities
Tensor Network::predict_proba(const Tensor& samples)
{
return predict_tensor(samples, true);
}
// Return mxn tensor of probabilities
Tensor Network::predict(const Tensor& samples)
{
return predict_tensor(samples, false);
}
// Return mx1 vector of predictions
// tsamples is nxm vector of samples
vector<int> Network::predict(const vector<vector<int>>& tsamples) vector<int> Network::predict(const vector<vector<int>>& tsamples)
{ {
if (!fitted) { if (!fitted) {
@@ -191,6 +260,7 @@ namespace bayesnet {
} }
return predictions; return predictions;
} }
// Return mxn vector of probabilities
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples) vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
{ {
if (!fitted) { if (!fitted) {
@@ -218,12 +288,13 @@ namespace bayesnet {
} }
return (double)correct / y_pred.size(); return (double)correct / y_pred.size();
} }
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const vector<int>& sample) vector<double> Network::predict_sample(const vector<int>& sample)
{ {
// Ensure the sample size is equal to the number of features // Ensure the sample size is equal to the number of features
if (sample.size() != features.size()) { if (sample.size() != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size()) + throw invalid_argument("Sample size (" + to_string(sample.size()) +
") does not match the number of features (" + to_string(features.size()) + ")"); ") does not match the number of features (" + to_string(features.size() - 1) + ")");
} }
map<string, int> evidence; map<string, int> evidence;
for (int i = 0; i < sample.size(); ++i) { for (int i = 0; i < sample.size(); ++i) {
@@ -231,6 +302,20 @@ namespace bayesnet {
} }
return exactInference(evidence); return exactInference(evidence);
} }
// Return 1xn vector of probabilities
vector<double> Network::predict_sample(const Tensor& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size(0) != features.size() - 1) {
throw invalid_argument("Sample size (" + to_string(sample.size(0)) +
") does not match the number of features (" + to_string(features.size() - 1) + ")");
}
map<string, int> evidence;
for (int i = 0; i < sample.size(0); ++i) {
evidence[features[i]] = sample[i].item<int>();
}
return exactInference(evidence);
}
double Network::computeFactor(map<string, int>& completeEvidence) double Network::computeFactor(map<string, int>& completeEvidence)
{ {
double result = 1.0; double result = 1.0;
@@ -256,13 +341,12 @@ namespace bayesnet {
for (auto& thread : threads) { for (auto& thread : threads) {
thread.join(); thread.join();
} }
// Normalize result // Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0); double sum = accumulate(result.begin(), result.end(), 0.0);
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; }); transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
return result; return result;
} }
vector<string> Network::show() vector<string> Network::show() const
{ {
vector<string> result; vector<string> result;
// Draw the network // Draw the network
@@ -275,7 +359,7 @@ namespace bayesnet {
} }
return result; return result;
} }
vector<string> Network::graph(const string& title) vector<string> Network::graph(const string& title) const
{ {
auto output = vector<string>(); auto output = vector<string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet "; auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
@@ -289,7 +373,7 @@ namespace bayesnet {
output.push_back("}\n"); output.push_back("}\n");
return output; return output;
} }
vector<pair<string, string>> Network::getEdges() vector<pair<string, string>> Network::getEdges() const
{ {
auto edges = vector<pair<string, string>>(); auto edges = vector<pair<string, string>>();
for (const auto& node : nodes) { for (const auto& node : nodes) {
@@ -301,4 +385,52 @@ namespace bayesnet {
} }
return edges; return edges;
} }
int Network::getNumEdges() const
{
return getEdges().size();
}
vector<string> Network::topological_sort()
{
/* Check if al the fathers of every node are before the node */
auto result = features;
result.erase(remove(result.begin(), result.end(), className), result.end());
bool ending{ false };
int idx = 0;
while (!ending) {
ending = true;
for (auto feature : features) {
auto fathers = nodes[feature]->getParents();
for (const auto& father : fathers) {
auto fatherName = father->getName();
if (fatherName == className) {
continue;
}
// Check if father is placed before the actual feature
auto it = find(result.begin(), result.end(), fatherName);
if (it != result.end()) {
auto it2 = find(result.begin(), result.end(), feature);
if (it2 != result.end()) {
if (distance(it, it2) < 0) {
// if it is not, insert it before the feature
result.erase(remove(result.begin(), result.end(), fatherName), result.end());
result.insert(it2, fatherName);
ending = false;
}
} else {
throw logic_error("Error in topological sort because of node " + feature + " is not in result");
}
} else {
throw logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
}
}
}
}
return result;
}
void Network::dump_cpt() const
{
for (auto& node : nodes) {
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
}
}
} }

View File

@@ -8,23 +8,21 @@ namespace bayesnet {
class Network { class Network {
private: private:
map<string, unique_ptr<Node>> nodes; map<string, unique_ptr<Node>> nodes;
map<string, vector<int>> dataset;
bool fitted; bool fitted;
float maxThreads; float maxThreads = 0.95;
int classNumStates; int classNumStates;
vector<string> features; vector<string> features; // Including classname
string className; string className;
int laplaceSmoothing; int laplaceSmoothing = 1;
torch::Tensor samples; torch::Tensor samples; // nxm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&); bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
vector<double> predict_sample(const vector<int>&); vector<double> predict_sample(const vector<int>&);
vector<double> predict_sample(const torch::Tensor&);
vector<double> exactInference(map<string, int>&); vector<double> exactInference(map<string, int>&);
double computeFactor(map<string, int>&); double computeFactor(map<string, int>&);
double mutual_info(torch::Tensor&, torch::Tensor&); void completeFit(const map<string, vector<int>>&);
double entropy(torch::Tensor&); void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>&);
double conditionalEntropy(torch::Tensor&, torch::Tensor&); void setStates(const map<string, vector<int>>&);
double mutualInformation(torch::Tensor&, torch::Tensor&);
void completeFit();
public: public:
Network(); Network();
explicit Network(float, int); explicit Network(float, int);
@@ -32,23 +30,29 @@ namespace bayesnet {
explicit Network(Network&); explicit Network(Network&);
torch::Tensor& getSamples(); torch::Tensor& getSamples();
float getmaxThreads(); float getmaxThreads();
void addNode(const string&, int); void addNode(const string&);
void addEdge(const string&, const string&); void addEdge(const string&, const string&);
map<string, std::unique_ptr<Node>>& getNodes(); map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures(); vector<string> getFeatures() const;
int getStates(); int getStates() const;
vector<pair<string, string>> getEdges(); vector<pair<string, string>> getEdges() const;
int getClassNumStates(); int getNumEdges() const;
string getClassName(); int getClassNumStates() const;
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&); string getClassName() const;
void fit(torch::Tensor&, torch::Tensor&, const vector<string>&, const string&); void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const map<string, vector<int>>&);
vector<int> predict(const vector<vector<int>>&); void fit(const torch::Tensor&, const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
//Computes the conditional edge weight of variable index u and v conditioned on class_node void fit(const torch::Tensor&, const vector<string>&, const string&, const map<string, vector<int>>&);
torch::Tensor conditionalEdgeWeight(); vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
vector<vector<double>> predict_proba(const vector<vector<int>>&); torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
double score(const vector<vector<int>>&, const vector<int>&); double score(const vector<vector<int>>&, const vector<int>&);
vector<string> show(); vector<string> topological_sort();
vector<string> graph(const string& title); // Returns a vector of strings representing the graph in graphviz format vector<string> show() const;
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
void initialize();
void dump_cpt() const;
inline string version() { return "0.1.0"; } inline string version() { return "0.1.0"; }
}; };
} }

View File

@@ -2,8 +2,8 @@
namespace bayesnet { namespace bayesnet {
Node::Node(const std::string& name, int numStates) Node::Node(const std::string& name)
: name(name), numStates(numStates), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>()) : name(name), numStates(0), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
{ {
} }
void Node::clear() void Node::clear()
@@ -84,8 +84,9 @@ namespace bayesnet {
} }
return result; return result;
} }
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing) void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const int laplaceSmoothing)
{ {
dimensions.clear();
// Get dimensions of the CPT // Get dimensions of the CPT
dimensions.push_back(numStates); dimensions.push_back(numStates);
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); }); transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
@@ -93,10 +94,22 @@ namespace bayesnet {
// Create a tensor of zeros with the dimensions of the CPT // Create a tensor of zeros with the dimensions of the CPT
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing; cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts // Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) { auto pos = find(features.begin(), features.end(), name);
if (pos == features.end()) {
throw logic_error("Feature " + name + " not found in dataset");
}
int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates; torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample])); coordinates.push_back(dataset.index({ name_index, n_sample }));
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&dataset, &n_sample](const auto& parent) { return torch::tensor(dataset[parent->getName()][n_sample]); }); for (auto parent : parents) {
pos = find(features.begin(), features.end(), parent->getName());
if (pos == features.end()) {
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
}
int parent_index = pos - features.begin();
coordinates.push_back(dataset.index({ parent_index, n_sample }));
}
// Increment the count of the corresponding coordinate // Increment the count of the corresponding coordinate
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1); cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
} }

View File

@@ -16,7 +16,7 @@ namespace bayesnet {
vector<int64_t> dimensions; // dimensions of the cpTable vector<int64_t> dimensions; // dimensions of the cpTable
public: public:
vector<pair<string, string>> combinations(const vector<string>&); vector<pair<string, string>> combinations(const vector<string>&);
Node(const string&, int); explicit Node(const string&);
void clear(); void clear();
void addParent(Node*); void addParent(Node*);
void addChild(Node*); void addChild(Node*);
@@ -26,7 +26,7 @@ namespace bayesnet {
vector<Node*>& getParents(); vector<Node*>& getParents();
vector<Node*>& getChildren(); vector<Node*>& getChildren();
torch::Tensor& getCPT(); torch::Tensor& getCPT();
void computeCPT(map<string, vector<int>>&, const int); void computeCPT(const torch::Tensor&, const vector<string>&, const int);
int getNumStates() const; int getNumStates() const;
void setNumStates(int); void setNumStates(int);
unsigned minFill(); unsigned minFill();

109
src/BayesNet/Proposal.cc Normal file
View File

@@ -0,0 +1,109 @@
#include "Proposal.h"
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal()
{
for (auto& [key, value] : discretizers) {
delete value;
}
}
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
{
// order of local discretization is important. no good 0, 1, 2...
// although we rediscretize features after the local discretization of every feature
auto order = model.topological_sort();
auto& nodes = model.getNodes();
map<string, vector<int>> states = oldStates;
vector<int> indicesToReDiscretize;
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
if (nodeParents.size() < 2) continue; // Only has class as parent
upgrade = true;
int index = find(pFeatures.begin(), pFeatures.end(), feature) - pFeatures.begin();
indicesToReDiscretize.push_back(index); // We need to re-discretize this feature
vector<string> parents;
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
// Remove class as parent as it will be added later
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents
vector<int> indices;
indices.push_back(-1); // Add class index
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents(Xf.size(1));
for (auto idx : indices) {
for (int i = 0; i < Xf.size(1); ++i) {
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
}
}
auto arff = ArffFiles();
auto yxv = arff.factorize(yJoinParents);
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
auto xvf = vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
discretizers[feature]->fit(xvf, yxv);
//
//
//
// auto tmp = discretizers[feature]->transform(xvf);
// Xv[index] = tmp;
// auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
// iota(xStates.begin(), xStates.end(), 0);
// //Update new states of the feature/node
// states[feature] = xStates;
}
if (upgrade) {
// Discretize again X (only the affected indices) with the new fitted discretizers
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node
states[pFeatures[index]] = xStates;
}
model.fit(pDataset, pFeatures, pClassName, states);
}
return states;
}
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
{
// Discretize the continuous input data and build pDataset (Classifier::dataset)
int m = Xf.size(1);
int n = Xf.size(0);
map<string, vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, kInt32);
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (auto i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
discretizers[pFeatures[i]] = discretizer;
}
int n_classes = torch::max(y).item<int>() + 1;
auto yStates = vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates;
pDataset.index_put_({ n, "..." }, y);
return states;
}
torch::Tensor Proposal::prepareX(torch::Tensor& X)
{
auto Xtd = torch::zeros_like(X, torch::kInt32);
for (int i = 0; i < X.size(0); ++i) {
auto Xt = vector<float>(X[i].data_ptr<float>(), X[i].data_ptr<float>() + X.size(1));
auto Xd = discretizers[pFeatures[i]]->transform(Xt);
Xtd.index_put_({ i }, torch::tensor(Xd, torch::kInt32));
}
return Xtd;
}
}

29
src/BayesNet/Proposal.h Normal file
View File

@@ -0,0 +1,29 @@
#ifndef PROPOSAL_H
#define PROPOSAL_H
#include <string>
#include <map>
#include <torch/torch.h>
#include "Network.h"
#include "CPPFImdlp.h"
#include "Classifier.h"
namespace bayesnet {
class Proposal {
public:
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
virtual ~Proposal();
protected:
torch::Tensor prepareX(torch::Tensor& X);
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<string, mdlp::CPPFImdlp*> discretizers;
private:
torch::Tensor& pDataset; // (n+1)xm tensor
vector<string>& pFeatures;
string& pClassName;
};
}
#endif

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
SPODE::SPODE(int root) : Classifier(Network()), root(root) {} SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
void SPODE::train() void SPODE::buildModel()
{ {
// 0. Add all nodes to the model // 0. Add all nodes to the model
addNodes(); addNodes();
@@ -17,7 +17,7 @@ namespace bayesnet {
} }
} }
} }
vector<string> SPODE::graph(string name ) vector<string> SPODE::graph(const string& name) const
{ {
return model.graph(name); return model.graph(name);
} }

View File

@@ -7,11 +7,11 @@ namespace bayesnet {
private: private:
int root; int root;
protected: protected:
void train() override; void buildModel() override;
public: public:
explicit SPODE(int root); explicit SPODE(int root);
virtual ~SPODE() {}; virtual ~SPODE() {};
vector<string> graph(string name = "SPODE") override; vector<string> graph(const string& name = "SPODE") const override;
}; };
} }
#endif #endif

47
src/BayesNet/SPODELd.cc Normal file
View File

@@ -0,0 +1,47 @@
#include "SPODELd.h"
namespace bayesnet {
using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
cout << "Xf " << Xf.sizes() << " dtype: " << Xf.dtype() << endl;
y = dataset.index({ -1, "..." }).clone();
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor SPODELd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return SPODE::predict(Xt);
}
vector<string> SPODELd::graph(const string& name) const
{
return SPODE::graph(name);
}
}

19
src/BayesNet/SPODELd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef SPODELD_H
#define SPODELD_H
#include "SPODE.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class SPODELd : public SPODE, public Proposal {
public:
explicit SPODELd(int root);
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !SPODELD_H

View File

@@ -5,16 +5,16 @@ namespace bayesnet {
TAN::TAN() : Classifier(Network()) {} TAN::TAN() : Classifier(Network()) {}
void TAN::train() void TAN::buildModel()
{ {
// 0. Add all nodes to the model // 0. Add all nodes to the model
addNodes(); addNodes();
// 1. Compute mutual information between each feature and the class and set the root node // 1. Compute mutual information between each feature and the class and set the root node
// as the highest mutual information with the class // as the highest mutual information with the class
auto mi = vector <pair<int, float >>(); auto mi = vector <pair<int, float >>();
Tensor class_dataset = dataset.index({ "...", -1 }); Tensor class_dataset = dataset.index({ -1, "..." });
for (int i = 0; i < static_cast<int>(features.size()); ++i) { for (int i = 0; i < static_cast<int>(features.size()); ++i) {
Tensor feature_dataset = dataset.index({ "...", i }); Tensor feature_dataset = dataset.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset); auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
mi.push_back({ i, mi_value }); mi.push_back({ i, mi_value });
} }
@@ -34,7 +34,7 @@ namespace bayesnet {
model.addEdge(className, feature); model.addEdge(className, feature);
} }
} }
vector<string> TAN::graph(string title) vector<string> TAN::graph(const string& title) const
{ {
return model.graph(title); return model.graph(title);
} }

View File

@@ -7,11 +7,11 @@ namespace bayesnet {
class TAN : public Classifier { class TAN : public Classifier {
private: private:
protected: protected:
void train() override; void buildModel() override;
public: public:
TAN(); TAN();
virtual ~TAN() {}; virtual ~TAN() {};
vector<string> graph(string name = "TAN") override; vector<string> graph(const string& name = "TAN") const override;
}; };
} }
#endif #endif

31
src/BayesNet/TANLd.cc Normal file
View File

@@ -0,0 +1,31 @@
#include "TANLd.h"
namespace bayesnet {
using namespace std;
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
TAN::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor TANLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
vector<string> TANLd::graph(const string& name) const
{
return TAN::graph(name);
}
}

19
src/BayesNet/TANLd.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef TANLD_H
#define TANLD_H
#include "TAN.h"
#include "Proposal.h"
namespace bayesnet {
using namespace std;
class TANLd : public TAN, public Proposal {
private:
public:
TANLd();
virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};
}
#endif // !TANLD_H

View File

@@ -3,6 +3,7 @@
namespace bayesnet { namespace bayesnet {
using namespace std; using namespace std;
using namespace torch; using namespace torch;
// Return the indices in descending order
vector<int> argsort(vector<float>& nums) vector<int> argsort(vector<float>& nums)
{ {
int n = nums.size(); int n = nums.size();

View File

@@ -4,5 +4,5 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp) include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include) include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include) include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc) add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}") target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -207,9 +207,9 @@ namespace platform {
if (discretize) { if (discretize) {
Xd = discretizeDataset(Xv, yv); Xd = discretizeDataset(Xv, yv);
computeStates(); computeStates();
n_samples = Xd[0].size();
n_features = Xd.size();
} }
n_samples = Xv[0].size();
n_features = Xv.size();
loaded = true; loaded = true;
} }
void Dataset::buildTensors() void Dataset::buildTensors()

View File

@@ -1,6 +1,7 @@
#include "Experiment.h" #include "Experiment.h"
#include "Datasets.h" #include "Datasets.h"
#include "Models.h" #include "Models.h"
#include "Report.h"
namespace platform { namespace platform {
using json = nlohmann::json; using json = nlohmann::json;
@@ -86,6 +87,13 @@ namespace platform {
file.close(); file.close();
} }
void Experiment::report()
{
json data = build_json();
Report report(data);
report.show();
}
void Experiment::show() void Experiment::show()
{ {
json data = build_json(); json data = build_json();
@@ -104,7 +112,7 @@ namespace platform {
void Experiment::cross_validation(const string& path, const string& fileName) void Experiment::cross_validation(const string& path, const string& fileName)
{ {
auto datasets = platform::Datasets(path, true, platform::ARFF); auto datasets = platform::Datasets(path, discretized, platform::ARFF);
// Get dataset // Get dataset
auto [X, y] = datasets.getTensors(fileName); auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName); auto states = datasets.getStates(fileName);
@@ -114,7 +122,7 @@ namespace platform {
cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush; cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
// Prepare Result // Prepare Result
auto result = Result(); auto result = Result();
auto [values, counts] = at::_unique(y);; auto [values, counts] = at::_unique(y);
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0)); result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
int nResults = nfolds * static_cast<int>(randomSeeds.size()); int nResults = nfolds * static_cast<int>(randomSeeds.size());
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64); auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);

View File

@@ -108,6 +108,7 @@ namespace platform {
void cross_validation(const string& path, const string& fileName); void cross_validation(const string& path, const string& fileName);
void go(vector<string> filesToProcess, const string& path); void go(vector<string> filesToProcess, const string& path);
void show(); void show();
void report();
}; };
} }
#endif #endif

View File

@@ -6,6 +6,10 @@
#include "TAN.h" #include "TAN.h"
#include "KDB.h" #include "KDB.h"
#include "SPODE.h" #include "SPODE.h"
#include "TANLd.h"
#include "KDBLd.h"
#include "SPODELd.h"
#include "AODELd.h"
namespace platform { namespace platform {
class Models { class Models {
private: private:

67
src/Platform/Report.cc Normal file
View File

@@ -0,0 +1,67 @@
#include "Report.h"
namespace platform {
string headerLine(const string& text)
{
int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n;
return "* " + text + string(n, ' ') + "*\n";
}
string Report::fromVector(const string& key)
{
string result = "";
for (auto& item : data[key]) {
result += to_string(item) + ", ";
}
return "[" + result.substr(0, result.size() - 2) + "]";
}
string fVector(const json& data)
{
string result = "";
for (const auto& item : data) {
result += to_string(item) + ", ";
}
return "[" + result.substr(0, result.size() - 2) + "]";
}
void Report::show()
{
header();
body();
}
void Report::header()
{
cout << string(MAXL, '*') << endl;
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
cout << headerLine(data["title"].get<string>());
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
cout << headerLine("Execution took " + to_string(data["duration"].get<float>()) + " seconds, " + to_string(data["duration"].get<float>() / 3600) + " hours, on " + data["platform"].get<string>());
cout << headerLine("Score is " + data["score_name"].get<string>());
cout << string(MAXL, '*') << endl;
cout << endl;
}
void Report::body()
{
cout << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "============================== ====== ===== === ======= ======= ======= =============== ================= ===============" << endl;
for (const auto& r : data["results"]) {
cout << setw(30) << left << r["dataset"].get<string>() << " ";
cout << setw(6) << right << r["samples"].get<int>() << " ";
cout << setw(5) << right << r["features"].get<int>() << " ";
cout << setw(3) << right << r["classes"].get<int>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
cout << setw(8) << right << setprecision(6) << fixed << r["score_test"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_test_std"].get<double>() << " ";
cout << setw(10) << right << setprecision(6) << fixed << r["test_time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["test_time_std"].get<double>() << " ";
cout << " " << r["hyperparameters"].get<string>();
cout << endl;
cout << string(MAXL, '*') << endl;
cout << headerLine("Train scores: " + fVector(r["scores_train"]));
cout << headerLine("Test scores: " + fVector(r["scores_test"]));
cout << headerLine("Train times: " + fVector(r["times_train"]));
cout << headerLine("Test times: " + fVector(r["times_test"]));
cout << string(MAXL, '*') << endl;
}
}
}

23
src/Platform/Report.h Normal file
View File

@@ -0,0 +1,23 @@
#ifndef REPORT_H
#define REPORT_H
#include <string>
#include <iostream>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
const int MAXL = 121;
namespace platform {
using namespace std;
class Report {
public:
explicit Report(json data_) { data = data_; };
virtual ~Report() = default;
void show();
private:
void header();
void body();
string fromVector(const string& key);
json data;
};
};
#endif

View File

@@ -99,13 +99,13 @@ int main(int argc, char** argv)
filesToTest = platform::Datasets(path, true, platform::ARFF).getNames(); filesToTest = platform::Datasets(path, true, platform::ARFF).getNames();
saveResults = true; saveResults = true;
} }
/* /*
* Begin Processing * Begin Processing
*/ */
auto env = platform::DotEnv();
auto experiment = platform::Experiment(); auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0"); experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform("BayesNet"); experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy"); experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
for (auto seed : seeds) { for (auto seed : seeds) {
experiment.addRandomSeed(seed); experiment.addRandomSeed(seed);
@@ -117,7 +117,7 @@ int main(int argc, char** argv)
if (saveResults) if (saveResults)
experiment.save(PATH_RESULTS); experiment.save(PATH_RESULTS);
else else
experiment.show(); experiment.report();
cout << "Done!" << endl; cout << "Done!" << endl;
return 0; return 0;
} }

View File

@@ -2,10 +2,18 @@
#define MODEL_REGISTER_H #define MODEL_REGISTER_H
static platform::Registrar registrarT("TAN", static platform::Registrar registrarT("TAN",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
static platform::Registrar registrarTLD("TANLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
static platform::Registrar registrarS("SPODE", static platform::Registrar registrarS("SPODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
static platform::Registrar registrarSLD("SPODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
static platform::Registrar registrarK("KDB", static platform::Registrar registrarK("KDB",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
static platform::Registrar registrarKLD("KDBLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
static platform::Registrar registrarA("AODE", static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();}); [](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
static platform::Registrar registrarALD("AODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
#endif #endif

View File

@@ -9,29 +9,21 @@ TEST_CASE("Test Bayesian Network")
{ {
auto [Xd, y, features, className, states] = loadFile("iris"); auto [Xd, y, features, className, states] = loadFile("iris");
SECTION("Test Update Nodes")
{
auto net = bayesnet::Network();
net.addNode("A", 3);
REQUIRE(net.getStates() == 3);
net.addNode("A", 5);
REQUIRE(net.getStates() == 5);
}
SECTION("Test get features") SECTION("Test get features")
{ {
auto net = bayesnet::Network(); auto net = bayesnet::Network();
net.addNode("A", 3); net.addNode("A");
net.addNode("B", 5); net.addNode("B");
REQUIRE(net.getFeatures() == vector<string>{"A", "B"}); REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
net.addNode("C", 2); net.addNode("C");
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"}); REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
} }
SECTION("Test get edges") SECTION("Test get edges")
{ {
auto net = bayesnet::Network(); auto net = bayesnet::Network();
net.addNode("A", 3); net.addNode("A");
net.addNode("B", 5); net.addNode("B");
net.addNode("C", 2); net.addNode("C");
net.addEdge("A", "B"); net.addEdge("A", "B");
net.addEdge("B", "C"); net.addEdge("B", "C");
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } }); REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });