Compare commits

...

31 Commits

Author SHA1 Message Date
1a534888d6 Fix report format 2023-08-19 23:30:44 +02:00
59ffd179f4 Fix report format 2023-08-19 21:26:48 +02:00
9972738deb Add list datasets and add locale format 2023-08-19 19:05:16 +02:00
bafcb26bb6 Add manage to build target 2023-08-18 13:43:53 +02:00
2d7999d5f2 Add manage to release targets 2023-08-18 13:43:13 +02:00
a6bb22dfb5 Complete first BoostAODE 2023-08-18 11:50:34 +02:00
704dc937be Remove FeatureSel, add SelectKBest to BayesMetrics 2023-08-16 19:05:18 +02:00
a3e665eed6 make weights double 2023-08-16 12:46:09 +02:00
918a7b4180 Remove unneeded output 2023-08-16 12:36:38 +02:00
80b20f35b4 Fix weights mistakes in computation 2023-08-16 12:32:51 +02:00
4d4780c1d5 Add BoostAODE model based on AODE 2023-08-15 16:16:04 +02:00
fa612c531e Complete Adding weights to Models 2023-08-15 15:59:56 +02:00
24b68f9ae2 Add weigths as parameter 2023-08-15 15:04:56 +02:00
a062ebf445 Merge pull request 'reports' (#4) from reports into boostAode
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/4
2023-08-14 16:58:48 +00:00
2a3fc9aa45 Add colors and enhace input control 2023-08-14 17:03:06 +02:00
55d21294d5 Add class Paths and enhance input 2023-08-14 00:40:31 +02:00
3691cb4a61 Add totals and filter by scoreName and model 2023-08-13 18:13:00 +02:00
054567c65a Add sorting capacity 2023-08-13 17:10:18 +02:00
2729b92f06 Summary list 2023-08-13 16:19:17 +02:00
f26ea1f0ac Add weights to BayesMetrics 2023-08-13 12:56:06 +02:00
af0419c9da First approx with const 1 weights 2023-08-13 00:59:02 +02:00
90c92e5c56 Merge pull request 'Add states as result in Proposal methods' (#3) from optimize_memory into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/3
2023-08-12 14:16:55 +00:00
182b52a887 Add states as result in Proposal methods 2023-08-12 16:16:17 +02:00
6679b90a82 Merge pull request 'optimize_memory' (#2) from optimize_memory into main
Reviewed-on: https://gitea.rmontanana.es:11000/rmontanana/BayesNet/pulls/2
2023-08-12 14:15:03 +00:00
405887f833 Solved Ld poor results 2023-08-12 11:49:18 +02:00
3a85481a5a Redo pass states to Network Fit needed in crossval
fix mistake in headerline (report)
2023-08-12 11:10:53 +02:00
0ad5505c16 Spodeld working with poor accuracy 2023-08-10 02:06:18 +02:00
323444b74a const functions 2023-08-08 01:53:41 +02:00
ef1bffcac3 Fixed normal classifiers 2023-08-07 13:50:11 +02:00
06db8f51ce Refactor library and models to lighten data stored
Refactro Ensemble to inherit from Classifier insted of BaseClassifier
2023-08-07 12:49:37 +02:00
e74565ba01 update clang-tidy 2023-08-07 00:44:12 +02:00
58 changed files with 1157 additions and 443 deletions

View File

@@ -13,5 +13,4 @@ HeaderFilterRegex: 'src/*'
AnalyzeTemporaryDtors: false
WarningsAsErrors: ''
FormatStyle: file
FormatStyleOptions: ''
...

22
.vscode/launch.json vendored
View File

@@ -25,15 +25,35 @@
"program": "${workspaceFolder}/build/src/Platform/main",
"args": [
"-m",
"AODELd",
"BoostAODE",
"-p",
"/Users/rmontanana/Code/discretizbench/datasets",
"--discretize",
"--stratified",
"-d",
"iris"
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "manage",
"program": "${workspaceFolder}/build/src/Platform/manage",
"args": [
"-n",
"20"
],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "list",
"program": "${workspaceFolder}/build/src/Platform/list",
"args": [],
"cwd": "/Users/rmontanana/Code/discretizbench",
},
{
"name": "Build & debug active file",
"type": "cppdbg",

23
.vscode/tasks.json vendored
View File

@@ -32,6 +32,29 @@
],
"group": "build",
"detail": "Task generated by Debugger."
},
{
"type": "cppbuild",
"label": "C/C++: g++ build active file",
"command": "/usr/bin/g++",
"args": [
"-fdiagnostics-color=always",
"-g",
"${file}",
"-o",
"${fileDirname}/${fileBasenameNoExtension}"
],
"options": {
"cwd": "${fileDirname}"
},
"problemMatcher": [
"$gcc"
],
"group": {
"kind": "build",
"isDefault": true
},
"detail": "Task generated by Debugger."
}
]
}

View File

@@ -15,7 +15,7 @@ dependency: ## Create a dependency graph diagram of the project (build/dependenc
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the main and BayesNetSample
cmake --build build -t main -t BayesNetSample -j 32
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32
clean: ## Clean the debug info
@echo ">>> Cleaning Debug BayesNet ...";
@@ -35,7 +35,7 @@ release: ## Build a Release version of the project
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build -D CMAKE_BUILD_TYPE=Release; \
cmake --build build -t main -t BayesNetSample -j 32;
cmake --build build -t main -t BayesNetSample -t manage -t list -j 32;
@echo ">>> Done";
test: ## Run tests

View File

@@ -1,2 +1 @@
add_library(ArffFiles ArffFiles.cc)
#target_link_libraries(BayesNet "${TORCH_LIBRARIES}")

View File

@@ -141,43 +141,58 @@ int main(int argc, char** argv)
/*
* Begin Processing
*/
auto handler = ArffFiles();
handler.load(complete_file_name, class_last);
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features),
[](const pair<string, string>& item) { return item.first; });
// Discretize Dataset
auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name);
clf->fit(Xd, y, features, className, states);
if (dump_cpt) {
cout << "--- CPT Tables ---" << endl;
clf->dump_cpt();
}
auto lines = clf->show();
for (auto line : lines) {
cout << line << endl;
}
cout << "--- Topological Order ---" << endl;
auto order = clf->topological_order();
for (auto name : order) {
cout << name << ", ";
}
cout << "end." << endl;
auto score = clf->score(Xd, y);
cout << "Score: " << score << endl;
auto ypred = torch::tensor({ 1,2,3,2,2,3,4,5,2,1 });
auto y = torch::tensor({ 0,0,0,0,2,3,4,0,0,0 });
auto weights = torch::ones({ 10 }, kDouble);
auto mask = ypred == y;
cout << "ypred:" << ypred << endl;
cout << "y:" << y << endl;
cout << "weights:" << weights << endl;
cout << "mask:" << mask << endl;
double value_to_add = 0.5;
weights += mask.to(torch::kDouble) * value_to_add;
cout << "New weights:" << weights << endl;
auto masked_weights = weights * mask.to(weights.dtype());
double sum_of_weights = masked_weights.sum().item<double>();
cout << "Sum of weights: " << sum_of_weights << endl;
//weights.index_put_({ mask }, weights + 10);
// auto handler = ArffFiles();
// handler.load(complete_file_name, class_last);
// // Get Dataset X, y
// vector<mdlp::samples_t>& X = handler.getX();
// mdlp::labels_t& y = handler.getY();
// // Get className & Features
// auto className = handler.getClassName();
// vector<string> features;
// auto attributes = handler.getAttributes();
// transform(attributes.begin(), attributes.end(), back_inserter(features),
// [](const pair<string, string>& item) { return item.first; });
// // Discretize Dataset
// auto [Xd, maxes] = discretize(X, y, features);
// maxes[className] = *max_element(y.begin(), y.end()) + 1;
// map<string, vector<int>> states;
// for (auto feature : features) {
// states[feature] = vector<int>(maxes[feature]);
// }
// states[className] = vector<int>(maxes[className]);
// auto clf = platform::Models::instance()->create(model_name);
// clf->fit(Xd, y, features, className, states);
// if (dump_cpt) {
// cout << "--- CPT Tables ---" << endl;
// clf->dump_cpt();
// }
// auto lines = clf->show();
// for (auto line : lines) {
// cout << line << endl;
// }
// cout << "--- Topological Order ---" << endl;
// auto order = clf->topological_order();
// for (auto name : order) {
// cout << name << ", ";
// }
// cout << "end." << endl;
// auto score = clf->score(Xd, y);
// cout << "Score: " << score << endl;
// auto graph = clf->graph();
// auto dot_file = model_name + "_" + file_name;
// ofstream file(dot_file + ".dot");

View File

@@ -2,14 +2,16 @@
namespace bayesnet {
AODE::AODE() : Ensemble() {}
void AODE::train()
void AODE::buildModel(const torch::Tensor& weights)
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODE>(i));
}
n_models = models.size();
significanceModels = vector<double>(n_models, 1.0);
}
vector<string> AODE::graph(const string& title)
vector<string> AODE::graph(const string& title) const
{
return Ensemble::graph(title);
}

View File

@@ -5,11 +5,11 @@
namespace bayesnet {
class AODE : public Ensemble {
protected:
void train() override;
void buildModel(const torch::Tensor& weights) override;
public:
AODE();
virtual ~AODE() {};
vector<string> graph(const string& title = "AODE") override;
vector<string> graph(const string& title = "AODE") const override;
};
}
#endif

View File

@@ -1,33 +1,39 @@
#include "AODELd.h"
#include "Models.h"
namespace bayesnet {
using namespace std;
AODELd::AODELd() : Ensemble(), Proposal(Ensemble::Xv, Ensemble::yv, features, className) {}
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
states = states_;
train();
for (const auto& model : models) {
model->fit(X_, y_, features_, className_, states_);
}
n_models = models.size();
fitted = true;
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
Ensemble::fit(dataset, features, className, states);
return *this;
}
void AODELd::train()
void AODELd::buildModel(const torch::Tensor& weights)
{
models.clear();
for (int i = 0; i < features.size(); ++i) {
models.push_back(std::make_unique<SPODELd>(i));
}
n_models = models.size();
}
Tensor AODELd::predict(Tensor& X)
void AODELd::trainModel(const torch::Tensor& weights)
{
return Ensemble::predict(X);
for (const auto& model : models) {
model->fit(Xf, y, features, className, states);
}
}
vector<string> AODELd::graph(const string& name)
vector<string> AODELd::graph(const string& name) const
{
return Ensemble::graph(name);
}

View File

@@ -7,13 +7,14 @@
namespace bayesnet {
using namespace std;
class AODELd : public Ensemble, public Proposal {
protected:
void trainModel(const torch::Tensor& weights) override;
void buildModel(const torch::Tensor& weights) override;
public:
AODELd();
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_) override;
virtual ~AODELd() = default;
AODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "AODE") override;
Tensor predict(Tensor& X) override;
void train() override;
vector<string> graph(const string& name = "AODE") const override;
static inline string version() { return "0.0.1"; };
};
}

View File

@@ -5,24 +5,28 @@
namespace bayesnet {
using namespace std;
class BaseClassifier {
protected:
virtual void trainModel(const torch::Tensor& weights) = 0;
public:
// X is nxm vector, y is nx1 vector
virtual BaseClassifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
// X is nxm tensor, y is nx1 tensor
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) = 0;
virtual BaseClassifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) = 0;
virtual ~BaseClassifier() = default;
torch::Tensor virtual predict(torch::Tensor& X) = 0;
vector<int> virtual predict(vector<vector<int>>& X) = 0;
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
int virtual getNumberOfNodes() = 0;
int virtual getNumberOfEdges() = 0;
int virtual getNumberOfStates() = 0;
vector<string> virtual show() = 0;
vector<string> virtual graph(const string& title = "") = 0;
int virtual getNumberOfNodes()const = 0;
int virtual getNumberOfEdges()const = 0;
int virtual getNumberOfStates() const = 0;
vector<string> virtual show() const = 0;
vector<string> virtual graph(const string& title = "") const = 0;
const string inline getVersion() const { return "0.1.0"; };
vector<string> virtual topological_order() = 0;
void virtual dump_cpt() = 0;
void virtual dump_cpt()const = 0;
};
}
#endif

View File

@@ -2,7 +2,7 @@
#include "Mst.h"
namespace bayesnet {
//samples is nxm tensor used to fit the model
Metrics::Metrics(torch::Tensor& samples, vector<string>& features, string& className, int classNumStates)
Metrics::Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates)
: samples(samples)
, features(features)
, className(className)
@@ -21,6 +21,31 @@ namespace bayesnet {
}
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
}
vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, unsigned k)
{
auto n = samples.size(0) - 1;
if (k == 0) {
k = n;
}
// compute scores
scoresKBest.reserve(n);
auto label = samples.index({ -1, "..." });
for (int i = 0; i < n; ++i) {
scoresKBest.push_back(mutualInformation(label, samples.index({ i, "..." }), weights));
featuresKBest.push_back(i);
}
// sort & reduce scores and features
sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
{ return scoresKBest[i] > scoresKBest[j]; });
sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
featuresKBest.resize(k);
scoresKBest.resize(k);
return featuresKBest;
}
vector<double> Metrics::getScoresKBest() const
{
return scoresKBest;
}
vector<pair<string, string>> Metrics::doCombinations(const vector<string>& source)
{
vector<pair<string, string>> result;
@@ -32,17 +57,18 @@ namespace bayesnet {
}
return result;
}
torch::Tensor Metrics::conditionalEdge()
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
{
auto result = vector<double>();
auto source = vector<string>(features);
source.push_back(className);
auto combinations = doCombinations(source);
double totalWeight = weights.sum().item<double>();
// Compute class prior
auto margin = torch::zeros({ classNumStates });
auto margin = torch::zeros({ classNumStates }, torch::kFloat);
for (int value = 0; value < classNumStates; ++value) {
auto mask = samples.index({ -1, "..." }) == value;
margin[value] = mask.sum().item<float>() / samples.size(1);
margin[value] = mask.sum().item<double>() / samples.size(1);
}
for (auto [first, second] : combinations) {
int index_first = find(features.begin(), features.end(), first) - features.begin();
@@ -52,8 +78,9 @@ namespace bayesnet {
auto mask = samples.index({ -1, "..." }) == value;
auto first_dataset = samples.index({ index_first, mask });
auto second_dataset = samples.index({ index_second, mask });
auto mi = mutualInformation(first_dataset, second_dataset);
auto pb = margin[value].item<float>();
auto weights_dataset = weights.index({ mask });
auto mi = mutualInformation(first_dataset, second_dataset, weights_dataset);
auto pb = margin[value].item<double>();
accumulated += pb * mi;
}
result.push_back(accumulated);
@@ -70,31 +97,32 @@ namespace bayesnet {
return matrix;
}
// To use in Python
vector<float> Metrics::conditionalEdgeWeights()
vector<float> Metrics::conditionalEdgeWeights(vector<float>& weights_)
{
auto matrix = conditionalEdge();
const torch::Tensor weights = torch::tensor(weights_);
auto matrix = conditionalEdge(weights);
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
return v;
}
double Metrics::entropy(torch::Tensor& feature)
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
{
torch::Tensor counts = feature.bincount();
int totalWeight = counts.sum().item<int>();
torch::Tensor counts = feature.bincount(weights);
double totalWeight = counts.sum().item<double>();
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
torch::Tensor logProbs = torch::log(probs);
torch::Tensor entropy = -probs * logProbs;
return entropy.nansum().item<double>();
}
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double Metrics::conditionalEntropy(torch::Tensor& firstFeature, torch::Tensor& secondFeature)
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount();
torch::Tensor featureCounts = secondFeature.bincount(weights);
unordered_map<int, unordered_map<int, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += 1;
totalWeight += 1;
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += weights[i].item<double>();
totalWeight += weights[i].item<float>();
}
if (totalWeight == 0)
return 0;
@@ -115,16 +143,16 @@ namespace bayesnet {
return entropyValue;
}
// I(X;Y) = H(Y) - H(Y|X)
double Metrics::mutualInformation(torch::Tensor& firstFeature, torch::Tensor& secondFeature)
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
{
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
}
/*
Compute the maximum spanning tree considering the weights as distances
and the indices of the weights as nodes of this square matrix using
Kruskal algorithm
*/
vector<pair<int, int>> Metrics::maximumSpanningTree(vector<string> features, Tensor& weights, int root)
vector<pair<int, int>> Metrics::maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root)
{
auto mst = MST(features, weights, root);
return mst.maximumSpanningTree();

View File

@@ -12,17 +12,21 @@ namespace bayesnet {
vector<string> features;
string className;
int classNumStates = 0;
vector<double> scoresKBest;
vector<int> featuresKBest; // sorted indices of the features
double entropy(const Tensor& feature, const Tensor& weights);
double conditionalEntropy(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<pair<string, string>> doCombinations(const vector<string>&);
public:
Metrics() = default;
Metrics(Tensor&, vector<string>&, string&, int);
Metrics(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&, const int);
double entropy(Tensor&);
double conditionalEntropy(Tensor&, Tensor&);
double mutualInformation(Tensor&, Tensor&);
vector<float> conditionalEdgeWeights(); // To use in Python
Tensor conditionalEdge();
vector<pair<string, string>> doCombinations(const vector<string>&);
vector<pair<int, int>> maximumSpanningTree(vector<string> features, Tensor& weights, int root);
Metrics(const torch::Tensor& samples, const vector<string>& features, const string& className, const int classNumStates);
Metrics(const vector<vector<int>>& vsamples, const vector<int>& labels, const vector<string>& features, const string& className, const int classNumStates);
vector<int> SelectKBestWeighted(const torch::Tensor& weights, unsigned k = 0);
vector<double> getScoresKBest() const;
double mutualInformation(const Tensor& firstFeature, const Tensor& secondFeature, const Tensor& weights);
vector<float> conditionalEdgeWeights(vector<float>& weights); // To use in Python
Tensor conditionalEdge(const torch::Tensor& weights);
vector<pair<int, int>> maximumSpanningTree(const vector<string>& features, const Tensor& weights, const int root);
};
}
#endif

82
src/BayesNet/BoostAODE.cc Normal file
View File

@@ -0,0 +1,82 @@
#include "BoostAODE.h"
#include "BayesMetrics.h"
namespace bayesnet {
BoostAODE::BoostAODE() : Ensemble() {}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
}
void BoostAODE::trainModel(const torch::Tensor& weights)
{
models.clear();
n_models = 0;
int max_models = .1 * n > 10 ? .1 * n : n;
Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
auto X_ = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
auto y_ = dataset.index({ -1, "..." });
bool exitCondition = false;
bool repeatSparent = false;
vector<int> featuresUsed;
// Step 0: Set the finish condition
// if not repeatSparent a finish condition is run out of features
// n_models == max_models
int numClasses = states[className].size();
while (!exitCondition) {
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, n); // Get all the features sorted
auto feature = featureSelection[0];
unique_ptr<Classifier> model;
if (!repeatSparent) {
if (n_models == 0) {
models.resize(n); // Resize for n==nfeatures SPODEs
significanceModels.resize(n);
}
bool found = false;
for (int i = 0; i < featureSelection.size(); ++i) {
if (find(featuresUsed.begin(), featuresUsed.end(), i) != featuresUsed.end()) {
continue;
}
found = true;
feature = i;
featuresUsed.push_back(feature);
n_models++;
break;
}
if (!found) {
exitCondition = true;
continue;
}
}
model = std::make_unique<SPODE>(feature);
model->fit(dataset, features, className, states, weights_);
auto ypred = model->predict(X_);
// Step 3.1: Compute the classifier amout of say
auto mask_wrong = ypred != y_;
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
double wrongWeights = masked_weights.sum().item<double>();
double significance = wrongWeights == 0 ? 1 : 0.5 * log((1 - wrongWeights) / wrongWeights);
// Step 3.2: Update weights for next classifier
// Step 3.2.1: Update weights of wrong samples
weights_ += mask_wrong.to(weights_.dtype()) * exp(significance) * weights_;
// Step 3.3: Normalise the weights
double totalWeights = torch::sum(weights_).item<double>();
weights_ = weights_ / totalWeights;
// Step 3.4: Store classifier and its accuracy to weigh its future vote
if (!repeatSparent) {
models[feature] = std::move(model);
significanceModels[feature] = significance;
} else {
models.push_back(std::move(model));
significanceModels.push_back(significance);
n_models++;
}
exitCondition = n_models == max_models;
}
weights.copy_(weights_);
}
vector<string> BoostAODE::graph(const string& title) const
{
return Ensemble::graph(title);
}
}

16
src/BayesNet/BoostAODE.h Normal file
View File

@@ -0,0 +1,16 @@
#ifndef BOOSTAODE_H
#define BOOSTAODE_H
#include "Ensemble.h"
#include "SPODE.h"
namespace bayesnet {
class BoostAODE : public Ensemble {
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights) override;
public:
BoostAODE();
virtual ~BoostAODE() {};
vector<string> graph(const string& title = "BoostAODE") const override;
};
}
#endif

View File

@@ -1,5 +1,8 @@
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc Mst.cc Proposal.cc)
target_link_libraries(BayesNet mdlp ArffFiles "${TORCH_LIBRARIES}")
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
Mst.cc Proposal.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")

View File

@@ -5,63 +5,74 @@ namespace bayesnet {
using namespace torch;
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states)
Classifier& Classifier::build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
{
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
this->features = features;
this->className = className;
this->states = states;
m = dataset.size(1);
n = dataset.size(0) - 1;
checkFitParameters();
auto n_classes = states[className].size();
metrics = Metrics(samples, features, className, n_classes);
metrics = Metrics(dataset, features, className, n_classes);
model.initialize();
train();
if (Xv.empty()) {
// fit with tensors
model.fit(X, y, features, className);
} else {
// fit with vectors
model.fit(Xv, yv, features, className);
}
buildModel(weights);
trainModel(weights);
fitted = true;
return *this;
}
void Classifier::buildDataset(Tensor& ytmp)
{
try {
auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
dataset = torch::cat({ dataset, yresized }, 0);
}
catch (const std::exception& e) {
std::cerr << e.what() << '\n';
cout << "X dimensions: " << dataset.sizes() << "\n";
cout << "y dimensions: " << ytmp.sizes() << "\n";
exit(1);
}
}
void Classifier::trainModel(const torch::Tensor& weights)
{
model.fit(dataset, weights, features, className, states);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = X;
this->y = y;
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
return build(features, className, states);
}
void Classifier::generateTensorXFromVector()
{
X = torch::zeros({ static_cast<int>(Xv.size()), static_cast<int>(Xv[0].size()) }, kInt32);
for (int i = 0; i < Xv.size(); ++i) {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], kInt32));
}
dataset = X;
buildDataset(y);
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
// X is nxm where n is the number of features and m the number of samples
Classifier& Classifier::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
Xv = X;
generateTensorXFromVector();
this->y = torch::tensor(y, kInt32);
yv = y;
return build(features, className, states);
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, kInt32);
for (int i = 0; i < X.size(); ++i) {
dataset.index_put_({ i, "..." }, torch::tensor(X[i], kInt32));
}
auto ytmp = torch::tensor(y, kInt32);
buildDataset(ytmp);
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->dataset = dataset;
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
return build(features, className, states, weights);
}
Classifier& Classifier::fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights)
{
this->dataset = dataset;
return build(features, className, states, weights);
}
void Classifier::checkFitParameters()
{
auto sizes = X.sizes();
m = sizes[1];
n = sizes[0];
if (m != y.size(0)) {
throw invalid_argument("X and y must have the same number of samples");
}
if (n != features.size()) {
throw invalid_argument("X and features must have the same number of features");
throw invalid_argument("X " + to_string(n) + " and features " + to_string(features.size()) + " must have the same number of features");
}
if (states.find(className) == states.end()) {
throw invalid_argument("className not found in states");
@@ -108,7 +119,7 @@ namespace bayesnet {
}
return model.score(X, y);
}
vector<string> Classifier::show()
vector<string> Classifier::show() const
{
return model.show();
}
@@ -120,16 +131,16 @@ namespace bayesnet {
}
model.addNode(className);
}
int Classifier::getNumberOfNodes()
int Classifier::getNumberOfNodes() const
{
// Features does not include class
return fitted ? model.getFeatures().size() + 1 : 0;
}
int Classifier::getNumberOfEdges()
int Classifier::getNumberOfEdges() const
{
return fitted ? model.getEdges().size() : 0;
return fitted ? model.getNumEdges() : 0;
}
int Classifier::getNumberOfStates()
int Classifier::getNumberOfStates() const
{
return fitted ? model.getStates() : 0;
}
@@ -137,9 +148,8 @@ namespace bayesnet {
{
return model.topological_sort();
}
void Classifier::dump_cpt()
void Classifier::dump_cpt() const
{
model.dump_cpt();
}
}

View File

@@ -10,39 +10,38 @@ using namespace torch;
namespace bayesnet {
class Classifier : public BaseClassifier {
private:
bool fitted;
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states);
void buildDataset(torch::Tensor& y);
Classifier& build(vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights);
protected:
Network model;
bool fitted;
int m, n; // m: number of samples, n: number of features
Tensor X; // nxm tensor
vector<vector<int>> Xv; // nxm vector
Tensor y;
vector<int> yv;
Tensor samples; // (n+1)xm tensor
Network model;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
Tensor dataset; // (n+1)xm tensor
void checkFitParameters();
void generateTensorXFromVector();
virtual void train() = 0;
virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel(const torch::Tensor& weights) override;
public:
Classifier(Network model);
virtual ~Classifier() = default;
Classifier& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
Classifier& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states, const torch::Tensor& weights) override;
void addNodes();
int getNumberOfNodes() override;
int getNumberOfEdges() override;
int getNumberOfStates() override;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override;
vector<string> show() override;
vector<string> topological_order() override;
void dump_cpt() override;
vector<string> show() const override;
vector<string> topological_order() override;
void dump_cpt() const override;
};
}
#endif

View File

@@ -3,63 +3,24 @@
namespace bayesnet {
using namespace torch;
Ensemble::Ensemble() : n_models(0), metrics(Metrics()), fitted(false) {}
Ensemble& Ensemble::build(vector<string>& features, string className, map<string, vector<int>>& states)
Ensemble::Ensemble() : Classifier(Network()) {}
void Ensemble::trainModel(const torch::Tensor& weights)
{
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
this->features = features;
this->className = className;
this->states = states;
auto n_classes = states[className].size();
metrics = Metrics(samples, features, className, n_classes);
// Build models
train();
// Train models
n_models = models.size();
for (auto i = 0; i < n_models; ++i) {
if (Xv.empty()) {
// fit with tensors
models[i]->fit(X, y, features, className, states);
} else {
// fit with vectors
models[i]->fit(Xv, yv, features, className, states);
}
// fit with vectors
models[i]->fit(dataset, features, className, states);
}
fitted = true;
return *this;
}
void Ensemble::generateTensorXFromVector()
{
X = torch::zeros({ static_cast<int>(Xv.size()), static_cast<int>(Xv[0].size()) }, kInt32);
for (int i = 0; i < Xv.size(); ++i) {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], kInt32));
}
}
Ensemble& Ensemble::fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
this->X = X;
this->y = y;
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
return build(features, className, states);
}
Ensemble& Ensemble::fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states)
{
Xv = X;
generateTensorXFromVector();
this->y = torch::tensor(y, kInt32);
yv = y;
return build(features, className, states);
}
vector<int> Ensemble::voting(Tensor& y_pred)
{
auto y_pred_ = y_pred.accessor<int, 2>();
vector<int> y_pred_final;
for (int i = 0; i < y_pred.size(0); ++i) {
vector<float> votes(y_pred.size(1), 0);
vector<double> votes(y_pred.size(1), 0);
for (int j = 0; j < y_pred.size(1); ++j) {
votes[y_pred_[i][j]] += 1;
votes[y_pred_[i][j]] += significanceModels[j];
}
// argsort in descending order
auto indices = argsort(votes);
@@ -132,9 +93,8 @@ namespace bayesnet {
}
}
return (double)correct / y_pred.size();
}
vector<string> Ensemble::show()
vector<string> Ensemble::show() const
{
auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) {
@@ -143,7 +103,7 @@ namespace bayesnet {
}
return result;
}
vector<string> Ensemble::graph(const string& title)
vector<string> Ensemble::graph(const string& title) const
{
auto result = vector<string>();
for (auto i = 0; i < n_models; ++i) {
@@ -152,7 +112,7 @@ namespace bayesnet {
}
return result;
}
int Ensemble::getNumberOfNodes()
int Ensemble::getNumberOfNodes() const
{
int nodes = 0;
for (auto i = 0; i < n_models; ++i) {
@@ -160,7 +120,7 @@ namespace bayesnet {
}
return nodes;
}
int Ensemble::getNumberOfEdges()
int Ensemble::getNumberOfEdges() const
{
int edges = 0;
for (auto i = 0; i < n_models; ++i) {
@@ -168,7 +128,7 @@ namespace bayesnet {
}
return edges;
}
int Ensemble::getNumberOfStates()
int Ensemble::getNumberOfStates() const
{
int nstates = 0;
for (auto i = 0; i < n_models; ++i) {

View File

@@ -8,44 +8,32 @@ using namespace std;
using namespace torch;
namespace bayesnet {
class Ensemble : public BaseClassifier {
class Ensemble : public Classifier {
private:
Ensemble& build(vector<string>& features, string className, map<string, vector<int>>& states);
protected:
unsigned n_models;
bool fitted;
vector<unique_ptr<Classifier>> models;
Tensor X;
vector<vector<int>> Xv;
Tensor y;
vector<int> yv;
Tensor samples;
Metrics metrics;
vector<string> features;
string className;
map<string, vector<int>> states;
void virtual train() = 0;
vector<double> significanceModels;
void trainModel(const torch::Tensor& weights) override;
vector<int> voting(Tensor& y_pred);
void generateTensorXFromVector();
public:
Ensemble();
virtual ~Ensemble() = default;
Ensemble& fit(vector<vector<int>>& X, vector<int>& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Ensemble& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
Tensor predict(Tensor& X) override;
vector<int> predict(vector<vector<int>>& X) override;
float score(Tensor& X, Tensor& y) override;
float score(vector<vector<int>>& X, vector<int>& y) override;
int getNumberOfNodes() override;
int getNumberOfEdges() override;
int getNumberOfStates() override;
vector<string> show() override;
vector<string> graph(const string& title) override;
vector<string> topological_order() override
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
vector<string> show() const override;
vector<string> graph(const string& title) const override;
vector<string> topological_order() override
{
return vector<string>();
}
void dump_cpt() override
void dump_cpt() const override
{
}
};

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
using namespace torch;
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::train()
void KDB::buildModel(const torch::Tensor& weights)
{
/*
1. For each feature Xi, compute mutual information, I(X;C),
@@ -28,13 +28,14 @@ namespace bayesnet {
// 1. For each feature Xi, compute mutual information, I(X;C),
// where C is the class.
addNodes();
vector <float> mi;
const Tensor& y = dataset.index({ -1, "..." });
vector<double> mi;
for (auto i = 0; i < features.size(); i++) {
Tensor firstFeature = X.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y));
Tensor firstFeature = dataset.index({ i, "..." });
mi.push_back(metrics.mutualInformation(firstFeature, y, weights));
}
// 2. Compute class conditional mutual information I(Xi;XjIC), f or each
auto conditionalEdgeWeights = metrics.conditionalEdge();
auto conditionalEdgeWeights = metrics.conditionalEdge(weights);
// 3. Let the used variable list, S, be empty.
vector<int> S;
// 4. Let the DAG network being constructed, BN, begin with a single
@@ -78,7 +79,7 @@ namespace bayesnet {
exit_cond = num == n_edges || candidates.size(0) == 0;
}
}
vector<string> KDB::graph(const string& title)
vector<string> KDB::graph(const string& title) const
{
string header{ title };
if (title == "KDB") {

View File

@@ -1,5 +1,6 @@
#ifndef KDB_H
#define KDB_H
#include <torch/torch.h>
#include "Classifier.h"
#include "bayesnetUtils.h"
namespace bayesnet {
@@ -11,11 +12,11 @@ namespace bayesnet {
float theta;
void add_m_edges(int idx, vector<int>& S, Tensor& weights);
protected:
void train() override;
void buildModel(const torch::Tensor& weights) override;
public:
explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {};
vector<string> graph(const string& name = "KDB") override;
vector<string> graph(const string& name = "KDB") const override;
};
}
#endif

View File

@@ -2,7 +2,7 @@
namespace bayesnet {
using namespace std;
KDBLd::KDBLd(int k) : KDB(k), Proposal(KDB::Xv, KDB::yv, features, className) {}
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
@@ -11,16 +11,11 @@ namespace bayesnet {
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
fit_local_discretization(states, y);
generateTensorXFromVector();
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
KDB::fit(KDB::Xv, KDB::yv, features, className, states);
localDiscretizationProposal(states, model);
generateTensorXFromVector();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
model.fit(KDB::Xv, KDB::yv, features, className);
KDB::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor KDBLd::predict(Tensor& X)
@@ -28,7 +23,7 @@ namespace bayesnet {
auto Xt = prepareX(X);
return KDB::predict(Xt);
}
vector<string> KDBLd::graph(const string& name)
vector<string> KDBLd::graph(const string& name) const
{
return KDB::graph(name);
}

View File

@@ -11,7 +11,7 @@ namespace bayesnet {
explicit KDBLd(int k);
virtual ~KDBLd() = default;
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "KDB") override;
vector<string> graph(const string& name = "KDB") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};

View File

@@ -94,7 +94,7 @@ namespace bayesnet {
return result;
}
MST::MST(vector<string>& features, Tensor& weights, int root) : features(features), weights(weights), root(root) {}
MST::MST(const vector<string>& features, const Tensor& weights, const int root) : features(features), weights(weights), root(root) {}
vector<pair<int, int>> MST::maximumSpanningTree()
{
auto num_features = features.size();

View File

@@ -13,7 +13,7 @@ namespace bayesnet {
int root = 0;
public:
MST() = default;
MST(vector<string>& features, Tensor& weights, int root);
MST(const vector<string>& features, const Tensor& weights, const int root);
vector<pair<int, int>> maximumSpanningTree();
};
class Graph {

View File

@@ -5,7 +5,6 @@
namespace bayesnet {
Network::Network() : features(vector<string>()), className(""), classNumStates(0), fitted(false) {}
Network::Network(float maxT) : features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
getmaxThreads()), fitted(other.fitted)
{
@@ -20,7 +19,6 @@ namespace bayesnet {
classNumStates = 0;
fitted = false;
nodes.clear();
dataset.clear();
samples = torch::Tensor();
}
float Network::getmaxThreads()
@@ -44,15 +42,15 @@ namespace bayesnet {
}
nodes[name] = std::make_unique<Node>(name);
}
vector<string> Network::getFeatures()
vector<string> Network::getFeatures() const
{
return features;
}
int Network::getClassNumStates()
int Network::getClassNumStates() const
{
return classNumStates;
}
int Network::getStates()
int Network::getStates() const
{
int result = 0;
for (auto& node : nodes) {
@@ -60,7 +58,7 @@ namespace bayesnet {
}
return result;
}
string Network::getClassName()
string Network::getClassName() const
{
return className;
}
@@ -105,8 +103,11 @@ namespace bayesnet {
{
return nodes;
}
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className)
void Network::checkFitData(int n_samples, int n_features, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights)
{
if (weights.size(0) != n_samples) {
throw invalid_argument("Weights (" + to_string(weights.size(0)) + ") must have the same number of elements as samples (" + to_string(n_samples) + ") in Network::fit");
}
if (n_samples != n_samples_y) {
throw invalid_argument("X and y must have the same number of samples in Network::fit (" + to_string(n_samples) + " != " + to_string(n_samples_y) + ")");
}
@@ -123,50 +124,56 @@ namespace bayesnet {
if (find(features.begin(), features.end(), feature) == features.end()) {
throw invalid_argument("Feature " + feature + " not found in Network::features");
}
if (states.find(feature) == states.end()) {
throw invalid_argument("Feature " + feature + " not found in states");
}
}
}
void Network::setStates()
void Network::setStates(const map<string, vector<int>>& states)
{
// Set states to every Node in the network
for (int i = 0; i < features.size(); ++i) {
nodes[features[i]]->setNumStates(static_cast<int>(torch::max(samples.index({ i, "..." })).item<int>()) + 1);
nodes[features[i]]->setNumStates(states.at(features[i]).size());
}
classNumStates = nodes[className]->getNumStates();
}
// X comes in nxm, where n is the number of features and m the number of samples
void Network::fit(torch::Tensor& X, torch::Tensor& y, const vector<string>& featureNames, const string& className)
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className);
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
this->className = className;
dataset.clear();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X , ytmp }, 0);
for (int i = 0; i < featureNames.size(); ++i) {
auto row_feature = X.index({ i, "..." });
dataset[featureNames[i]] = vector<int>(row_feature.data_ptr<int>(), row_feature.data_ptr<int>() + row_feature.size(0));;
}
dataset[className] = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
completeFit();
completeFit(states, weights);
}
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
this->className = className;
this->samples = samples;
completeFit(states, weights);
}
// input_data comes in nxm, where n is the number of features and m the number of samples
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className)
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights_, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states)
{
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className);
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
this->className = className;
dataset.clear();
// Build dataset & tensor of samples (nxm) (n+1 because of the class)
// Build tensor of samples (nxm) (n+1 because of the class)
samples = torch::zeros({ static_cast<int>(input_data.size() + 1), static_cast<int>(input_data[0].size()) }, torch::kInt32);
for (int i = 0; i < featureNames.size(); ++i) {
dataset[featureNames[i]] = input_data[i];
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
}
dataset[className] = labels;
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
completeFit();
completeFit(states, weights);
}
void Network::completeFit()
void Network::completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights)
{
setStates();
setStates(states);
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
if (maxThreadsRunning < 1) {
maxThreadsRunning = 1;
@@ -179,7 +186,7 @@ namespace bayesnet {
while (nextNodeIndex < nodes.size()) {
unique_lock<mutex> lock(mtx);
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
while (true) {
unique_lock<mutex> lock(mtx);
if (nextNodeIndex >= nodes.size()) {
@@ -188,7 +195,7 @@ namespace bayesnet {
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
++nextNodeIndex;
lock.unlock();
pair.second->computeCPT(dataset, laplaceSmoothing);
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
lock.lock();
nodes[pair.first] = std::move(pair.second);
lock.unlock();
@@ -212,7 +219,7 @@ namespace bayesnet {
torch::Tensor result;
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
for (int i = 0; i < samples.size(1); ++i) {
auto sample = samples.index({ "...", i });
const Tensor sample = samples.index({ "...", i });
auto psample = predict_sample(sample);
auto temp = torch::tensor(psample, torch::kFloat64);
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
@@ -328,22 +335,22 @@ namespace bayesnet {
mutex mtx;
for (int i = 0; i < classNumStates; ++i) {
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
auto completeEvidence = map<string, int>(evidence);
completeEvidence[getClassName()] = i;
auto completeEvidence = map<string, int>(evidence);
completeEvidence[getClassName()] = i;
double factor = computeFactor(completeEvidence);
lock_guard<mutex> lock(mtx);
result[i] = factor;
});
});
}
for (auto& thread : threads) {
thread.join();
}
// Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0);
transform(result.begin(), result.end(), result.begin(), [sum](double& value) { return value / sum; });
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
return result;
}
vector<string> Network::show()
vector<string> Network::show() const
{
vector<string> result;
// Draw the network
@@ -356,7 +363,7 @@ namespace bayesnet {
}
return result;
}
vector<string> Network::graph(const string& title)
vector<string> Network::graph(const string& title) const
{
auto output = vector<string>();
auto prefix = "digraph BayesNet {\nlabel=<BayesNet ";
@@ -370,7 +377,7 @@ namespace bayesnet {
output.push_back("}\n");
return output;
}
vector<pair<string, string>> Network::getEdges()
vector<pair<string, string>> Network::getEdges() const
{
auto edges = vector<pair<string, string>>();
for (const auto& node : nodes) {
@@ -382,6 +389,10 @@ namespace bayesnet {
}
return edges;
}
int Network::getNumEdges() const
{
return getEdges().size();
}
vector<string> Network::topological_sort()
{
/* Check if al the fathers of every node are before the node */
@@ -420,10 +431,11 @@ namespace bayesnet {
}
return result;
}
void Network::dump_cpt()
void Network::dump_cpt() const
{
for (auto& node : nodes) {
cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << endl;
cout << node.second->getCPT() << endl;
}
}
}

View File

@@ -8,29 +8,23 @@ namespace bayesnet {
class Network {
private:
map<string, unique_ptr<Node>> nodes;
map<string, vector<int>> dataset;
bool fitted;
float maxThreads = 0.95;
int classNumStates;
vector<string> features; // Including class
vector<string> features; // Including classname
string className;
int laplaceSmoothing = 1;
double laplaceSmoothing;
torch::Tensor samples; // nxm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
vector<double> predict_sample(const vector<int>&);
vector<double> predict_sample(const torch::Tensor&);
vector<double> exactInference(map<string, int>&);
double computeFactor(map<string, int>&);
double mutual_info(torch::Tensor&, torch::Tensor&);
double entropy(torch::Tensor&);
double conditionalEntropy(torch::Tensor&, torch::Tensor&);
double mutualInformation(torch::Tensor&, torch::Tensor&);
void completeFit();
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className);
void setStates();
void completeFit(const map<string, vector<int>>& states, const torch::Tensor& weights);
void checkFitData(int n_features, int n_samples, int n_samples_y, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states, const torch::Tensor& weights);
void setStates(const map<string, vector<int>>&);
public:
Network();
explicit Network(float, int);
explicit Network(float);
explicit Network(Network&);
torch::Tensor& getSamples();
@@ -38,26 +32,26 @@ namespace bayesnet {
void addNode(const string&);
void addEdge(const string&, const string&);
map<string, std::unique_ptr<Node>>& getNodes();
vector<string> getFeatures();
int getStates();
vector<pair<string, string>> getEdges();
int getClassNumStates();
string getClassName();
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
void fit(torch::Tensor&, torch::Tensor&, const vector<string>&, const string&);
vector<string> getFeatures() const;
int getStates() const;
vector<pair<string, string>> getEdges() const;
int getNumEdges() const;
int getClassNumStates() const;
string getClassName() const;
void fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<float>& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const vector<string>& featureNames, const string& className, const map<string, vector<int>>& states);
vector<int> predict(const vector<vector<int>>&); // Return mx1 vector of predictions
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
//Computes the conditional edge weight of variable index u and v conditioned on class_node
torch::Tensor conditionalEdgeWeight();
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
vector<vector<double>> predict_proba(const vector<vector<int>>&); // Return mxn vector of probabilities
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
double score(const vector<vector<int>>&, const vector<int>&);
vector<string> topological_sort();
vector<string> show();
vector<string> graph(const string& title); // Returns a vector of strings representing the graph in graphviz format
vector<string> show() const;
vector<string> graph(const string& title) const; // Returns a vector of strings representing the graph in graphviz format
void initialize();
void dump_cpt();
void dump_cpt() const;
inline string version() { return "0.1.0"; }
};
}

View File

@@ -84,7 +84,7 @@ namespace bayesnet {
}
return result;
}
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing)
void Node::computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
{
dimensions.clear();
// Get dimensions of the CPT
@@ -94,12 +94,24 @@ namespace bayesnet {
// Create a tensor of zeros with the dimensions of the CPT
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
// Fill table with counts
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
auto pos = find(features.begin(), features.end(), name);
if (pos == features.end()) {
throw logic_error("Feature " + name + " not found in dataset");
}
int name_index = pos - features.begin();
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
torch::List<c10::optional<torch::Tensor>> coordinates;
coordinates.push_back(torch::tensor(dataset[name][n_sample]));
transform(parents.begin(), parents.end(), back_inserter(coordinates), [&dataset, &n_sample](const auto& parent) { return torch::tensor(dataset[parent->getName()][n_sample]); });
coordinates.push_back(dataset.index({ name_index, n_sample }));
for (auto parent : parents) {
pos = find(features.begin(), features.end(), parent->getName());
if (pos == features.end()) {
throw logic_error("Feature parent " + parent->getName() + " not found in dataset");
}
int parent_index = pos - features.begin();
coordinates.push_back(dataset.index({ parent_index, n_sample }));
}
// Increment the count of the corresponding coordinate
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
}
// Normalize the counts
cpTable = cpTable / cpTable.sum(0);

View File

@@ -26,7 +26,7 @@ namespace bayesnet {
vector<Node*>& getParents();
vector<Node*>& getChildren();
torch::Tensor& getCPT();
void computeCPT(map<string, vector<int>>&, const int);
void computeCPT(const torch::Tensor& dataset, const vector<string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
int getNumStates() const;
void setNumStates(int);
unsigned minFill();

View File

@@ -2,21 +2,21 @@
#include "ArffFiles.h"
namespace bayesnet {
Proposal::Proposal(vector<vector<int>>& Xv_, vector<int>& yv_, vector<string>& features_, string& className_) : Xv(Xv_), yv(yv_), pFeatures(features_), pClassName(className_) {}
Proposal::Proposal(torch::Tensor& dataset_, vector<string>& features_, string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
Proposal::~Proposal()
{
for (auto& [key, value] : discretizers) {
delete value;
}
}
void Proposal::localDiscretizationProposal(map<string, vector<int>>& states, Network& model)
map<string, vector<int>> Proposal::localDiscretizationProposal(const map<string, vector<int>>& oldStates, Network& model)
{
// order of local discretization is important. no good 0, 1, 2...
// although we rediscretize features after the local discretization of every feature
auto order = model.topological_sort();
auto& nodes = model.getNodes();
map<string, vector<int>> states = oldStates;
vector<int> indicesToReDiscretize;
auto n_samples = Xf.size(1);
bool upgrade = false; // Flag to check if we need to upgrade the model
for (auto feature : order) {
auto nodeParents = nodes[feature]->getParents();
@@ -30,13 +30,13 @@ namespace bayesnet {
parents.erase(remove(parents.begin(), parents.end(), pClassName), parents.end());
// Get the indices of the parents
vector<int> indices;
indices.push_back(-1); // Add class index
transform(parents.begin(), parents.end(), back_inserter(indices), [&](const auto& p) {return find(pFeatures.begin(), pFeatures.end(), p) - pFeatures.begin(); });
// Now we fit the discretizer of the feature, conditioned on its parents and the class i.e. discretizer.fit(X[index], X[indices] + y)
vector<string> yJoinParents;
transform(yv.begin(), yv.end(), back_inserter(yJoinParents), [&](const auto& p) {return to_string(p); });
vector<string> yJoinParents(Xf.size(1));
for (auto idx : indices) {
for (int i = 0; i < n_samples; ++i) {
yJoinParents[i] += to_string(Xv[idx][i]);
for (int i = 0; i < Xf.size(1); ++i) {
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
}
}
auto arff = ArffFiles();
@@ -59,26 +59,32 @@ namespace bayesnet {
for (auto index : indicesToReDiscretize) {
auto Xt_ptr = Xf.index({ index }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
Xv[index] = discretizers[pFeatures[index]]->transform(Xt);
pDataset.index_put_({ index, "..." }, torch::tensor(discretizers[pFeatures[index]]->transform(Xt)));
auto xStates = vector<int>(discretizers[pFeatures[index]]->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
//Update new states of the feature/node
states[pFeatures[index]] = xStates;
}
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
model.fit(pDataset, weights, pFeatures, pClassName, states);
}
return states;
}
void Proposal::fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y)
map<string, vector<int>> Proposal::fit_local_discretization(const torch::Tensor& y)
{
// Sharing Xv and yv with Classifier
Xv = vector<vector<int>>();
yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// Discretize the continuous input data and build pDataset (Classifier::dataset)
int m = Xf.size(1);
int n = Xf.size(0);
map<string, vector<int>> states;
pDataset = torch::zeros({ n + 1, m }, kInt32);
auto yv = vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + y.size(0));
// discretize input data by feature(row)
for (int i = 0; i < pFeatures.size(); ++i) {
for (auto i = 0; i < pFeatures.size(); ++i) {
auto* discretizer = new mdlp::CPPFImdlp();
auto Xt_ptr = Xf.index({ i }).data_ptr<float>();
auto Xt = vector<float>(Xt_ptr, Xt_ptr + Xf.size(1));
discretizer->fit(Xt, yv);
Xv.push_back(discretizer->transform(Xt));
pDataset.index_put_({ i, "..." }, torch::tensor(discretizer->transform(Xt)));
auto xStates = vector<int>(discretizer->getCutPoints().size() + 1);
iota(xStates.begin(), xStates.end(), 0);
states[pFeatures[i]] = xStates;
@@ -88,6 +94,8 @@ namespace bayesnet {
auto yStates = vector<int>(n_classes);
iota(yStates.begin(), yStates.end(), 0);
states[pClassName] = yStates;
pDataset.index_put_({ n, "..." }, y);
return states;
}
torch::Tensor Proposal::prepareX(torch::Tensor& X)
{

View File

@@ -10,19 +10,19 @@
namespace bayesnet {
class Proposal {
public:
Proposal(vector<vector<int>>& Xv_, vector<int>& yv_, vector<string>& features_, string& className_);
Proposal(torch::Tensor& pDataset, vector<string>& features_, string& className_);
virtual ~Proposal();
protected:
torch::Tensor prepareX(torch::Tensor& X);
void localDiscretizationProposal(map<string, vector<int>>& states, Network& model);
void fit_local_discretization(map<string, vector<int>>& states, torch::Tensor& y);
map<string, vector<int>> localDiscretizationProposal(const map<string, vector<int>>& states, Network& model);
map<string, vector<int>> fit_local_discretization(const torch::Tensor& y);
torch::Tensor Xf; // X continuous nxm tensor
torch::Tensor y; // y discrete nx1 tensor
map<string, mdlp::CPPFImdlp*> discretizers;
private:
torch::Tensor& pDataset; // (n+1)xm tensor
vector<string>& pFeatures;
string& pClassName;
vector<vector<int>>& Xv; // X discrete nxm vector
vector<int>& yv;
};
}

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
void SPODE::train()
void SPODE::buildModel(const torch::Tensor& weights)
{
// 0. Add all nodes to the model
addNodes();
@@ -17,7 +17,7 @@ namespace bayesnet {
}
}
}
vector<string> SPODE::graph(const string& name)
vector<string> SPODE::graph(const string& name) const
{
return model.graph(name);
}

View File

@@ -7,11 +7,11 @@ namespace bayesnet {
private:
int root;
protected:
void train() override;
void buildModel(const torch::Tensor& weights) override;
public:
explicit SPODE(int root);
virtual ~SPODE() {};
vector<string> graph(const string& name = "SPODE") override;
vector<string> graph(const string& name = "SPODE") const override;
};
}
#endif

View File

@@ -2,7 +2,7 @@
namespace bayesnet {
using namespace std;
SPODELd::SPODELd(int root) : SPODE(root), Proposal(SPODE::Xv, SPODE::yv, features, className) {}
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
@@ -11,24 +11,35 @@ namespace bayesnet {
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
fit_local_discretization(states, y);
generateTensorXFromVector();
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(SPODE::Xv, SPODE::yv, features, className, states);
localDiscretizationProposal(states, model);
generateTensorXFromVector();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
model.fit(SPODE::Xv, SPODE::yv, features, className);
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
SPODELd& SPODELd::fit(torch::Tensor& dataset, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
y = dataset.index({ -1, "..." }).clone();
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
features = features_;
className = className_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
SPODE::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor SPODELd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return SPODE::predict(Xt);
}
vector<string> SPODELd::graph(const string& name)
vector<string> SPODELd::graph(const string& name) const
{
return SPODE::graph(name);
}

View File

@@ -6,12 +6,12 @@
namespace bayesnet {
using namespace std;
class SPODELd : public SPODE, public Proposal {
private:
public:
explicit SPODELd(int root);
virtual ~SPODELd() = default;
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") override;
SPODELd& fit(torch::Tensor& dataset, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "SPODE") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};

View File

@@ -5,25 +5,25 @@ namespace bayesnet {
TAN::TAN() : Classifier(Network()) {}
void TAN::train()
void TAN::buildModel(const torch::Tensor& weights)
{
// 0. Add all nodes to the model
addNodes();
// 1. Compute mutual information between each feature and the class and set the root node
// as the highest mutual information with the class
auto mi = vector <pair<int, float >>();
Tensor class_dataset = samples.index({ -1, "..." });
Tensor class_dataset = dataset.index({ -1, "..." });
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
Tensor feature_dataset = samples.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset);
Tensor feature_dataset = dataset.index({ i, "..." });
auto mi_value = metrics.mutualInformation(class_dataset, feature_dataset, weights);
mi.push_back({ i, mi_value });
}
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
auto root = mi[mi.size() - 1].first;
// 2. Compute mutual information between each feature and the class
auto weights = metrics.conditionalEdge();
auto weights_matrix = metrics.conditionalEdge(weights);
// 3. Compute the maximum spanning tree
auto mst = metrics.maximumSpanningTree(features, weights, root);
auto mst = metrics.maximumSpanningTree(features, weights_matrix, root);
// 4. Add edges from the maximum spanning tree to the model
for (auto i = 0; i < mst.size(); ++i) {
auto [from, to] = mst[i];
@@ -34,7 +34,7 @@ namespace bayesnet {
model.addEdge(className, feature);
}
}
vector<string> TAN::graph(const string& title)
vector<string> TAN::graph(const string& title) const
{
return model.graph(title);
}

View File

@@ -7,11 +7,11 @@ namespace bayesnet {
class TAN : public Classifier {
private:
protected:
void train() override;
void buildModel(const torch::Tensor& weights) override;
public:
TAN();
virtual ~TAN() {};
vector<string> graph(const string& name = "TAN") override;
vector<string> graph(const string& name = "TAN") const override;
};
}
#endif

View File

@@ -2,7 +2,7 @@
namespace bayesnet {
using namespace std;
TANLd::TANLd() : TAN(), Proposal(TAN::Xv, TAN::yv, features, className) {}
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, vector<string>& features_, string className_, map<string, vector<int>>& states_)
{
// This first part should go in a Classifier method called fit_local_discretization o fit_float...
@@ -11,24 +11,20 @@ namespace bayesnet {
Xf = X_;
y = y_;
// Fills vectors Xv & yv with the data from tensors X_ (discretized) & y
fit_local_discretization(states, y);
generateTensorXFromVector();
states = fit_local_discretization(y);
// We have discretized the input data
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
TAN::fit(TAN::Xv, TAN::yv, features, className, states);
localDiscretizationProposal(states, model);
generateTensorXFromVector();
Tensor ytmp = torch::transpose(y.view({ y.size(0), 1 }), 0, 1);
samples = torch::cat({ X, ytmp }, 0);
model.fit(TAN::Xv, TAN::yv, features, className);
TAN::fit(dataset, features, className, states);
states = localDiscretizationProposal(states, model);
return *this;
}
Tensor TANLd::predict(Tensor& X)
{
auto Xt = prepareX(X);
return TAN::predict(Xt);
}
vector<string> TANLd::graph(const string& name)
vector<string> TANLd::graph(const string& name) const
{
return TAN::graph(name);
}

View File

@@ -11,7 +11,7 @@ namespace bayesnet {
TANLd();
virtual ~TANLd() = default;
TANLd& fit(torch::Tensor& X, torch::Tensor& y, vector<string>& features, string className, map<string, vector<int>>& states) override;
vector<string> graph(const string& name = "TAN") override;
vector<string> graph(const string& name = "TAN") const override;
Tensor predict(Tensor& X) override;
static inline string version() { return "0.0.1"; };
};

View File

@@ -4,7 +4,7 @@ namespace bayesnet {
using namespace std;
using namespace torch;
// Return the indices in descending order
vector<int> argsort(vector<float>& nums)
vector<int> argsort(vector<double>& nums)
{
int n = nums.size();
vector<int> indices(n);

View File

@@ -5,7 +5,7 @@
namespace bayesnet {
using namespace std;
using namespace torch;
vector<int> argsort(vector<float>& nums);
vector<int> argsort(vector<double>& nums);
vector<vector<int>> tensorToVector(Tensor& tensor);
}
#endif //BAYESNET_UTILS_H

10
src/Platform/BestResult.h Normal file
View File

@@ -0,0 +1,10 @@
#ifndef BESTRESULT_H
#define BESTRESULT_H
#include <string>
class BestResult {
public:
static std::string title() { return "STree_default (linear-ovo)"; }
static double score() { return 22.109799; }
static std::string scoreName() { return "accuracy"; }
};
#endif

View File

@@ -5,4 +5,8 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(main main.cc Folding.cc platformUtils.cc Experiment.cc Datasets.cc Models.cc Report.cc)
add_executable(manage manage.cc Results.cc Report.cc)
add_executable(list list.cc platformUtils Datasets.cc)
target_link_libraries(main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(manage "${TORCH_LIBRARIES}")
target_link_libraries(list ArffFiles mdlp "${TORCH_LIBRARIES}")

14
src/Platform/Colors.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef COLORS_H
#define COLORS_H
class Colors {
public:
static std::string MAGENTA() { return "\033[1;35m"; }
static std::string BLUE() { return "\033[1;34m"; }
static std::string CYAN() { return "\033[1;36m"; }
static std::string GREEN() { return "\033[1;32m"; }
static std::string YELLOW() { return "\033[1;33m"; }
static std::string RED() { return "\033[1;31m"; }
static std::string WHITE() { return "\033[1;37m"; }
static std::string RESET() { return "\033[0m"; }
};
#endif // COLORS_H

View File

@@ -24,75 +24,110 @@ namespace platform {
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
return result;
}
vector<string> Datasets::getFeatures(string name)
vector<string> Datasets::getFeatures(const string& name) const
{
if (datasets[name]->isLoaded()) {
return datasets[name]->getFeatures();
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getFeatures();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
map<string, vector<int>> Datasets::getStates(string name)
map<string, vector<int>> Datasets::getStates(const string& name) const
{
if (datasets[name]->isLoaded()) {
return datasets[name]->getStates();
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getStates();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
string Datasets::getClassName(string name)
void Datasets::loadDataset(const string& name) const
{
if (datasets[name]->isLoaded()) {
return datasets[name]->getClassName();
if (datasets.at(name)->isLoaded()) {
return;
} else {
datasets.at(name)->load();
}
}
string Datasets::getClassName(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getClassName();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNSamples(string name)
int Datasets::getNSamples(const string& name) const
{
if (datasets[name]->isLoaded()) {
return datasets[name]->getNSamples();
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getNSamples();
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(string name)
int Datasets::getNClasses(const string& name)
{
if (datasets.at(name)->isLoaded()) {
auto className = datasets.at(name)->getClassName();
if (discretize) {
auto states = getStates(name);
return states.at(className).size();
}
auto [Xv, yv] = getVectors(name);
return *max_element(yv.begin(), yv.end()) + 1;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
vector<int> Datasets::getClassesCounts(const string& name) const
{
if (datasets.at(name)->isLoaded()) {
auto [Xv, yv] = datasets.at(name)->getVectors();
vector<int> counts(*max_element(yv.begin(), yv.end()) + 1);
for (auto y : yv) {
counts[y]++;
}
return counts;
} else {
throw invalid_argument("Dataset not loaded.");
}
}
pair<vector<vector<float>>&, vector<int>&> Datasets::getVectors(const string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectors();
}
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(string name)
pair<vector<vector<int>>&, vector<int>&> Datasets::getVectorsDiscretized(const string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectorsDiscretized();
}
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(string name)
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getTensors();
}
bool Datasets::isDataset(const string& name)
bool Datasets::isDataset(const string& name) const
{
return datasets.find(name) != datasets.end();
}
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{
}
string Dataset::getName()
string Dataset::getName() const
{
return name;
}
string Dataset::getClassName()
string Dataset::getClassName() const
{
return className;
}
vector<string> Dataset::getFeatures()
vector<string> Dataset::getFeatures() const
{
if (loaded) {
return features;
@@ -100,7 +135,7 @@ namespace platform {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNFeatures()
int Dataset::getNFeatures() const
{
if (loaded) {
return n_features;
@@ -108,7 +143,7 @@ namespace platform {
throw invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNSamples()
int Dataset::getNSamples() const
{
if (loaded) {
return n_samples;
@@ -116,7 +151,7 @@ namespace platform {
throw invalid_argument("Dataset not loaded.");
}
}
map<string, vector<int>> Dataset::getStates()
map<string, vector<int>> Dataset::getStates() const
{
if (loaded) {
return states;

View File

@@ -29,15 +29,15 @@ namespace platform {
public:
Dataset(const string& path, const string& name, const string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&);
string getName();
string getClassName();
vector<string> getFeatures();
map<string, vector<int>> getStates();
string getName() const;
string getClassName() const;
vector<string> getFeatures() const;
map<string, vector<int>> getStates() const;
pair<vector<vector<float>>&, vector<int>&> getVectors();
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized();
pair<torch::Tensor&, torch::Tensor&> getTensors();
int getNFeatures();
int getNSamples();
int getNFeatures() const;
int getNSamples() const;
void load();
const bool inline isLoaded() const { return loaded; };
};
@@ -51,14 +51,17 @@ namespace platform {
public:
explicit Datasets(const string& path, bool discretize = false, fileType_t fileType = ARFF) : path(path), discretize(discretize), fileType(fileType) { load(); };
vector<string> getNames();
vector<string> getFeatures(string name);
int getNSamples(string name);
string getClassName(string name);
map<string, vector<int>> getStates(string name);
pair<vector<vector<float>>&, vector<int>&> getVectors(string name);
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(string name);
pair<torch::Tensor&, torch::Tensor&> getTensors(string name);
bool isDataset(const string& name);
vector<string> getFeatures(const string& name) const;
int getNSamples(const string& name) const;
string getClassName(const string& name) const;
int getNClasses(const string& name);
vector<int> getClassesCounts(const string& name) const;
map<string, vector<int>> getStates(const string& name) const;
pair<vector<vector<float>>&, vector<int>&> getVectors(const string& name);
pair<vector<vector<int>>&, vector<int>&> getVectorsDiscretized(const string& name);
pair<torch::Tensor&, torch::Tensor&> getTensors(const string& name);
bool isDataset(const string& name) const;
void loadDataset(const string& name) const;
};
};

View File

@@ -10,6 +10,7 @@
#include "KDBLd.h"
#include "SPODELd.h"
#include "AODELd.h"
#include "BoostAODE.h"
namespace platform {
class Models {
private:

11
src/Platform/Paths.h Normal file
View File

@@ -0,0 +1,11 @@
#ifndef PATHS_H
#define PATHS_H
#include <string>
namespace platform {
class Paths {
public:
static std::string datasets() { return "datasets/"; }
static std::string results() { return "results/"; }
};
}
#endif

View File

@@ -1,66 +1,115 @@
#include <sstream>
#include <locale>
#include "Report.h"
#include "BestResult.h"
namespace platform {
string headerLine(const string& text)
{
int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n;
return "* " + text + string(n, ' ') + "*\n";
}
string Report::fromVector(const string& key)
{
string result = "";
stringstream oss;
string sep = "";
oss << "[";
for (auto& item : data[key]) {
result += to_string(item) + ", ";
oss << sep << item.get<double>();
sep = ", ";
}
return "[" + result.substr(0, result.length() - 2) + "]";
oss << "]";
return oss.str();
}
string fVector(const json& data)
string fVector(const string& title, const json& data, const int width, const int precision)
{
string result = "";
stringstream oss;
string sep = "";
oss << title << "[";
for (const auto& item : data) {
result += to_string(item) + ", ";
oss << sep << fixed << setw(width) << setprecision(precision) << item.get<double>();
sep = ", ";
}
return "[" + result.substr(0, result.length() - 2) + "]";
oss << "]";
return oss.str();
}
void Report::show()
{
header();
body();
footer();
}
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
void Report::header()
{
cout << string(MAXL, '*') << endl;
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
stringstream oss;
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
cout << headerLine("Report " + data["model"].get<string>() + " ver. " + data["version"].get<string>() + " with " + to_string(data["folds"].get<int>()) + " Folds cross validation and " + to_string(data["seeds"].size()) + " random seeds. " + data["date"].get<string>() + " " + data["time"].get<string>());
cout << headerLine(data["title"].get<string>());
cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
cout << headerLine("Execution took " + to_string(data["duration"].get<float>()) + " seconds, " + to_string(data["duration"].get<float>() / 3600) + " hours, on " + data["platform"].get<string>());
oss << "Execution took " << setprecision(2) << fixed << data["duration"].get<float>() << " seconds, " << data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<string>();
cout << headerLine(oss.str());
cout << headerLine("Score is " + data["score_name"].get<string>());
cout << string(MAXL, '*') << endl;
cout << endl;
}
void Report::body()
{
cout << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "============================== ====== ===== === ======= ======= ======= =============== ================= ===============" << endl;
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << endl;
cout << "============================== ====== ===== === ========= ========= ========= =============== ================== ===============" << endl;
json lastResult;
totalScore = 0;
bool odd = true;
for (const auto& r : data["results"]) {
cout << setw(30) << left << r["dataset"].get<string>() << " ";
auto color = odd ? Colors::CYAN() : Colors::BLUE();
cout << color << setw(30) << left << r["dataset"].get<string>() << " ";
cout << setw(6) << right << r["samples"].get<int>() << " ";
cout << setw(5) << right << r["features"].get<int>() << " ";
cout << setw(3) << right << r["classes"].get<int>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
cout << setw(7) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
cout << setw(8) << right << setprecision(6) << fixed << r["score_test"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_test_std"].get<double>() << " ";
cout << setw(10) << right << setprecision(6) << fixed << r["test_time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["test_time_std"].get<double>() << " ";
cout << " " << r["hyperparameters"].get<string>();
cout << setw(9) << setprecision(2) << fixed << r["nodes"].get<float>() << " ";
cout << setw(9) << setprecision(2) << fixed << r["leaves"].get<float>() << " ";
cout << setw(9) << setprecision(2) << fixed << r["depth"].get<float>() << " ";
cout << setw(8) << right << setprecision(6) << fixed << r["score"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["score_std"].get<double>() << " ";
cout << setw(11) << right << setprecision(6) << fixed << r["time"].get<double>() << "±" << setw(6) << setprecision(4) << fixed << r["time_std"].get<double>() << " ";
try {
cout << r["hyperparameters"].get<string>();
}
catch (const exception& err) {
cout << r["hyperparameters"];
}
cout << endl;
lastResult = r;
totalScore += r["score"].get<double>();
odd = !odd;
}
if (data["results"].size() == 1) {
cout << string(MAXL, '*') << endl;
cout << headerLine("Train scores: " + fVector(r["scores_train"]));
cout << headerLine("Test scores: " + fVector(r["scores_test"]));
cout << headerLine("Train times: " + fVector(r["times_train"]));
cout << headerLine("Test times: " + fVector(r["times_test"]));
cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
cout << string(MAXL, '*') << endl;
}
}
void Report::footer()
{
cout << Colors::MAGENTA() << string(MAXL, '*') << endl;
auto score = data["score_name"].get<string>();
if (score == BestResult::scoreName()) {
stringstream oss;
oss << score << " compared to " << BestResult::title() << " .: " << totalScore / BestResult::score();
cout << headerLine(oss.str());
}
cout << string(MAXL, '*') << endl << Colors::RESET();
}
}

View File

@@ -3,9 +3,10 @@
#include <string>
#include <iostream>
#include <nlohmann/json.hpp>
#include "Colors.h"
using json = nlohmann::json;
const int MAXL = 121;
const int MAXL = 128;
namespace platform {
using namespace std;
class Report {
@@ -16,8 +17,10 @@ namespace platform {
private:
void header();
void body();
void footer();
string fromVector(const string& key);
json data;
double totalScore; // Total score of all results in a report
};
};
#endif

239
src/Platform/Results.cc Normal file
View File

@@ -0,0 +1,239 @@
#include <filesystem>
#include "platformUtils.h"
#include "Results.h"
#include "Report.h"
#include "BestResult.h"
#include "Colors.h"
namespace platform {
Result::Result(const string& path, const string& filename)
: path(path)
, filename(filename)
{
auto data = load();
date = data["date"];
score = 0;
for (const auto& result : data["results"]) {
score += result["score"].get<double>();
}
scoreName = data["score_name"];
if (scoreName == BestResult::scoreName()) {
score /= BestResult::score();
}
title = data["title"];
duration = data["duration"];
model = data["model"];
}
json Result::load() const
{
ifstream resultData(path + "/" + filename);
if (resultData.is_open()) {
json data = json::parse(resultData);
return data;
}
throw invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
}
void Results::load()
{
using std::filesystem::directory_iterator;
for (const auto& file : directory_iterator(path)) {
auto filename = file.path().filename().string();
if (filename.find(".json") != string::npos && filename.find("results_") == 0) {
auto result = Result(path, filename);
bool addResult = true;
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName())
addResult = false;
if (addResult)
files.push_back(result);
}
}
}
string Result::to_string() const
{
stringstream oss;
oss << date << " ";
oss << setw(12) << left << model << " ";
oss << setw(11) << left << scoreName << " ";
oss << right << setw(11) << setprecision(7) << fixed << score << " ";
oss << setw(9) << setprecision(3) << fixed << duration << " ";
oss << setw(50) << left << title << " ";
return oss.str();
}
void Results::show() const
{
cout << Colors::GREEN() << "Results found: " << files.size() << endl;
cout << "-------------------" << endl;
auto i = 0;
cout << " # Date Model Score Name Score Duration Title" << endl;
cout << "=== ========== ============ =========== =========== ========= =============================================================" << endl;
bool odd = true;
for (const auto& result : files) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
cout << color << setw(3) << fixed << right << i++ << " ";
cout << result.to_string() << endl;
if (i == max && max != 0) {
break;
}
odd = !odd;
}
}
int Results::getIndex(const string& intent) const
{
string color;
if (intent == "delete") {
color = Colors::RED();
} else {
color = Colors::YELLOW();
}
cout << color << "Choose result to " << intent << " (cancel=-1): ";
string line;
getline(cin, line);
int index = stoi(line);
if (index >= -1 && index < static_cast<int>(files.size())) {
return index;
}
cout << "Invalid index" << endl;
return -1;
}
void Results::report(const int index) const
{
cout << Colors::YELLOW() << "Reporting " << files.at(index).getFilename() << endl;
auto data = files.at(index).load();
Report report(data);
report.show();
}
void Results::menu()
{
char option;
int index;
bool finished = false;
string filename, line, options = "qldhsr";
while (!finished) {
cout << Colors::RESET() << "Choose option (quit='q', list='l', delete='d', hide='h', sort='s', report='r'): ";
getline(cin, line);
if (line.size() == 0)
continue;
if (options.find(line[0]) != string::npos) {
if (line.size() > 1) {
cout << "Invalid option" << endl;
continue;
}
option = line[0];
} else {
index = stoi(line);
if (index >= 0 && index < files.size()) {
report(index);
} else {
cout << "Invalid option" << endl;
}
continue;
}
switch (option) {
case 'q':
finished = true;
break;
case 'l':
show();
break;
case 'd':
index = getIndex("delete");
if (index == -1)
break;
filename = files[index].getFilename();
cout << "Deleting " << filename << endl;
remove((path + "/" + filename).c_str());
files.erase(files.begin() + index);
cout << "File: " + filename + " deleted!" << endl;
show();
break;
case 'h':
index = getIndex("hide");
if (index == -1)
break;
filename = files[index].getFilename();
cout << "Hiding " << filename << endl;
rename((path + "/" + filename).c_str(), (path + "/." + filename).c_str());
files.erase(files.begin() + index);
show();
menu();
break;
case 's':
sortList();
show();
break;
case 'r':
index = getIndex("report");
if (index == -1)
break;
report(index);
break;
default:
cout << "Invalid option" << endl;
}
}
}
void Results::sortList()
{
cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
string line;
char option;
getline(cin, line);
if (line.size() == 0)
return;
if (line.size() > 1) {
cout << "Invalid option" << endl;
return;
}
option = line[0];
switch (option) {
case 'd':
sortDate();
break;
case 's':
sortScore();
break;
case 'u':
sortDuration();
break;
case 'm':
sortModel();
break;
default:
cout << "Invalid option" << endl;
}
}
void Results::sortDate()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getDate() > b.getDate();
});
}
void Results::sortModel()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getModel() > b.getModel();
});
}
void Results::sortDuration()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getDuration() > b.getDuration();
});
}
void Results::sortScore()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getScore() > b.getScore();
});
}
void Results::manage()
{
if (files.size() == 0) {
cout << "No results found!" << endl;
exit(0);
}
show();
menu();
cout << "Done!" << endl;
}
}

56
src/Platform/Results.h Normal file
View File

@@ -0,0 +1,56 @@
#ifndef RESULTS_H
#define RESULTS_H
#include <map>
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
namespace platform {
using namespace std;
using json = nlohmann::json;
class Result {
public:
Result(const string& path, const string& filename);
json load() const;
string to_string() const;
string getFilename() const { return filename; };
string getDate() const { return date; };
double getScore() const { return score; };
string getTitle() const { return title; };
double getDuration() const { return duration; };
string getModel() const { return model; };
string getScoreName() const { return scoreName; };
private:
string path;
string filename;
string date;
double score;
string title;
double duration;
string model;
string scoreName;
};
class Results {
public:
Results(const string& path, const int max, const string& model, const string& score) : path(path), max(max), model(model), scoreName(score) { load(); };
void manage();
private:
string path;
int max;
string model;
string scoreName;
vector<Result> files;
void load(); // Loads the list of results
void show() const;
void report(const int index) const;
int getIndex(const string& intent) const;
void menu();
void sortList();
void sortDate();
void sortScore();
void sortModel();
void sortDuration();
};
};
#endif

57
src/Platform/list.cc Normal file
View File

@@ -0,0 +1,57 @@
#include <iostream>
#include <locale>
#include "Paths.h"
#include "Colors.h"
#include "Datasets.h"
using namespace std;
const int BALANCE_LENGTH = 75;
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
string do_grouping() const { return "\03"; }
};
void outputBalance(const string& balance)
{
auto temp = string(balance);
while (temp.size() > BALANCE_LENGTH - 1) {
auto part = temp.substr(0, BALANCE_LENGTH);
cout << part << endl;
cout << setw(48) << " ";
temp = temp.substr(BALANCE_LENGTH);
}
cout << temp << endl;
}
int main(int argc, char** argv)
{
auto data = platform::Datasets(platform::Paths().datasets(), false);
locale mylocale(cout.getloc(), new separated);
locale::global(mylocale);
cout.imbue(mylocale);
cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls. Balance" << endl;
string balanceBars = string(BALANCE_LENGTH, '=');
cout << "============================== ====== ===== === " << balanceBars << endl;
bool odd = true;
for (const auto& dataset : data.getNames()) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
cout << color << setw(30) << left << dataset << " ";
data.loadDataset(dataset);
auto nSamples = data.getNSamples(dataset);
cout << setw(6) << right << nSamples << " ";
cout << setw(5) << right << data.getFeatures(dataset).size() << " ";
cout << setw(3) << right << data.getNClasses(dataset) << " ";
stringstream oss;
string sep = "";
for (auto number : data.getClassesCounts(dataset)) {
oss << sep << setprecision(2) << fixed << (float)number / nSamples * 100.0 << "% (" << number << ")";
sep = " / ";
}
outputBalance(oss.str());
odd = !odd;
}
cout << Colors::RESET() << endl;
return 0;
}

View File

@@ -6,20 +6,19 @@
#include "DotEnv.h"
#include "Models.h"
#include "modelRegister.h"
#include "Paths.h"
using namespace std;
const string PATH_RESULTS = "results";
const string PATH_DATASETS = "datasets";
argparse::ArgumentParser manageArguments(int argc, char** argv)
{
auto env = platform::DotEnv();
argparse::ArgumentParser program("BayesNetSample");
argparse::ArgumentParser program("main");
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
program.add_argument("-p", "--path")
.help("folder where the data files are located, default")
.default_value(string{ PATH_DATASETS }
);
.default_value(string{ platform::Paths::datasets() });
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) {
@@ -104,7 +103,7 @@ int main(int argc, char** argv)
*/
auto env = platform::DotEnv();
auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("1.0.0");
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
for (auto seed : seeds) {
@@ -115,7 +114,7 @@ int main(int argc, char** argv)
experiment.go(filesToTest, path);
experiment.setDuration(timer.getDuration());
if (saveResults)
experiment.save(PATH_RESULTS);
experiment.save(platform::Paths::results());
else
experiment.report();
cout << "Done!" << endl;

41
src/Platform/manage.cc Normal file
View File

@@ -0,0 +1,41 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include "platformUtils.h"
#include "Paths.h"
#include "Results.h"
using namespace std;
argparse::ArgumentParser manageArguments(int argc, char** argv)
{
argparse::ArgumentParser program("manage");
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
try {
program.parse_args(argc, argv);
auto number = program.get<int>("number");
if (number < 0) {
throw runtime_error("Number of results must be greater than or equal to 0");
}
auto model = program.get<string>("model");
auto score = program.get<string>("score");
}
catch (const exception& err) {
cerr << err.what() << endl;
cerr << program;
exit(1);
}
return program;
}
int main(int argc, char** argv)
{
auto program = manageArguments(argc, argv);
auto number = program.get<int>("number");
auto model = program.get<string>("model");
auto score = program.get<string>("score");
auto results = platform::Results(platform::Paths::results(), number, model, score);
results.manage();
return 0;
}

View File

@@ -16,4 +16,6 @@ static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
static platform::Registrar registrarALD("AODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
static platform::Registrar registrarBA("BoostAODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
#endif

View File

@@ -1,4 +1,5 @@
#include "platformUtils.h"
#include "Paths.h"
using namespace torch;
@@ -85,7 +86,7 @@ tuple<Tensor, Tensor, vector<string>, string, map<string, vector<int>>> loadData
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(const string& name)
{
auto handler = ArffFiles();
handler.load(PATH + static_cast<string>(name) + ".arff");
handler.load(platform::Paths::datasets() + static_cast<string>(name) + ".arff");
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();