Compare commits
50 Commits
PythonLink
...
mpi_grid
Author | SHA1 | Date | |
---|---|---|---|
18e8e84284
|
|||
7de11b0e6d
|
|||
9b8db37a4b
|
|||
49b26bd04b
|
|||
b5b5b48864
|
|||
19586a3a5a
|
|||
ffe6d37436
|
|||
b73f4be146
|
|||
dbf2f35502
|
|||
db9e80a70e
|
|||
40ae4ad7f9
|
|||
234342f2de
|
|||
aa0936abd1
|
|||
f0d6f0cc38
|
|||
cc316bb8d3
|
|||
0723564e66
|
|||
2e95e8999d
|
|||
fb9b395748
|
|||
03e4437fea
|
|||
33cd32c639
|
|||
c460ef46ed
|
|||
dee9c674da
|
|||
e3f6dc1e0b
|
|||
460d20a402
|
|||
8dbbb65a2f
|
|||
d06bf187b2
|
|||
4addaefb47
|
|||
82964190f6
|
|||
4fefe9a1d2
|
|||
7c12dd25e5
|
|||
c713c0b1df
|
|||
64069a6cb7
|
|||
ba2a3f9523 | |||
f94e2d6a27
|
|||
2121ba9b98
|
|||
8b7b59d42b
|
|||
bbe5302ab1
|
|||
c2eb727fc7
|
|||
fb347ed5b9
|
|||
b657762c0c
|
|||
495d8a8528
|
|||
4628e48d3c
|
|||
5876be4b24
|
|||
dc3400197f
|
|||
26d3a57782
|
|||
4f3a04058f
|
|||
89c4613591
|
|||
28f3d87e32 | |||
64f5a7f14a
|
|||
e03efb5f63
|
3
.gitignore
vendored
3
.gitignore
vendored
@@ -32,8 +32,7 @@
|
||||
*.out
|
||||
*.app
|
||||
build/**
|
||||
build_debug/**
|
||||
build_release/**
|
||||
build_*/**
|
||||
*.dSYM/**
|
||||
cmake-build*/**
|
||||
.idea
|
||||
|
10
.gitmodules
vendored
10
.gitmodules
vendored
@@ -1,15 +1,25 @@
|
||||
[submodule "lib/mdlp"]
|
||||
path = lib/mdlp
|
||||
url = https://github.com/rmontanana/mdlp
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "lib/catch2"]
|
||||
path = lib/catch2
|
||||
main = v2.x
|
||||
update = merge
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
[submodule "lib/argparse"]
|
||||
path = lib/argparse
|
||||
url = https://github.com/p-ranav/argparse
|
||||
master = master
|
||||
update = merge
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
master = master
|
||||
update = merge
|
||||
[submodule "lib/libxlsxwriter"]
|
||||
path = lib/libxlsxwriter
|
||||
url = https://github.com/jmcnamara/libxlsxwriter.git
|
||||
main = main
|
||||
update = merge
|
||||
|
43
.vscode/launch.json
vendored
43
.vscode/launch.json
vendored
@@ -14,14 +14,14 @@
|
||||
"-s",
|
||||
"271",
|
||||
"-p",
|
||||
"/home/rmontanana/Code/discretizbench/datasets/",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets/",
|
||||
],
|
||||
//"cwd": "${workspaceFolder}/build/sample/",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "experiment",
|
||||
"name": "experimentPy",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
||||
"args": [
|
||||
"-m",
|
||||
@@ -33,6 +33,39 @@
|
||||
// "--hyperparameters",
|
||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "gridsearch",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_grid",
|
||||
"args": [
|
||||
"-m",
|
||||
"KDB",
|
||||
"--discretize",
|
||||
"--continue",
|
||||
"glass",
|
||||
"--only",
|
||||
"--compute"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "experimentBayes",
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
||||
"args": [
|
||||
"-m",
|
||||
"TAN",
|
||||
"--stratified",
|
||||
"--discretize",
|
||||
"-d",
|
||||
"iris",
|
||||
"--hyperparameters",
|
||||
"{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
},
|
||||
{
|
||||
@@ -47,7 +80,7 @@
|
||||
"accuracy",
|
||||
"--build",
|
||||
],
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
@@ -58,7 +91,7 @@
|
||||
"-n",
|
||||
"20"
|
||||
],
|
||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
@@ -67,7 +100,7 @@
|
||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
|
||||
"args": [],
|
||||
//"cwd": "/Users/rmontanana/Code/discretizbench",
|
||||
"cwd": "/home/rmontanana/Code/covbench",
|
||||
"cwd": "${workspaceFolder}/../discretizbench",
|
||||
},
|
||||
{
|
||||
"type": "lldb",
|
||||
|
@@ -25,12 +25,18 @@ set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
option(ENABLE_TESTING "Unit testing build" OFF)
|
||||
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||
option(MPI_ENABLED "Enable MPI options" ON)
|
||||
|
||||
if (MPI_ENABLED)
|
||||
find_package(MPI REQUIRED)
|
||||
message("MPI_CXX_LIBRARIES=${MPI_CXX_LIBRARIES}")
|
||||
message("MPI_CXX_INCLUDE_DIRS=${MPI_CXX_INCLUDE_DIRS}")
|
||||
endif (MPI_ENABLED)
|
||||
|
||||
# Boost Library
|
||||
set(Boost_USE_STATIC_LIBS OFF)
|
||||
|
16
Makefile
16
Makefile
@@ -4,7 +4,7 @@ SHELL := /bin/bash
|
||||
|
||||
f_release = build_release
|
||||
f_debug = build_debug
|
||||
app_targets = b_best b_list b_main b_manage
|
||||
app_targets = b_best b_list b_main b_manage b_grid
|
||||
test_targets = unit_tests_bayesnet unit_tests_platform
|
||||
n_procs = -j 16
|
||||
|
||||
@@ -35,11 +35,13 @@ dest ?= ${HOME}/bin
|
||||
install: ## Copy binary files to bin folder
|
||||
@echo "Destination folder: $(dest)"
|
||||
make buildr
|
||||
@echo "*******************************************"
|
||||
@echo ">>> Copying files to $(dest)"
|
||||
@cp $(f_release)/src/Platform/b_main $(dest)
|
||||
@cp $(f_release)/src/Platform/b_list $(dest)
|
||||
@cp $(f_release)/src/Platform/b_manage $(dest)
|
||||
@cp $(f_release)/src/Platform/b_best $(dest)
|
||||
@echo "*******************************************"
|
||||
@for item in $(app_targets); do \
|
||||
echo ">>> Copying $$item" ; \
|
||||
cp $(f_release)/src/Platform/$$item $(dest) ; \
|
||||
done
|
||||
|
||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
||||
@echo ">>> Creating dependency graph diagram of the project...";
|
||||
@@ -47,10 +49,10 @@ dependency: ## Create a dependency graph diagram of the project (build/dependenc
|
||||
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
||||
cmake --build $(f_debug) -t $(app_targets) BayesNetSample $(n_procs)
|
||||
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) -t $(app_targets) $(n_procs)
|
||||
cmake --build $(f_release) -t $(app_targets) BayesNetSample $(n_procs)
|
||||
|
||||
clean: ## Clean the tests info
|
||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||
|
28
README.md
28
README.md
@@ -8,6 +8,20 @@ Bayesian Network Classifier with libtorch from scratch
|
||||
|
||||
Before compiling BayesNet.
|
||||
|
||||
### MPI
|
||||
|
||||
In Linux just install openmpi & openmpi-devel packages. Only cmake can't find openmpi install (like in Oracle Linux) set the following variable:
|
||||
|
||||
```bash
|
||||
export MPI_HOME="/usr/lib64/openmpi"
|
||||
```
|
||||
|
||||
In Mac OS X, install mpich with brew and if cmake doesn't find it, edit mpicxx wrapper to remove the ",-commons,use_dylibs" from final_ldflags
|
||||
|
||||
```bash
|
||||
vi /opt/homebrew/bin/mpicx
|
||||
```
|
||||
|
||||
### boost library
|
||||
|
||||
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
|
||||
@@ -18,12 +32,24 @@ The best option is install the packages that the Linux distribution have in its
|
||||
sudo dnf install boost-devel
|
||||
```
|
||||
|
||||
If this is not possible and the compressed packaged is installed, the following environment variable has to be set:
|
||||
If this is not possible and the compressed packaged is installed, the following environment variable has to be set pointing to the folder where it was unzipped to:
|
||||
|
||||
```bash
|
||||
export BOOST_ROOT=/path/to/library/
|
||||
```
|
||||
|
||||
In some cases, it is needed to build the library, to do so:
|
||||
|
||||
```bash
|
||||
cd /path/to/library
|
||||
mkdir own
|
||||
./bootstrap.sh --prefix=/path/to/library/own
|
||||
./b2 install
|
||||
export BOOST_ROOT=/path/to/library/own/
|
||||
```
|
||||
|
||||
Don't forget to add the export BOOST_ROOT statement to .bashrc or wherever it is meant to be.
|
||||
|
||||
### libxlswriter
|
||||
|
||||
```bash
|
||||
|
162
grid_stree.json
Normal file
162
grid_stree.json
Normal file
@@ -0,0 +1,162 @@
|
||||
{
|
||||
"balance-scale": {
|
||||
"C": 10000.0,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"balloons": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"breast-cancer-wisc-diag": {
|
||||
"C": 0.2,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"breast-cancer-wisc-prog": {
|
||||
"C": 0.2,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"breast-cancer-wisc": {},
|
||||
"breast-cancer": {},
|
||||
"cardiotocography-10clases": {},
|
||||
"cardiotocography-3clases": {},
|
||||
"conn-bench-sonar-mines-rocks": {},
|
||||
"cylinder-bands": {},
|
||||
"dermatology": {
|
||||
"C": 55,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"echocardiogram": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_features": "auto",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"fertility": {
|
||||
"C": 0.05,
|
||||
"max_features": "auto",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"haberman-survival": {},
|
||||
"heart-hungarian": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"hepatitis": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"ilpd-indian-liver": {},
|
||||
"ionosphere": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"iris": {},
|
||||
"led-display": {},
|
||||
"libras": {
|
||||
"C": 0.08,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"low-res-spect": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"lymphography": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"mammographic": {},
|
||||
"molec-biol-promoter": {
|
||||
"C": 0.05,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"musk-1": {
|
||||
"C": 0.05,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"oocytes_merluccius_nucleus_4d": {
|
||||
"C": 8.25,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly"
|
||||
},
|
||||
"oocytes_merluccius_states_2f": {},
|
||||
"oocytes_trisopterus_nucleus_2f": {},
|
||||
"oocytes_trisopterus_states_5b": {
|
||||
"C": 0.11,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"parkinsons": {},
|
||||
"pima": {},
|
||||
"pittsburg-bridges-MATERIAL": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"pittsburg-bridges-REL-L": {},
|
||||
"pittsburg-bridges-SPAN": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"pittsburg-bridges-T-OR-D": {},
|
||||
"planning": {
|
||||
"C": 7,
|
||||
"gamma": 10.0,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"post-operative": {
|
||||
"C": 55,
|
||||
"degree": 5,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"seeds": {
|
||||
"C": 10000.0,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"statlog-australian-credit": {
|
||||
"C": 0.05,
|
||||
"max_features": "auto",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"statlog-german-credit": {},
|
||||
"statlog-heart": {},
|
||||
"statlog-image": {
|
||||
"C": 7,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"statlog-vehicle": {},
|
||||
"synthetic-control": {
|
||||
"C": 0.55,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"tic-tac-toe": {
|
||||
"C": 0.2,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"vertebral-column-2clases": {},
|
||||
"wine": {
|
||||
"C": 0.55,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"zoo": {
|
||||
"C": 0.1,
|
||||
"max_iter": 10000
|
||||
}
|
||||
}
|
Submodule lib/argparse updated: b0930ab028...69dabd88a8
@@ -1,8 +1,10 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
@@ -1,10 +1,10 @@
|
||||
#include <iostream>
|
||||
#include <torch/torch.h>
|
||||
#include <std::string>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "ArffFiles.h"v
|
||||
#include "ArffFiles.h"
|
||||
#include "BayesMetrics.h"
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Folding.h"
|
||||
@@ -29,7 +29,7 @@ pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<
|
||||
return { Xd, maxes };
|
||||
}
|
||||
|
||||
bool file_exists(const std::std::std::string& name)
|
||||
bool file_exists(const std::string& name)
|
||||
{
|
||||
if (FILE* file = fopen(name.c_str(), "r")) {
|
||||
fclose(file);
|
||||
@@ -72,7 +72,7 @@ int main(int argc, char** argv)
|
||||
argparse::ArgumentParser program("BayesNetSample");
|
||||
program.add_argument("-d", "--dataset")
|
||||
.help("Dataset file name")
|
||||
.action([valid_datasets](const std::std::std::string& value) {
|
||||
.action([valid_datasets](const std::string& value) {
|
||||
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
||||
return value;
|
||||
}
|
||||
@@ -84,20 +84,20 @@ int main(int argc, char** argv)
|
||||
.default_value(std::string{ PATH }
|
||||
);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->tostd::string())
|
||||
.action([](const std::std::std::string& value) {
|
||||
.help("Model to use " + platform::Models::instance()->tostring())
|
||||
.action([](const std::string& value) {
|
||||
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->tostd::string());
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||
}
|
||||
);
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::std::string& value) {
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
@@ -184,8 +184,8 @@ int main(int argc, char** argv)
|
||||
file.close();
|
||||
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
|
||||
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
|
||||
std::string stratified_std::string = stratified ? " Stratified" : "";
|
||||
std::cout << nFolds << " Folds" << stratified_std::string << " Cross validation" << std::endl;
|
||||
std::string stratified_string = stratified ? " Stratified" : "";
|
||||
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
|
||||
std::cout << "==========================================" << std::endl;
|
||||
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
|
@@ -6,8 +6,6 @@
|
||||
namespace bayesnet {
|
||||
enum status_t { NORMAL, WARNING, ERROR };
|
||||
class BaseClassifier {
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
public:
|
||||
// X is nxm std::vector, y is nx1 std::vector
|
||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
@@ -29,7 +27,11 @@ namespace bayesnet {
|
||||
virtual std::string getVersion() = 0;
|
||||
std::vector<std::string> virtual topological_order() = 0;
|
||||
void virtual dump_cpt()const = 0;
|
||||
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
|
||||
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
std::vector<std::string> validHyperparameters;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -10,7 +10,11 @@
|
||||
#include "IWSS.h"
|
||||
|
||||
namespace bayesnet {
|
||||
BoostAODE::BoostAODE() : Ensemble() {}
|
||||
BoostAODE::BoostAODE() : Ensemble()
|
||||
{
|
||||
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features", "tolerance" };
|
||||
|
||||
}
|
||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
@@ -43,25 +47,32 @@ namespace bayesnet {
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("repeatSparent")) {
|
||||
repeatSparent = hyperparameters["repeatSparent"];
|
||||
hyperparameters.erase("repeatSparent");
|
||||
}
|
||||
if (hyperparameters.contains("maxModels")) {
|
||||
maxModels = hyperparameters["maxModels"];
|
||||
hyperparameters.erase("maxModels");
|
||||
}
|
||||
if (hyperparameters.contains("ascending")) {
|
||||
ascending = hyperparameters["ascending"];
|
||||
hyperparameters.erase("ascending");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
hyperparameters.erase("threshold");
|
||||
}
|
||||
if (hyperparameters.contains("tolerance")) {
|
||||
tolerance = hyperparameters["tolerance"];
|
||||
hyperparameters.erase("tolerance");
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
@@ -71,6 +82,10 @@ namespace bayesnet {
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (!hyperparameters.empty()) {
|
||||
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||
}
|
||||
}
|
||||
std::unordered_set<int> BoostAODE::initializeModels()
|
||||
@@ -108,10 +123,8 @@ namespace bayesnet {
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
std::unordered_set<int> featuresUsed;
|
||||
int tolerance = 5; // number of times the accuracy can be lower than the threshold
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels();
|
||||
tolerance = 0; // Remove tolerance if features are selected
|
||||
}
|
||||
if (maxModels == 0)
|
||||
maxModels = .1 * n > 10 ? .1 * n : n;
|
||||
|
@@ -8,9 +8,9 @@ namespace bayesnet {
|
||||
class BoostAODE : public Ensemble {
|
||||
public:
|
||||
BoostAODE();
|
||||
virtual ~BoostAODE() {};
|
||||
virtual ~BoostAODE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
@@ -21,6 +21,7 @@ namespace bayesnet {
|
||||
// Hyperparameters
|
||||
bool repeatSparent = false; // if true, a feature can be selected more than once
|
||||
int maxModels = 0;
|
||||
int tolerance = 0;
|
||||
bool ascending = false; //Process KBest features ascending or descending order
|
||||
bool convergence = false; //if true, stop when the model does not improve
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
|
@@ -153,18 +153,8 @@ namespace bayesnet {
|
||||
{
|
||||
model.dump_cpt();
|
||||
}
|
||||
void Classifier::checkHyperparameters(const std::vector<std::string>& validKeys, nlohmann::json& hyperparameters)
|
||||
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
for (const auto& item : hyperparameters.items()) {
|
||||
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
|
||||
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid");
|
||||
}
|
||||
}
|
||||
}
|
||||
void Classifier::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid, default is no hyperparameters
|
||||
const std::vector<std::string> validKeys = { };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
//For classifiers that don't have hyperparameters
|
||||
}
|
||||
}
|
@@ -22,7 +22,6 @@ namespace bayesnet {
|
||||
void checkFitParameters();
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void checkHyperparameters(const std::vector<std::string>& validKeys, nlohmann::json& hyperparameters);
|
||||
void buildDataset(torch::Tensor& y);
|
||||
public:
|
||||
Classifier(Network model);
|
||||
@@ -44,7 +43,7 @@ namespace bayesnet {
|
||||
std::vector<std::string> show() const override;
|
||||
std::vector<std::string> topological_order() override;
|
||||
void dump_cpt() const override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@@ -1,12 +1,13 @@
|
||||
#include "KDB.h"
|
||||
|
||||
namespace bayesnet {
|
||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
|
||||
void KDB::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)
|
||||
{
|
||||
validHyperparameters = { "k", "theta" };
|
||||
|
||||
}
|
||||
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "k", "theta" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
if (hyperparameters.contains("k")) {
|
||||
k = hyperparameters["k"];
|
||||
}
|
||||
|
@@ -13,8 +13,8 @@ namespace bayesnet {
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit KDB(int k, float theta = 0.03);
|
||||
virtual ~KDB() {};
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
virtual ~KDB() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
};
|
||||
}
|
||||
|
@@ -10,7 +10,7 @@ namespace bayesnet {
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit SPODE(int root);
|
||||
virtual ~SPODE() {};
|
||||
virtual ~SPODE() = default;
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
};
|
||||
}
|
||||
|
@@ -8,7 +8,7 @@ namespace bayesnet {
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
TAN();
|
||||
virtual ~TAN() {};
|
||||
virtual ~TAN() = default;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
};
|
||||
}
|
||||
|
@@ -7,13 +7,16 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
include_directories(${MPI_CXX_INCLUDE_DIRS})
|
||||
|
||||
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
|
||||
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Folding.cc Datasets.cc Dataset.cc)
|
||||
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
|
||||
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc HyperParameters.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
|
||||
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
|
||||
target_link_libraries(b_grid BayesNet PyWrap ${MPI_CXX_LIBRARIES})
|
||||
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
||||
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
|
||||
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
|
||||
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
@@ -9,6 +9,7 @@ public:
|
||||
static std::string YELLOW() { return "\033[1;33m"; }
|
||||
static std::string RED() { return "\033[1;31m"; }
|
||||
static std::string WHITE() { return "\033[1;37m"; }
|
||||
static std::string IBLUE() { return "\033[0;94m"; }
|
||||
static std::string RESET() { return "\033[0m"; }
|
||||
};
|
||||
#endif // COLORS_H
|
@@ -26,7 +26,6 @@ namespace platform {
|
||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||
return oss.str();
|
||||
}
|
||||
Experiment::Experiment() : hyperparameters(json::parse("{}")) {}
|
||||
std::string Experiment::get_file_name()
|
||||
{
|
||||
std::string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
|
||||
@@ -134,7 +133,7 @@ namespace platform {
|
||||
}
|
||||
void Experiment::cross_validation(const std::string& fileName, bool quiet)
|
||||
{
|
||||
auto datasets = platform::Datasets(discretized, Paths::datasets());
|
||||
auto datasets = Datasets(discretized, Paths::datasets());
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
@@ -148,7 +147,7 @@ namespace platform {
|
||||
auto result = Result();
|
||||
auto [values, counts] = at::_unique(y);
|
||||
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
||||
result.setHyperparameters(hyperparameters);
|
||||
result.setHyperparameters(hyperparameters.get(fileName));
|
||||
// Initialize results std::vectors
|
||||
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
||||
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
||||
@@ -171,9 +170,9 @@ namespace platform {
|
||||
for (int nfold = 0; nfold < nfolds; nfold++) {
|
||||
auto clf = Models::instance()->create(model);
|
||||
setModelVersion(clf->getVersion());
|
||||
if (hyperparameters.size() != 0) {
|
||||
clf->setHyperparameters(hyperparameters);
|
||||
}
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, fileName);
|
||||
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||
// Split train - test dataset
|
||||
train_timer.start();
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
|
@@ -3,29 +3,16 @@
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <string>
|
||||
#include <chrono>
|
||||
#include "Folding.h"
|
||||
#include "BaseClassifier.h"
|
||||
#include "HyperParameters.h"
|
||||
#include "TAN.h"
|
||||
#include "KDB.h"
|
||||
#include "AODE.h"
|
||||
#include "Timer.h"
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
class Timer {
|
||||
private:
|
||||
std::chrono::high_resolution_clock::time_point begin;
|
||||
public:
|
||||
Timer() = default;
|
||||
~Timer() = default;
|
||||
void start() { begin = std::chrono::high_resolution_clock::now(); }
|
||||
double getDuration()
|
||||
{
|
||||
std::chrono::high_resolution_clock::time_point end = std::chrono::high_resolution_clock::now();
|
||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
};
|
||||
class Result {
|
||||
private:
|
||||
std::string dataset, model_version;
|
||||
@@ -80,17 +67,8 @@ namespace platform {
|
||||
const std::vector<double>& getTimesTest() const { return times_test; }
|
||||
};
|
||||
class Experiment {
|
||||
private:
|
||||
std::string title, model, platform, score_name, model_version, language_version, language;
|
||||
bool discretized{ false }, stratified{ false };
|
||||
std::vector<Result> results;
|
||||
std::vector<int> randomSeeds;
|
||||
json hyperparameters = "{}";
|
||||
int nfolds{ 0 };
|
||||
float duration{ 0 };
|
||||
json build_json();
|
||||
public:
|
||||
Experiment();
|
||||
Experiment() = default;
|
||||
Experiment& setTitle(const std::string& title) { this->title = title; return *this; }
|
||||
Experiment& setModel(const std::string& model) { this->model = model; return *this; }
|
||||
Experiment& setPlatform(const std::string& platform) { this->platform = platform; return *this; }
|
||||
@@ -104,13 +82,22 @@ namespace platform {
|
||||
Experiment& addResult(Result result) { results.push_back(result); return *this; }
|
||||
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
|
||||
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
|
||||
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
Experiment& setHyperparameters(const HyperParameters& hyperparameters_) { this->hyperparameters = hyperparameters_; return *this; }
|
||||
std::string get_file_name();
|
||||
void save(const std::string& path);
|
||||
void cross_validation(const std::string& fileName, bool quiet);
|
||||
void go(std::vector<std::string> filesToProcess, bool quiet);
|
||||
void show();
|
||||
void report();
|
||||
private:
|
||||
std::string title, model, platform, score_name, model_version, language_version, language;
|
||||
bool discretized{ false }, stratified{ false };
|
||||
std::vector<Result> results;
|
||||
std::vector<int> randomSeeds;
|
||||
HyperParameters hyperparameters;
|
||||
int nfolds{ 0 };
|
||||
float duration{ 0 };
|
||||
json build_json();
|
||||
};
|
||||
}
|
||||
#endif
|
75
src/Platform/GridData.cc
Normal file
75
src/Platform/GridData.cc
Normal file
@@ -0,0 +1,75 @@
|
||||
#include "GridData.h"
|
||||
#include <fstream>
|
||||
|
||||
namespace platform {
|
||||
GridData::GridData(const std::string& fileName)
|
||||
{
|
||||
json grid_file;
|
||||
std::ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
grid_file = json::parse(resultData);
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open input file. [" + fileName + "]");
|
||||
}
|
||||
for (const auto& item : grid_file.items()) {
|
||||
auto key = item.key();
|
||||
auto value = item.value();
|
||||
grid[key] = value;
|
||||
}
|
||||
|
||||
}
|
||||
int GridData::computeNumCombinations(const json& line)
|
||||
{
|
||||
int numCombinations = 1;
|
||||
for (const auto& item : line.items()) {
|
||||
numCombinations *= item.value().size();
|
||||
}
|
||||
return numCombinations;
|
||||
}
|
||||
int GridData::getNumCombinations(const std::string& dataset)
|
||||
{
|
||||
int numCombinations = 0;
|
||||
auto selected = decide_dataset(dataset);
|
||||
for (const auto& line : grid.at(selected)) {
|
||||
numCombinations += computeNumCombinations(line);
|
||||
}
|
||||
return numCombinations;
|
||||
}
|
||||
json GridData::generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination)
|
||||
{
|
||||
if (index == last) {
|
||||
// If we reached the end of input, store the current combination
|
||||
output.push_back(currentCombination);
|
||||
return currentCombination;
|
||||
}
|
||||
const auto& key = index.key();
|
||||
const auto& values = index.value();
|
||||
for (const auto& value : values) {
|
||||
auto combination = currentCombination;
|
||||
combination[key] = value;
|
||||
json::iterator nextIndex = index;
|
||||
generateCombinations(++nextIndex, last, output, combination);
|
||||
}
|
||||
return currentCombination;
|
||||
}
|
||||
std::vector<json> GridData::getGrid(const std::string& dataset)
|
||||
{
|
||||
auto selected = decide_dataset(dataset);
|
||||
auto result = std::vector<json>();
|
||||
for (json line : grid.at(selected)) {
|
||||
generateCombinations(line.begin(), line.end(), result, json({}));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
json& GridData::getInputGrid(const std::string& dataset)
|
||||
{
|
||||
auto selected = decide_dataset(dataset);
|
||||
return grid.at(selected);
|
||||
}
|
||||
std::string GridData::decide_dataset(const std::string& dataset)
|
||||
{
|
||||
if (grid.find(dataset) != grid.end())
|
||||
return dataset;
|
||||
return ALL_DATASETS;
|
||||
}
|
||||
} /* namespace platform */
|
26
src/Platform/GridData.h
Normal file
26
src/Platform/GridData.h
Normal file
@@ -0,0 +1,26 @@
|
||||
#ifndef GRIDDATA_H
|
||||
#define GRIDDATA_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
const std::string ALL_DATASETS = "all";
|
||||
class GridData {
|
||||
public:
|
||||
explicit GridData(const std::string& fileName);
|
||||
~GridData() = default;
|
||||
std::vector<json> getGrid(const std::string& dataset = ALL_DATASETS);
|
||||
int getNumCombinations(const std::string& dataset = ALL_DATASETS);
|
||||
json& getInputGrid(const std::string& dataset = ALL_DATASETS);
|
||||
std::map<std::string, json>& getGridFile() { return grid; }
|
||||
private:
|
||||
std::string decide_dataset(const std::string& dataset);
|
||||
json generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination);
|
||||
int computeNumCombinations(const json& line);
|
||||
std::map<std::string, json> grid;
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* GRIDDATA_H */
|
599
src/Platform/GridSearch.cc
Normal file
599
src/Platform/GridSearch.cc
Normal file
@@ -0,0 +1,599 @@
|
||||
#include <iostream>
|
||||
#include <torch/torch.h>
|
||||
#include "GridSearch.h"
|
||||
#include "Models.h"
|
||||
#include "Paths.h"
|
||||
#include "Folding.h"
|
||||
#include "Colors.h"
|
||||
|
||||
namespace platform {
|
||||
std::string get_date()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
||||
return oss.str();
|
||||
}
|
||||
std::string get_time()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||
return oss.str();
|
||||
}
|
||||
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
||||
{
|
||||
}
|
||||
json GridSearch::getResults()
|
||||
{
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
return json::parse(file);
|
||||
}
|
||||
return json();
|
||||
}
|
||||
vector<std::string> GridSearch::processDatasets(Datasets& datasets)
|
||||
{
|
||||
// Load datasets
|
||||
auto datasets_names = datasets.getNames();
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
// Continue previous execution:
|
||||
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
||||
}
|
||||
// Remove datasets already processed
|
||||
vector< string >::iterator it = datasets_names.begin();
|
||||
while (it != datasets_names.end()) {
|
||||
if (*it != config.continue_from) {
|
||||
it = datasets_names.erase(it);
|
||||
} else {
|
||||
if (config.only)
|
||||
++it;
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Exclude datasets
|
||||
for (const auto& name : config.excluded) {
|
||||
auto dataset = name.get<std::string>();
|
||||
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
||||
if (it == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
||||
}
|
||||
datasets_names.erase(it);
|
||||
}
|
||||
return datasets_names;
|
||||
}
|
||||
void showProgressComb(const int num, const int n_folds, const int total, const std::string& color)
|
||||
{
|
||||
int spaces = int(log(total) / log(10)) + 1;
|
||||
int magic = n_folds * 3 + 22 + 2 * spaces;
|
||||
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
|
||||
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
|
||||
}
|
||||
void showProgressFold(int fold, const std::string& color, const std::string& phase)
|
||||
{
|
||||
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
|
||||
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
||||
}
|
||||
std::string getColor(bayesnet::status_t status)
|
||||
{
|
||||
switch (status) {
|
||||
case bayesnet::NORMAL:
|
||||
return Colors::GREEN();
|
||||
case bayesnet::WARNING:
|
||||
return Colors::YELLOW();
|
||||
case bayesnet::ERROR:
|
||||
return Colors::RED();
|
||||
default:
|
||||
return Colors::RESET();
|
||||
}
|
||||
}
|
||||
json GridSearch::build_tasks_mpi()
|
||||
{
|
||||
auto tasks = json::array();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto datasets = Datasets(false, Paths::datasets());
|
||||
auto datasets_names = processDatasets(datasets);
|
||||
for (const auto& dataset : datasets_names) {
|
||||
for (const auto& seed : config.seeds) {
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
json task = {
|
||||
{ "dataset", dataset },
|
||||
{ "seed", seed },
|
||||
{ "fold", n_fold}
|
||||
};
|
||||
tasks.push_back(task);
|
||||
}
|
||||
}
|
||||
}
|
||||
// It's important to shuffle the array so heavy datasets are spread across the Workers
|
||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||
std::cout << "Tasks size: " << tasks.size() << std::endl;
|
||||
std::cout << "|";
|
||||
for (int i = 0; i < tasks.size(); ++i) {
|
||||
std::cout << (i + 1) % 10;
|
||||
}
|
||||
std::cout << "|" << std::endl << "|" << std::flush;
|
||||
return tasks;
|
||||
}
|
||||
std::pair<int, int> GridSearch::part_range_mpi(int n_tasks, int nprocs, int rank)
|
||||
{
|
||||
int assigned = 0;
|
||||
int remainder = n_tasks % nprocs;
|
||||
int start = 0;
|
||||
if (rank < remainder) {
|
||||
assigned = n_tasks / nprocs + 1;
|
||||
} else {
|
||||
assigned = n_tasks / nprocs;
|
||||
start = remainder;
|
||||
}
|
||||
start += rank * assigned;
|
||||
int end = start + assigned;
|
||||
if (rank == nprocs - 1) {
|
||||
end = n_tasks;
|
||||
}
|
||||
return { start, end };
|
||||
}
|
||||
std::string get_color_rank(int rank)
|
||||
{
|
||||
auto colors = { Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
|
||||
return *(colors.begin() + rank % colors.size());
|
||||
}
|
||||
void GridSearch::process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results)
|
||||
{
|
||||
// Process the task and store the result in the results json
|
||||
Timer timer;
|
||||
timer.start();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto dataset = task["dataset"].get<std::string>();
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto n_fold = task["fold"].get<int>();
|
||||
// Generate the hyperparamters combinations
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
auto [X, y] = datasets.getTensors(dataset);
|
||||
auto states = datasets.getStates(dataset);
|
||||
auto features = datasets.getFeatures(dataset);
|
||||
auto className = datasets.getClassName(dataset);
|
||||
//
|
||||
// Start working on task
|
||||
//
|
||||
Fold* fold;
|
||||
if (config.stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
auto num = 0;
|
||||
double best_fold_score = 0.0;
|
||||
json best_fold_hyper;
|
||||
for (const auto& hyperparam_line : combinations) {
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
// Nested level fold
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
// Build Classifier with selected hyperparameters
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset));
|
||||
// Train model
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states);
|
||||
// Test model
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
score /= config.nested;
|
||||
if (score > best_fold_score) {
|
||||
best_fold_score = score;
|
||||
best_fold_hyper = hyperparam_line;
|
||||
}
|
||||
}
|
||||
delete fold;
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
// Save results
|
||||
results[dataset][std::to_string(n_fold)]["score"] = best_fold_score;
|
||||
results[dataset][std::to_string(n_fold)]["hyperparameters"] = best_fold_hyper;
|
||||
results[dataset][std::to_string(n_fold)]["seed"] = seed;
|
||||
results[dataset][std::to_string(n_fold)]["duration"] = timer.getDuration();
|
||||
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
|
||||
}
|
||||
void GridSearch::go_mpi(struct ConfigMPI& config_mpi)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "seed": # of seed to use,
|
||||
* "model": "model_name",
|
||||
* "Fold": # of fold to process
|
||||
* }
|
||||
*
|
||||
* The overall process consists in these steps:
|
||||
* 1. Manager will broadcast the tasks to all the processes
|
||||
* 1.1 Broadcast the number of tasks
|
||||
* 1.2 Broadcast the length of the following string
|
||||
* 1.2 Broadcast the tasks as a char* string
|
||||
* 2. Workers will receive the tasks and start the process
|
||||
* 2.1 A method will tell each worker the range of tasks to process
|
||||
* 2.2 Each worker will process the tasks and generate the best score for each task
|
||||
* 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
||||
* 3.1 Obtain the maximum size of the results message of all the workers
|
||||
* 3.2 Gather all the results from the workers into the manager
|
||||
* 3.3 Compile the results from all the workers
|
||||
* 3.4 Filter the best hyperparameters for each dataset
|
||||
*/
|
||||
char* msg;
|
||||
int tasks_size;
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
timer.start();
|
||||
auto tasks = build_tasks_mpi();
|
||||
auto tasks_str = tasks.dump();
|
||||
tasks_size = tasks_str.size();
|
||||
msg = new char[tasks_size + 1];
|
||||
strcpy(msg, tasks_str.c_str());
|
||||
}
|
||||
//
|
||||
// 1. Manager will broadcast the tasks to all the processes
|
||||
//
|
||||
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
||||
if (config_mpi.rank != config_mpi.manager) {
|
||||
msg = new char[tasks_size + 1];
|
||||
}
|
||||
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
json tasks = json::parse(msg);
|
||||
delete[] msg;
|
||||
//
|
||||
// 2. All Workers will receive the tasks and start the process
|
||||
//
|
||||
int num_tasks = tasks.size();
|
||||
// 2.1 A method will tell each worker the range of tasks to process
|
||||
auto [start, end] = part_range_mpi(num_tasks, config_mpi.n_procs, config_mpi.rank);
|
||||
// 2.2 Each worker will process the tasks and return the best scores obtained
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
json results;
|
||||
for (int i = start; i < end; ++i) {
|
||||
// Process task
|
||||
process_task_mpi(config_mpi, tasks[i], datasets, results);
|
||||
}
|
||||
int size = results.dump().size() + 1;
|
||||
int max_size = 0;
|
||||
//
|
||||
// 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
|
||||
//
|
||||
//3.1 Obtain the maximum size of the results message of all the workers
|
||||
MPI_Allreduce(&size, &max_size, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
|
||||
// Assign the memory to the message and initialize it to 0s
|
||||
char* total = NULL;
|
||||
msg = new char[max_size];
|
||||
strncpy(msg, results.dump().c_str(), size);
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
total = new char[max_size * config_mpi.n_procs];
|
||||
}
|
||||
// 3.2 Gather all the results from the workers into the manager
|
||||
MPI_Gather(msg, max_size, MPI_CHAR, total, max_size, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
delete[] msg;
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
std::cout << Colors::RESET() << "|" << std::endl;
|
||||
json total_results;
|
||||
json best_results;
|
||||
// 3.3 Compile the results from all the workers
|
||||
for (int i = 0; i < config_mpi.n_procs; ++i) {
|
||||
json partial_results = json::parse(total + i * max_size);
|
||||
for (auto& [dataset, folds] : partial_results.items()) {
|
||||
for (auto& [fold, result] : folds.items()) {
|
||||
total_results[dataset][fold] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
delete[] total;
|
||||
// 3.4 Filter the best hyperparameters for each dataset
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
for (auto& [dataset, folds] : total_results.items()) {
|
||||
double best_score = 0.0;
|
||||
double duration = 0.0;
|
||||
json best_hyper;
|
||||
for (auto& [fold, result] : folds.items()) {
|
||||
duration += result["duration"].get<double>();
|
||||
if (result["score"] > best_score) {
|
||||
best_score = result["score"];
|
||||
best_hyper = result["hyperparameters"];
|
||||
}
|
||||
}
|
||||
auto timer = Timer();
|
||||
json result = {
|
||||
{ "score", best_score },
|
||||
{ "hyperparameters", best_hyper },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer.translate2String(duration) }
|
||||
};
|
||||
best_results[dataset] = result;
|
||||
}
|
||||
save(best_results);
|
||||
}
|
||||
}
|
||||
void GridSearch::go()
|
||||
{
|
||||
timer.start();
|
||||
auto grid_type = config.nested == 0 ? "Single" : "Nested";
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
auto datasets_names = processDatasets(datasets);
|
||||
json results = initializeResults();
|
||||
std::cout << "***************** Starting " << grid_type << " Gridsearch *****************" << std::endl;
|
||||
std::cout << "input file=" << Paths::grid_input(config.model) << std::endl;
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
Timer timer_dataset;
|
||||
double bestScore = 0;
|
||||
json bestHyperparameters;
|
||||
for (const auto& dataset : datasets_names) {
|
||||
if (!config.quiet)
|
||||
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
timer_dataset.start();
|
||||
if (config.nested == 0)
|
||||
// for dataset // for hyperparameters // for seed // for fold
|
||||
tie(bestScore, bestHyperparameters) = processFileSingle(dataset, datasets, combinations);
|
||||
else
|
||||
// for dataset // for seed // for fold // for hyperparameters // for nested fold
|
||||
tie(bestScore, bestHyperparameters) = processFileNested(dataset, datasets, combinations);
|
||||
if (!config.quiet) {
|
||||
std::cout << "end." << " Score: " << Colors::IBLUE() << setw(9) << setprecision(7) << fixed
|
||||
<< bestScore << Colors::BLUE() << " [" << bestHyperparameters.dump() << "]"
|
||||
<< Colors::RESET() << ::endl;
|
||||
}
|
||||
json result = {
|
||||
{ "score", bestScore },
|
||||
{ "hyperparameters", bestHyperparameters },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer_dataset.getDurationString() }
|
||||
};
|
||||
results[dataset] = result;
|
||||
// Save partial results
|
||||
save(results);
|
||||
}
|
||||
// Save final results
|
||||
save(results);
|
||||
std::cout << "***************** Ending " << grid_type << " Gridsearch *******************" << std::endl;
|
||||
}
|
||||
pair<double, json> GridSearch::processFileSingle(std::string fileName, Datasets& datasets, vector<json>& combinations)
|
||||
{
|
||||
int num = 0;
|
||||
double bestScore = 0.0;
|
||||
json bestHyperparameters;
|
||||
auto totalComb = combinations.size();
|
||||
for (const auto& hyperparam_line : combinations) {
|
||||
if (!config.quiet)
|
||||
showProgressComb(++num, config.n_folds, totalComb, Colors::CYAN());
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
double totalScore = 0.0;
|
||||
int numItems = 0;
|
||||
for (const auto& seed : config.seeds) {
|
||||
if (!config.quiet)
|
||||
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||
Fold* fold;
|
||||
if (config.stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, fileName);
|
||||
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
// Train model
|
||||
if (!config.quiet)
|
||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
// Test model
|
||||
if (!config.quiet)
|
||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
totalScore += clf->score(X_test, y_test);
|
||||
numItems++;
|
||||
if (!config.quiet)
|
||||
std::cout << "\b\b\b, \b" << flush;
|
||||
}
|
||||
delete fold;
|
||||
}
|
||||
double score = numItems == 0 ? 0.0 : totalScore / numItems;
|
||||
if (score > bestScore) {
|
||||
bestScore = score;
|
||||
bestHyperparameters = hyperparam_line;
|
||||
}
|
||||
}
|
||||
return { bestScore, bestHyperparameters };
|
||||
}
|
||||
pair<double, json> GridSearch::processFileNested(std::string fileName, Datasets& datasets, vector<json>& combinations)
|
||||
{
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
int spcs_combinations = int(log(combinations.size()) / log(10)) + 1;
|
||||
double goatScore = 0.0;
|
||||
json goatHyperparameters;
|
||||
// for dataset // for seed // for fold // for hyperparameters // for nested fold
|
||||
for (const auto& seed : config.seeds) {
|
||||
Fold* fold;
|
||||
if (config.stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
double bestScore = 0.0;
|
||||
json bestHyperparameters;
|
||||
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||
if (!config.quiet)
|
||||
std::cout << Colors::GREEN() << nfold + 1 << " " << flush;
|
||||
// First level fold
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
auto num = 0;
|
||||
json result_fold;
|
||||
double hypScore = 0.0;
|
||||
double bestHypScore = 0.0;
|
||||
json bestHypHyperparameters;
|
||||
for (const auto& hyperparam_line : combinations) {
|
||||
std::cout << "[" << setw(spcs_combinations) << ++num << "/" << setw(spcs_combinations)
|
||||
<< combinations.size() << "] " << std::flush;
|
||||
Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
// Nested level fold
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nexted_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
// Build Classifier with selected hyperparameters
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, fileName);
|
||||
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||
// Train model
|
||||
if (!config.quiet)
|
||||
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "a");
|
||||
clf->fit(X_nexted_train, y_nested_train, features, className, states);
|
||||
// Test model
|
||||
if (!config.quiet)
|
||||
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "b");
|
||||
hypScore += clf->score(X_nested_test, y_nested_test);
|
||||
if (!config.quiet)
|
||||
std::cout << "\b\b\b, \b" << flush;
|
||||
}
|
||||
int magic = 3 * config.nested + 2 * spcs_combinations + 4;
|
||||
std::cout << string(magic, '\b') << string(magic, ' ') << string(magic, '\b') << flush;
|
||||
delete nested_fold;
|
||||
hypScore /= config.nested;
|
||||
if (hypScore > bestHypScore) {
|
||||
bestHypScore = hypScore;
|
||||
bestHypHyperparameters = hyperparam_line;
|
||||
}
|
||||
}
|
||||
// Build Classifier with selected hyperparameters
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
clf->setHyperparameters(bestHypHyperparameters);
|
||||
// Train model
|
||||
if (!config.quiet)
|
||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
// Test model
|
||||
if (!config.quiet)
|
||||
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
double score = clf->score(X_test, y_test);
|
||||
if (!config.quiet)
|
||||
std::cout << string(2 * config.nested - 1, '\b') << "," << string(2 * config.nested, ' ') << string(2 * config.nested - 1, '\b') << flush;
|
||||
if (score > bestScore) {
|
||||
bestScore = score;
|
||||
bestHyperparameters = bestHypHyperparameters;
|
||||
}
|
||||
}
|
||||
if (bestScore > goatScore) {
|
||||
goatScore = bestScore;
|
||||
goatHyperparameters = bestHyperparameters;
|
||||
}
|
||||
delete fold;
|
||||
}
|
||||
return { goatScore, goatHyperparameters };
|
||||
}
|
||||
json GridSearch::initializeResults()
|
||||
{
|
||||
// Load previous results
|
||||
json results;
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
if (!config.quiet)
|
||||
std::cout << "* Loading previous results" << std::endl;
|
||||
try {
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
results = json::parse(file);
|
||||
results = results["results"];
|
||||
}
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << "* There were no previous results" << std::endl;
|
||||
std::cerr << "* Initizalizing new results" << std::endl;
|
||||
results = json();
|
||||
}
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridSearch::save(json& results)
|
||||
{
|
||||
std::ofstream file(Paths::grid_output(config.model));
|
||||
json output = {
|
||||
{ "model", config.model },
|
||||
{ "score", config.score },
|
||||
{ "discretize", config.discretize },
|
||||
{ "stratified", config.stratified },
|
||||
{ "n_folds", config.n_folds },
|
||||
{ "seeds", config.seeds },
|
||||
{ "date", get_date() + " " + get_time()},
|
||||
{ "nested", config.nested},
|
||||
{ "platform", config.platform },
|
||||
{ "duration", timer.getDurationString(true)},
|
||||
{ "results", results }
|
||||
|
||||
};
|
||||
file << output.dump(4);
|
||||
}
|
||||
} /* namespace platform */
|
54
src/Platform/GridSearch.h
Normal file
54
src/Platform/GridSearch.h
Normal file
@@ -0,0 +1,54 @@
|
||||
#ifndef GRIDSEARCH_H
|
||||
#define GRIDSEARCH_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <mpi.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Datasets.h"
|
||||
#include "HyperParameters.h"
|
||||
#include "GridData.h"
|
||||
#include "Timer.h"
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
struct ConfigGrid {
|
||||
std::string model;
|
||||
std::string score;
|
||||
std::string continue_from;
|
||||
std::string platform;
|
||||
bool quiet;
|
||||
bool only; // used with continue_from to only compute that dataset
|
||||
bool discretize;
|
||||
bool stratified;
|
||||
int nested;
|
||||
int n_folds;
|
||||
json excluded;
|
||||
std::vector<int> seeds;
|
||||
};
|
||||
struct ConfigMPI {
|
||||
int rank;
|
||||
int n_procs;
|
||||
int manager;
|
||||
};
|
||||
class GridSearch {
|
||||
public:
|
||||
explicit GridSearch(struct ConfigGrid& config);
|
||||
void go();
|
||||
void go_mpi(struct ConfigMPI& config_mpi);
|
||||
~GridSearch() = default;
|
||||
json getResults();
|
||||
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||
private:
|
||||
void save(json& results);
|
||||
json initializeResults();
|
||||
vector<std::string> processDatasets(Datasets& datasets);
|
||||
pair<double, json> processFileSingle(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
|
||||
pair<double, json> processFileNested(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
|
||||
struct ConfigGrid config;
|
||||
pair<int, int> part_range_mpi(int n_tasks, int nprocs, int rank);
|
||||
json build_tasks_mpi();
|
||||
void process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results);
|
||||
Timer timer; // used to measure the time of the whole process
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* GRIDSEARCH_H */
|
55
src/Platform/HyperParameters.cc
Normal file
55
src/Platform/HyperParameters.cc
Normal file
@@ -0,0 +1,55 @@
|
||||
#include "HyperParameters.h"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
|
||||
namespace platform {
|
||||
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_)
|
||||
{
|
||||
// Initialize all datasets with the given hyperparameters
|
||||
for (const auto& item : datasets) {
|
||||
hyperparameters[item] = hyperparameters_;
|
||||
}
|
||||
}
|
||||
// https://www.techiedelight.com/implode-a-vector-of-strings-into-a-comma-separated-string-in-cpp/
|
||||
std::string join(std::vector<std::string> const& strings, std::string delim)
|
||||
{
|
||||
std::stringstream ss;
|
||||
std::copy(strings.begin(), strings.end(),
|
||||
std::ostream_iterator<std::string>(ss, delim.c_str()));
|
||||
return ss.str();
|
||||
}
|
||||
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file)
|
||||
{
|
||||
// Check if file exists
|
||||
std::ifstream file(hyperparameters_file);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("File " + hyperparameters_file + " not found");
|
||||
}
|
||||
// Check if file is a json
|
||||
json input_hyperparameters = json::parse(file);
|
||||
// Check if hyperparameters are valid
|
||||
for (const auto& dataset : datasets) {
|
||||
if (!input_hyperparameters.contains(dataset)) {
|
||||
std::cerr << "*Warning: Dataset " << dataset << " not found in hyperparameters file" << " assuming default hyperparameters" << std::endl;
|
||||
hyperparameters[dataset] = json({});
|
||||
continue;
|
||||
}
|
||||
hyperparameters[dataset] = input_hyperparameters[dataset]["hyperparameters"].get<json>();
|
||||
}
|
||||
}
|
||||
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
|
||||
{
|
||||
json result = hyperparameters.at(fileName);
|
||||
for (const auto& item : result.items()) {
|
||||
if (find(valid.begin(), valid.end(), item.key()) == valid.end()) {
|
||||
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid. Passed Hyperparameters are: "
|
||||
+ result.dump(4) + "\n Valid hyperparameters are: {" + join(valid, ",") + "}");
|
||||
}
|
||||
}
|
||||
}
|
||||
json HyperParameters::get(const std::string& fileName)
|
||||
{
|
||||
return hyperparameters.at(fileName);
|
||||
}
|
||||
} /* namespace platform */
|
23
src/Platform/HyperParameters.h
Normal file
23
src/Platform/HyperParameters.h
Normal file
@@ -0,0 +1,23 @@
|
||||
#ifndef HYPERPARAMETERS_H
|
||||
#define HYPERPARAMETERS_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
class HyperParameters {
|
||||
public:
|
||||
HyperParameters() = default;
|
||||
explicit HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_);
|
||||
explicit HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file);
|
||||
~HyperParameters() = default;
|
||||
bool notEmpty(const std::string& key) const { return !hyperparameters.at(key).empty(); }
|
||||
void check(const std::vector<std::string>& valid, const std::string& fileName);
|
||||
json get(const std::string& fileName);
|
||||
private:
|
||||
std::map<std::string, json> hyperparameters;
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* HYPERPARAMETERS_H */
|
@@ -1,6 +1,7 @@
|
||||
#ifndef PATHS_H
|
||||
#define PATHS_H
|
||||
#include <string>
|
||||
#include <filesystem>
|
||||
#include "DotEnv.h"
|
||||
namespace platform {
|
||||
class Paths {
|
||||
@@ -8,13 +9,31 @@ namespace platform {
|
||||
static std::string results() { return "results/"; }
|
||||
static std::string hiddenResults() { return "hidden_results/"; }
|
||||
static std::string excel() { return "excel/"; }
|
||||
static std::string cfs() { return "cfs/"; }
|
||||
static std::string grid() { return "grid/"; }
|
||||
static std::string datasets()
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
return env.get("source_data");
|
||||
}
|
||||
static void createPath(const std::string& path)
|
||||
{
|
||||
// Create directory if it does not exist
|
||||
try {
|
||||
std::filesystem::create_directory(path);
|
||||
}
|
||||
catch (std::exception& e) {
|
||||
throw std::runtime_error("Could not create directory " + path);
|
||||
}
|
||||
}
|
||||
static std::string excelResults() { return "some_results.xlsx"; }
|
||||
static std::string grid_input(const std::string& model)
|
||||
{
|
||||
return grid() + "grid_" + model + "_input.json";
|
||||
}
|
||||
static std::string grid_output(const std::string& model)
|
||||
{
|
||||
return grid() + "grid_" + model + "_output.json";
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -32,5 +32,4 @@ namespace platform {
|
||||
bool complete;
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@@ -7,7 +7,6 @@
|
||||
#include "Result.h"
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
|
||||
class Results {
|
||||
public:
|
||||
Results(const std::string& path, const std::string& model, const std::string& score, bool complete, bool partial);
|
||||
@@ -34,5 +33,4 @@ namespace platform {
|
||||
void load(); // Loads the list of results
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
43
src/Platform/Timer.h
Normal file
43
src/Platform/Timer.h
Normal file
@@ -0,0 +1,43 @@
|
||||
#ifndef TIMER_H
|
||||
#define TIMER_H
|
||||
#include <chrono>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
|
||||
namespace platform {
|
||||
class Timer {
|
||||
private:
|
||||
std::chrono::high_resolution_clock::time_point begin;
|
||||
std::chrono::high_resolution_clock::time_point end;
|
||||
public:
|
||||
Timer() = default;
|
||||
~Timer() = default;
|
||||
void start() { begin = std::chrono::high_resolution_clock::now(); }
|
||||
void stop() { end = std::chrono::high_resolution_clock::now(); }
|
||||
double getDuration()
|
||||
{
|
||||
stop();
|
||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
double getLapse()
|
||||
{
|
||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (std::chrono::high_resolution_clock::now() - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
std::string getDurationString(bool lapse = false)
|
||||
{
|
||||
double duration = lapse ? getLapse() : getDuration();
|
||||
return translate2String(duration);
|
||||
}
|
||||
std::string translate2String(double duration)
|
||||
{
|
||||
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
|
||||
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
|
||||
std::stringstream ss;
|
||||
ss << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit;
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* TIMER_H */
|
@@ -5,9 +5,8 @@
|
||||
#include "Colors.h"
|
||||
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("best");
|
||||
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
|
||||
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
|
||||
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
|
||||
@@ -28,12 +27,12 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
catch (...) {
|
||||
throw std::runtime_error("Number of folds must be an decimal number");
|
||||
}});
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
argparse::ArgumentParser program("b_sbest");
|
||||
manageArguments(program, argc, argv);
|
||||
std::string model, score;
|
||||
bool build, report, friedman, excel;
|
||||
double level;
|
||||
|
227
src/Platform/b_grid.cc
Normal file
227
src/Platform/b_grid.cc
Normal file
@@ -0,0 +1,227 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <mpi.h>
|
||||
#include "DotEnv.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
#include "GridSearch.h"
|
||||
#include "Paths.h"
|
||||
#include "Timer.h"
|
||||
#include "Colors.h"
|
||||
|
||||
using json = nlohmann::json;
|
||||
const int MAXL = 133;
|
||||
|
||||
void manageArguments(argparse::ArgumentParser& program)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
auto& group = program.add_mutually_exclusive_group(true);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->tostring())
|
||||
.action([](const std::string& value) {
|
||||
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||
}
|
||||
);
|
||||
group.add_argument("--dump").help("Show the grid combinations").default_value(false).implicit_value(true);
|
||||
group.add_argument("--report").help("Report the computed hyperparameters").default_value(false).implicit_value(true);
|
||||
group.add_argument("--compute").help("Perform computation of the grid output hyperparameters").default_value(false).implicit_value(true);
|
||||
program.add_argument("--discretize").help("Discretize input datasets").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
||||
program.add_argument("--mpi").help("Use MPI computing grid").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
||||
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
|
||||
program.add_argument("--continue").help("Continue computing from that dataset").default_value(platform::GridSearch::NO_CONTINUE());
|
||||
program.add_argument("--only").help("Used with continue to compute that dataset only").default_value(false).implicit_value(true);
|
||||
program.add_argument("--exclude").default_value("[]").help("Datasets to exclude in json format, e.g. [\"dataset1\", \"dataset2\"]");
|
||||
program.add_argument("--nested").help("Do a double/nested cross validation with n folds").default_value(0).scan<'i', int>();
|
||||
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
throw std::runtime_error("Number of folds must be greater than 1");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw std::runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw std::runtime_error("Number of folds must be an integer");
|
||||
}});
|
||||
auto seed_values = env.getSeeds();
|
||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||
}
|
||||
|
||||
void list_dump(std::string& model)
|
||||
{
|
||||
auto data = platform::GridData(platform::Paths::grid_input(model));
|
||||
std::cout << Colors::MAGENTA() << "Listing configuration input file (Grid)" << std::endl << std::endl;
|
||||
int index = 0;
|
||||
int max_hyper = 15;
|
||||
int max_dataset = 7;
|
||||
auto combinations = data.getGridFile();
|
||||
for (auto const& item : combinations) {
|
||||
if (item.first.size() > max_dataset) {
|
||||
max_dataset = item.first.size();
|
||||
}
|
||||
if (item.second.dump().size() > max_hyper) {
|
||||
max_hyper = item.second.dump().size();
|
||||
}
|
||||
}
|
||||
std::cout << Colors::GREEN() << left << " # " << left << setw(max_dataset) << "Dataset" << " #Com. "
|
||||
<< setw(max_hyper) << "Hyperparameters" << std::endl;
|
||||
std::cout << "=== " << string(max_dataset, '=') << " ===== " << string(max_hyper, '=') << std::endl;
|
||||
bool odd = true;
|
||||
for (auto const& item : combinations) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
std::cout << color;
|
||||
auto num_combinations = data.getNumCombinations(item.first);
|
||||
std::cout << setw(3) << fixed << right << ++index << left << " " << setw(max_dataset) << item.first
|
||||
<< " " << setw(5) << right << num_combinations << " " << setw(max_hyper) << item.second.dump() << std::endl;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::RESET() << std::endl;
|
||||
}
|
||||
std::string headerLine(const std::string& text, int utf = 0)
|
||||
{
|
||||
int n = MAXL - text.length() - 3;
|
||||
n = n < 0 ? 0 : n;
|
||||
return "* " + text + std::string(n + utf, ' ') + "*\n";
|
||||
}
|
||||
void list_results(json& results, std::string& model)
|
||||
{
|
||||
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
|
||||
std::cout << headerLine("Listing computed hyperparameters for model " + model);
|
||||
std::cout << headerLine("Date & time: " + results["date"].get<std::string>() + " Duration: " + results["duration"].get<std::string>());
|
||||
std::cout << headerLine("Score: " + results["score"].get<std::string>());
|
||||
std::cout << headerLine(
|
||||
"Random seeds: " + results["seeds"].dump()
|
||||
+ " Discretized: " + (results["discretize"].get<bool>() ? "True" : "False")
|
||||
+ " Stratified: " + (results["stratified"].get<bool>() ? "True" : "False")
|
||||
+ " #Folds: " + std::to_string(results["n_folds"].get<int>())
|
||||
+ " Nested: " + (results["nested"].get<int>() == 0 ? "False" : to_string(results["nested"].get<int>()))
|
||||
);
|
||||
std::cout << std::string(MAXL, '*') << std::endl;
|
||||
int spaces = 0;
|
||||
int hyperparameters_spaces = 0;
|
||||
for (const auto& item : results["results"].items()) {
|
||||
auto key = item.key();
|
||||
auto value = item.value();
|
||||
if (key.size() > spaces) {
|
||||
spaces = key.size();
|
||||
}
|
||||
if (value["hyperparameters"].dump().size() > hyperparameters_spaces) {
|
||||
hyperparameters_spaces = value["hyperparameters"].dump().size();
|
||||
}
|
||||
}
|
||||
std::cout << Colors::GREEN() << " # " << left << setw(spaces) << "Dataset" << " " << setw(19) << "Date" << " "
|
||||
<< "Duration " << setw(8) << "Score" << " " << "Hyperparameters" << std::endl;
|
||||
std::cout << "=== " << string(spaces, '=') << " " << string(19, '=') << " " << string(8, '=') << " "
|
||||
<< string(8, '=') << " " << string(hyperparameters_spaces, '=') << std::endl;
|
||||
bool odd = true;
|
||||
int index = 0;
|
||||
for (const auto& item : results["results"].items()) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
auto key = item.key();
|
||||
auto value = item.value();
|
||||
std::cout << color;
|
||||
std::cout << std::setw(3) << std::right << index++ << " ";
|
||||
std::cout << left << setw(spaces) << key << " " << value["date"].get<string>()
|
||||
<< " " << setw(8) << right << value["duration"].get<string>() << " " << setw(8) << setprecision(6)
|
||||
<< fixed << right << value["score"].get<double>() << " " << value["hyperparameters"].dump() << std::endl;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::RESET() << std::endl;
|
||||
}
|
||||
|
||||
/*
|
||||
* Main
|
||||
*/
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("b_grid");
|
||||
manageArguments(program);
|
||||
struct platform::ConfigGrid config;
|
||||
bool dump, compute;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
config.model = program.get<std::string>("model");
|
||||
config.score = program.get<std::string>("score");
|
||||
config.discretize = program.get<bool>("discretize");
|
||||
config.stratified = program.get<bool>("stratified");
|
||||
config.n_folds = program.get<int>("folds");
|
||||
config.quiet = program.get<bool>("quiet");
|
||||
config.only = program.get<bool>("only");
|
||||
config.seeds = program.get<std::vector<int>>("seeds");
|
||||
config.nested = program.get<int>("nested");
|
||||
config.continue_from = program.get<std::string>("continue");
|
||||
if (config.continue_from == platform::GridSearch::NO_CONTINUE() && config.only) {
|
||||
throw std::runtime_error("Cannot use --only without --continue");
|
||||
}
|
||||
dump = program.get<bool>("dump");
|
||||
compute = program.get<bool>("compute");
|
||||
if (dump && (config.continue_from != platform::GridSearch::NO_CONTINUE() || config.only)) {
|
||||
throw std::runtime_error("Cannot use --dump with --continue or --only");
|
||||
}
|
||||
auto excluded = program.get<std::string>("exclude");
|
||||
config.excluded = json::parse(excluded);
|
||||
if (program.get<bool>("mpi")) {
|
||||
if (!compute || config.nested == 0) {
|
||||
throw std::runtime_error("Cannot use --mpi without --compute or without --nested");
|
||||
}
|
||||
}
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << std::endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
/*
|
||||
* Begin Processing
|
||||
*/
|
||||
auto env = platform::DotEnv();
|
||||
config.platform = env.get("platform");
|
||||
platform::Paths::createPath(platform::Paths::grid());
|
||||
auto grid_search = platform::GridSearch(config);
|
||||
platform::Timer timer;
|
||||
timer.start();
|
||||
if (dump) {
|
||||
list_dump(config.model);
|
||||
} else {
|
||||
if (compute) {
|
||||
if (program.get<bool>("mpi")) {
|
||||
struct platform::ConfigMPI mpi_config;
|
||||
mpi_config.manager = 0; // which process is the manager
|
||||
MPI_Init(&argc, &argv);
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_config.rank);
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
|
||||
grid_search.go_mpi(mpi_config);
|
||||
if (mpi_config.rank == mpi_config.manager) {
|
||||
auto results = grid_search.getResults();
|
||||
list_results(results, config.model);
|
||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||
}
|
||||
MPI_Finalize();
|
||||
} else {
|
||||
grid_search.go();
|
||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||
}
|
||||
} else {
|
||||
// List results
|
||||
auto results = grid_search.getResults();
|
||||
if (results.empty()) {
|
||||
std::cout << "** No results found" << std::endl;
|
||||
} else {
|
||||
list_results(results, config.model);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout << "Done!" << std::endl;
|
||||
return 0;
|
||||
}
|
@@ -11,12 +11,13 @@
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
argparse::ArgumentParser manageArguments()
|
||||
void manageArguments(argparse::ArgumentParser& program)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
argparse::ArgumentParser program("main");
|
||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparamters passed to the model in Experiment");
|
||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
|
||||
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
|
||||
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->tostring())
|
||||
.action([](const std::string& value) {
|
||||
@@ -48,18 +49,18 @@ argparse::ArgumentParser manageArguments()
|
||||
}});
|
||||
auto seed_values = env.getSeeds();
|
||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
std::string file_name, model_name, title;
|
||||
argparse::ArgumentParser program("b_main");
|
||||
manageArguments(program);
|
||||
std::string file_name, model_name, title, hyperparameters_file;
|
||||
json hyperparameters_json;
|
||||
bool discretize_dataset, stratified, saveResults, quiet;
|
||||
std::vector<int> seeds;
|
||||
std::vector<std::string> filesToTest;
|
||||
int n_folds;
|
||||
auto program = manageArguments();
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
file_name = program.get<std::string>("dataset");
|
||||
@@ -71,6 +72,10 @@ int main(int argc, char** argv)
|
||||
seeds = program.get<std::vector<int>>("seeds");
|
||||
auto hyperparameters = program.get<std::string>("hyperparameters");
|
||||
hyperparameters_json = json::parse(hyperparameters);
|
||||
hyperparameters_file = program.get<std::string>("hyper-file");
|
||||
if (hyperparameters_file != "" && hyperparameters != "{}") {
|
||||
throw runtime_error("hyperparameters and hyper_file are mutually exclusive");
|
||||
}
|
||||
title = program.get<std::string>("title");
|
||||
if (title == "" && file_name == "") {
|
||||
throw runtime_error("title is mandatory if dataset is not provided");
|
||||
@@ -96,15 +101,22 @@ int main(int argc, char** argv)
|
||||
filesToTest = datasets.getNames();
|
||||
saveResults = true;
|
||||
}
|
||||
platform::HyperParameters test_hyperparams;
|
||||
if (hyperparameters_file != "") {
|
||||
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_file);
|
||||
} else {
|
||||
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_json);
|
||||
}
|
||||
|
||||
/*
|
||||
* Begin Processing
|
||||
*/
|
||||
* Begin Processing
|
||||
*/
|
||||
auto env = platform::DotEnv();
|
||||
auto experiment = platform::Experiment();
|
||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
|
||||
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
|
||||
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
||||
experiment.setHyperparameters(hyperparameters_json);
|
||||
experiment.setHyperparameters(test_hyperparams);
|
||||
for (auto seed : seeds) {
|
||||
experiment.addRandomSeed(seed);
|
||||
}
|
||||
|
@@ -3,9 +3,8 @@
|
||||
#include "ManageResults.h"
|
||||
|
||||
|
||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("manage");
|
||||
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
||||
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
||||
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
||||
@@ -29,12 +28,12 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||
std::cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
return program;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = manageArguments(argc, argv);
|
||||
auto program = argparse::ArgumentParser("b_manage");
|
||||
manageArguments(program, argc, argv);
|
||||
int number = program.get<int>("number");
|
||||
std::string model = program.get<std::string>("model");
|
||||
std::string score = program.get<std::string>("score");
|
||||
|
@@ -1,15 +1,24 @@
|
||||
#include "ODTE.h"
|
||||
|
||||
namespace pywrap {
|
||||
ODTE::ODTE() : PyClassifier("odte", "Odte")
|
||||
{
|
||||
validHyperparameters = { "n_jobs", "n_estimators", "random_state" };
|
||||
}
|
||||
int ODTE::getNumberOfNodes() const
|
||||
{
|
||||
return callMethodInt("get_nodes");
|
||||
}
|
||||
int ODTE::getNumberOfEdges() const
|
||||
{
|
||||
return callMethodInt("get_leaves");
|
||||
}
|
||||
int ODTE::getNumberOfStates() const
|
||||
{
|
||||
return callMethodInt("get_depth");
|
||||
}
|
||||
std::string ODTE::graph()
|
||||
{
|
||||
return callMethodString("graph");
|
||||
}
|
||||
void ODTE::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "n_jobs", "n_estimators", "random_state" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
this->hyperparameters = hyperparameters;
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -6,10 +6,12 @@
|
||||
namespace pywrap {
|
||||
class ODTE : public PyClassifier {
|
||||
public:
|
||||
ODTE() : PyClassifier("odte", "Odte") {};
|
||||
ODTE();
|
||||
~ODTE() = default;
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
std::string graph();
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* ODTE_H */
|
@@ -38,6 +38,14 @@ namespace pywrap {
|
||||
{
|
||||
return pyWrap->callMethodString(id, method);
|
||||
}
|
||||
int PyClassifier::callMethodSumOfItems(const std::string& method) const
|
||||
{
|
||||
return pyWrap->callMethodSumOfItems(id, method);
|
||||
}
|
||||
int PyClassifier::callMethodInt(const std::string& method) const
|
||||
{
|
||||
return pyWrap->callMethodInt(id, method);
|
||||
}
|
||||
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
if (!fitted && hyperparameters.size() > 0) {
|
||||
@@ -81,19 +89,8 @@ namespace pywrap {
|
||||
float result = pyWrap->score(id, Xp, yp);
|
||||
return result;
|
||||
}
|
||||
void PyClassifier::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
void PyClassifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid, default is no hyperparameters
|
||||
const std::vector<std::string> validKeys = { };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
this->hyperparameters = hyperparameters;
|
||||
}
|
||||
void PyClassifier::checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters)
|
||||
{
|
||||
for (const auto& item : hyperparameters.items()) {
|
||||
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
|
||||
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid");
|
||||
}
|
||||
}
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -27,20 +27,21 @@ namespace pywrap {
|
||||
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); };
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override { return 0.0; };
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
std::string version();
|
||||
std::string callMethodString(const std::string& method);
|
||||
int callMethodSumOfItems(const std::string& method) const;
|
||||
int callMethodInt(const std::string& method) const;
|
||||
std::string getVersion() override { return this->version(); };
|
||||
int getNumberOfNodes()const override { return 0; };
|
||||
int getNumberOfEdges()const override { return 0; };
|
||||
int getNumberOfNodes() const override { return 0; };
|
||||
int getNumberOfEdges() const override { return 0; };
|
||||
int getNumberOfStates() const override { return 0; };
|
||||
std::vector<std::string> show() const override { return std::vector<std::string>(); }
|
||||
std::vector<std::string> graph(const std::string& title = "") const override { return std::vector<std::string>(); }
|
||||
bayesnet::status_t getStatus() const override { return bayesnet::NORMAL; };
|
||||
std::vector<std::string> topological_order() override { return std::vector<std::string>(); }
|
||||
void dump_cpt() const override {};
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
protected:
|
||||
void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters);
|
||||
nlohmann::json hyperparameters;
|
||||
void trainModel(const torch::Tensor& weights) override {};
|
||||
private:
|
||||
|
@@ -110,17 +110,80 @@ namespace pywrap {
|
||||
Py_XDECREF(result);
|
||||
return value;
|
||||
}
|
||||
int PyWrap::callMethodInt(const clfId_t id, const std::string& method)
|
||||
{
|
||||
PyObject* instance = getClass(id);
|
||||
PyObject* result;
|
||||
try {
|
||||
if (!(result = PyObject_CallMethod(instance, method.c_str(), NULL)))
|
||||
errorAbort("Couldn't call method " + method);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
errorAbort(e.what());
|
||||
}
|
||||
int value = PyLong_AsLong(result);
|
||||
Py_XDECREF(result);
|
||||
return value;
|
||||
}
|
||||
std::string PyWrap::sklearnVersion()
|
||||
{
|
||||
return "1.0";
|
||||
// CPyObject data = PyRun_SimpleString("import sklearn;return sklearn.__version__");
|
||||
// std::string result = PyUnicode_AsUTF8(data);
|
||||
// return result;
|
||||
PyObject* sklearnModule = PyImport_ImportModule("sklearn");
|
||||
if (sklearnModule == nullptr) {
|
||||
errorAbort("Couldn't import sklearn");
|
||||
}
|
||||
PyObject* versionAttr = PyObject_GetAttrString(sklearnModule, "__version__");
|
||||
if (versionAttr == nullptr || !PyUnicode_Check(versionAttr)) {
|
||||
Py_XDECREF(sklearnModule);
|
||||
errorAbort("Couldn't get sklearn version");
|
||||
}
|
||||
std::string result = PyUnicode_AsUTF8(versionAttr);
|
||||
Py_XDECREF(versionAttr);
|
||||
Py_XDECREF(sklearnModule);
|
||||
return result;
|
||||
}
|
||||
std::string PyWrap::version(const clfId_t id)
|
||||
{
|
||||
return callMethodString(id, "version");
|
||||
}
|
||||
int PyWrap::callMethodSumOfItems(const clfId_t id, const std::string& method)
|
||||
{
|
||||
// Call method on each estimator and sum the results (made for RandomForest)
|
||||
PyObject* instance = getClass(id);
|
||||
PyObject* estimators = PyObject_GetAttrString(instance, "estimators_");
|
||||
if (estimators == nullptr) {
|
||||
errorAbort("Failed to get attribute: " + method);
|
||||
}
|
||||
int sumOfItems = 0;
|
||||
Py_ssize_t len = PyList_Size(estimators);
|
||||
for (Py_ssize_t i = 0; i < len; i++) {
|
||||
PyObject* estimator = PyList_GetItem(estimators, i);
|
||||
PyObject* result;
|
||||
if (method == "node_count") {
|
||||
PyObject* owner = PyObject_GetAttrString(estimator, "tree_");
|
||||
if (owner == nullptr) {
|
||||
Py_XDECREF(estimators);
|
||||
errorAbort("Failed to get attribute tree_ for: " + method);
|
||||
}
|
||||
result = PyObject_GetAttrString(owner, method.c_str());
|
||||
if (result == nullptr) {
|
||||
Py_XDECREF(estimators);
|
||||
Py_XDECREF(owner);
|
||||
errorAbort("Failed to get attribute node_count: " + method);
|
||||
}
|
||||
Py_DECREF(owner);
|
||||
} else {
|
||||
result = PyObject_CallMethod(estimator, method.c_str(), nullptr);
|
||||
if (result == nullptr) {
|
||||
Py_XDECREF(estimators);
|
||||
errorAbort("Failed to call method: " + method);
|
||||
}
|
||||
}
|
||||
sumOfItems += PyLong_AsLong(result);
|
||||
Py_DECREF(result);
|
||||
}
|
||||
Py_DECREF(estimators);
|
||||
return sumOfItems;
|
||||
}
|
||||
void PyWrap::setHyperparameters(const clfId_t id, const json& hyperparameters)
|
||||
{
|
||||
// Set hyperparameters as attributes of the class
|
||||
|
@@ -24,8 +24,10 @@ namespace pywrap {
|
||||
void operator=(const PyWrap&) = delete;
|
||||
~PyWrap() = default;
|
||||
std::string callMethodString(const clfId_t id, const std::string& method);
|
||||
int callMethodInt(const clfId_t id, const std::string& method);
|
||||
std::string sklearnVersion();
|
||||
std::string version(const clfId_t id);
|
||||
int callMethodSumOfItems(const clfId_t id, const std::string& method);
|
||||
void setHyperparameters(const clfId_t id, const json& hyperparameters);
|
||||
void fit(const clfId_t id, CPyObject& X, CPyObject& y);
|
||||
PyObject* predict(const clfId_t id, CPyObject& X);
|
||||
|
@@ -1,11 +1,20 @@
|
||||
#include "RandomForest.h"
|
||||
|
||||
namespace pywrap {
|
||||
void RandomForest::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
RandomForest::RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier", true)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "n_estimators", "n_jobs", "random_state" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
this->hyperparameters = hyperparameters;
|
||||
validHyperparameters = { "n_estimators", "n_jobs", "random_state" };
|
||||
}
|
||||
int RandomForest::getNumberOfEdges() const
|
||||
{
|
||||
return callMethodSumOfItems("get_n_leaves");
|
||||
}
|
||||
int RandomForest::getNumberOfStates() const
|
||||
{
|
||||
return callMethodSumOfItems("get_depth");
|
||||
}
|
||||
int RandomForest::getNumberOfNodes() const
|
||||
{
|
||||
return callMethodSumOfItems("node_count");
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -5,9 +5,11 @@
|
||||
namespace pywrap {
|
||||
class RandomForest : public PyClassifier {
|
||||
public:
|
||||
RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier", true) {};
|
||||
RandomForest();
|
||||
~RandomForest() = default;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
int getNumberOfNodes() const override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* RANDOMFOREST_H */
|
@@ -1,15 +1,24 @@
|
||||
#include "STree.h"
|
||||
|
||||
namespace pywrap {
|
||||
STree::STree() : PyClassifier("stree", "Stree")
|
||||
{
|
||||
validHyperparameters = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy", "gamma", "max_features", "degree" };
|
||||
};
|
||||
int STree::getNumberOfNodes() const
|
||||
{
|
||||
return callMethodInt("get_nodes");
|
||||
}
|
||||
int STree::getNumberOfEdges() const
|
||||
{
|
||||
return callMethodInt("get_leaves");
|
||||
}
|
||||
int STree::getNumberOfStates() const
|
||||
{
|
||||
return callMethodInt("get_depth");
|
||||
}
|
||||
std::string STree::graph()
|
||||
{
|
||||
return callMethodString("graph");
|
||||
}
|
||||
void STree::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
this->hyperparameters = hyperparameters;
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -6,10 +6,12 @@
|
||||
namespace pywrap {
|
||||
class STree : public PyClassifier {
|
||||
public:
|
||||
STree() : PyClassifier("stree", "Stree") {};
|
||||
STree();
|
||||
~STree() = default;
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
std::string graph();
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* STREE_H */
|
@@ -1,11 +1,8 @@
|
||||
#include "SVC.h"
|
||||
|
||||
namespace pywrap {
|
||||
void SVC::setHyperparameters(nlohmann::json& hyperparameters)
|
||||
SVC::SVC() : PyClassifier("sklearn.svm", "SVC", true)
|
||||
{
|
||||
// Check if hyperparameters are valid
|
||||
const std::vector<std::string> validKeys = { "C", "gamma", "kernel", "random_state" };
|
||||
checkHyperparameters(validKeys, hyperparameters);
|
||||
this->hyperparameters = hyperparameters;
|
||||
validHyperparameters = { "C", "gamma", "kernel", "random_state" };
|
||||
}
|
||||
} /* namespace pywrap */
|
@@ -5,10 +5,9 @@
|
||||
namespace pywrap {
|
||||
class SVC : public PyClassifier {
|
||||
public:
|
||||
SVC() : PyClassifier("sklearn.svm", "SVC", true) {};
|
||||
SVC();
|
||||
~SVC() = default;
|
||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
||||
};
|
||||
|
||||
} /* namespace pywrap */
|
||||
#endif /* STREE_H */
|
||||
#endif /* SVC_H */
|
835
stree_results.json
Normal file
835
stree_results.json
Normal file
@@ -0,0 +1,835 @@
|
||||
[
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:29",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "balance-scale",
|
||||
"accuracy": "0.97056",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 10000.0, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0135214",
|
||||
"time_spent_std": "0.00111213",
|
||||
"accuracy_std": "0.0150468",
|
||||
"nodes": "7.0",
|
||||
"leaves": "4.0",
|
||||
"depth": "3.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:29",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "balloons",
|
||||
"accuracy": "0.86",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.000804768",
|
||||
"time_spent_std": "7.74797e-05",
|
||||
"accuracy_std": "0.285015",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:29",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "breast-cancer-wisc-diag",
|
||||
"accuracy": "0.972764",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.2, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00380772",
|
||||
"time_spent_std": "0.000638676",
|
||||
"accuracy_std": "0.0173132",
|
||||
"nodes": "3.24",
|
||||
"leaves": "2.12",
|
||||
"depth": "2.12"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:30",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "breast-cancer-wisc-prog",
|
||||
"accuracy": "0.811128",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.2, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00767535",
|
||||
"time_spent_std": "0.00148114",
|
||||
"accuracy_std": "0.0584601",
|
||||
"nodes": "5.84",
|
||||
"leaves": "3.42",
|
||||
"depth": "3.24"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:31",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "breast-cancer-wisc",
|
||||
"accuracy": "0.966661",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.00652217",
|
||||
"time_spent_std": "0.000726579",
|
||||
"accuracy_std": "0.0139421",
|
||||
"nodes": "8.88",
|
||||
"leaves": "4.94",
|
||||
"depth": "4.08"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:32",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "breast-cancer",
|
||||
"accuracy": "0.734211",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.023475",
|
||||
"time_spent_std": "0.00584447",
|
||||
"accuracy_std": "0.0479774",
|
||||
"nodes": "21.72",
|
||||
"leaves": "11.36",
|
||||
"depth": "5.86"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:49:08",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "cardiotocography-10clases",
|
||||
"accuracy": "0.791487",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "3.10582",
|
||||
"time_spent_std": "0.339218",
|
||||
"accuracy_std": "0.0192082",
|
||||
"nodes": "160.76",
|
||||
"leaves": "80.88",
|
||||
"depth": "22.86"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:01",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "cardiotocography-3clases",
|
||||
"accuracy": "0.900613",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "1.05228",
|
||||
"time_spent_std": "0.138768",
|
||||
"accuracy_std": "0.0154004",
|
||||
"nodes": "47.68",
|
||||
"leaves": "24.34",
|
||||
"depth": "8.84"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:01",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "conn-bench-sonar-mines-rocks",
|
||||
"accuracy": "0.755528",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.011577",
|
||||
"time_spent_std": "0.00341148",
|
||||
"accuracy_std": "0.0678424",
|
||||
"nodes": "6.08",
|
||||
"leaves": "3.54",
|
||||
"depth": "2.86"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:17",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "cylinder-bands",
|
||||
"accuracy": "0.715049",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.301143",
|
||||
"time_spent_std": "0.109773",
|
||||
"accuracy_std": "0.0367646",
|
||||
"nodes": "26.2",
|
||||
"leaves": "13.6",
|
||||
"depth": "6.82"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:19",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "dermatology",
|
||||
"accuracy": "0.971833",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 55, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0377538",
|
||||
"time_spent_std": "0.010726",
|
||||
"accuracy_std": "0.0206883",
|
||||
"nodes": "11.0",
|
||||
"leaves": "6.0",
|
||||
"depth": "6.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:19",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "echocardiogram",
|
||||
"accuracy": "0.814758",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_features\": \"auto\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00333449",
|
||||
"time_spent_std": "0.000964686",
|
||||
"accuracy_std": "0.0998078",
|
||||
"nodes": "7.0",
|
||||
"leaves": "4.0",
|
||||
"depth": "3.54"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:20",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "fertility",
|
||||
"accuracy": "0.88",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00090271",
|
||||
"time_spent_std": "8.96446e-05",
|
||||
"accuracy_std": "0.0547723",
|
||||
"nodes": "1.0",
|
||||
"leaves": "1.0",
|
||||
"depth": "1.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:21",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "haberman-survival",
|
||||
"accuracy": "0.735637",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0171611",
|
||||
"time_spent_std": "0.00334945",
|
||||
"accuracy_std": "0.0434614",
|
||||
"nodes": "23.4",
|
||||
"leaves": "12.2",
|
||||
"depth": "5.98"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:21",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "heart-hungarian",
|
||||
"accuracy": "0.827522",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00493946",
|
||||
"time_spent_std": "0.000738198",
|
||||
"accuracy_std": "0.0505283",
|
||||
"nodes": "10.16",
|
||||
"leaves": "5.58",
|
||||
"depth": "4.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:21",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "hepatitis",
|
||||
"accuracy": "0.824516",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0021534",
|
||||
"time_spent_std": "0.000133715",
|
||||
"accuracy_std": "0.0738872",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:23",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "ilpd-indian-liver",
|
||||
"accuracy": "0.723498",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0345243",
|
||||
"time_spent_std": "0.015789",
|
||||
"accuracy_std": "0.0384886",
|
||||
"nodes": "16.04",
|
||||
"leaves": "8.52",
|
||||
"depth": "5.28"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:24",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "ionosphere",
|
||||
"accuracy": "0.953276",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00881722",
|
||||
"time_spent_std": "0.000843108",
|
||||
"accuracy_std": "0.0238537",
|
||||
"nodes": "3.16",
|
||||
"leaves": "2.08",
|
||||
"depth": "2.08"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:24",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "iris",
|
||||
"accuracy": "0.965333",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.00357342",
|
||||
"time_spent_std": "0.000400509",
|
||||
"accuracy_std": "0.0319444",
|
||||
"nodes": "5.0",
|
||||
"leaves": "3.0",
|
||||
"depth": "3.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:36",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "led-display",
|
||||
"accuracy": "0.703",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.222106",
|
||||
"time_spent_std": "0.0116922",
|
||||
"accuracy_std": "0.0291204",
|
||||
"nodes": "47.16",
|
||||
"leaves": "24.08",
|
||||
"depth": "17.76"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:18",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "libras",
|
||||
"accuracy": "0.788611",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.08, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.841714",
|
||||
"time_spent_std": "0.0830966",
|
||||
"accuracy_std": "0.0516913",
|
||||
"nodes": "82.28",
|
||||
"leaves": "41.64",
|
||||
"depth": "28.84"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:41",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "low-res-spect",
|
||||
"accuracy": "0.883782",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.446301",
|
||||
"time_spent_std": "0.0411822",
|
||||
"accuracy_std": "0.0324593",
|
||||
"nodes": "27.4",
|
||||
"leaves": "14.2",
|
||||
"depth": "10.74"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:41",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "lymphography",
|
||||
"accuracy": "0.835034",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00539465",
|
||||
"time_spent_std": "0.000754365",
|
||||
"accuracy_std": "0.0590649",
|
||||
"nodes": "9.04",
|
||||
"leaves": "5.02",
|
||||
"depth": "4.48"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:43",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "mammographic",
|
||||
"accuracy": "0.81915",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0227931",
|
||||
"time_spent_std": "0.00328533",
|
||||
"accuracy_std": "0.0222517",
|
||||
"nodes": "7.4",
|
||||
"leaves": "4.2",
|
||||
"depth": "4.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:43",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "molec-biol-promoter",
|
||||
"accuracy": "0.767056",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00130273",
|
||||
"time_spent_std": "0.000105772",
|
||||
"accuracy_std": "0.0910923",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:44",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "musk-1",
|
||||
"accuracy": "0.916388",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0116367",
|
||||
"time_spent_std": "0.000331845",
|
||||
"accuracy_std": "0.0275208",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:55",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "oocytes_merluccius_nucleus_4d",
|
||||
"accuracy": "0.835125",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 8.25, \"gamma\": 0.1, \"kernel\": \"poly\"}",
|
||||
"time_spent": "0.208895",
|
||||
"time_spent_std": "0.0270573",
|
||||
"accuracy_std": "0.0220961",
|
||||
"nodes": "10.52",
|
||||
"leaves": "5.76",
|
||||
"depth": "4.42"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:04",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "oocytes_merluccius_states_2f",
|
||||
"accuracy": "0.915365",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.182198",
|
||||
"time_spent_std": "0.0294267",
|
||||
"accuracy_std": "0.020396",
|
||||
"nodes": "18.04",
|
||||
"leaves": "9.52",
|
||||
"depth": "5.3"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:41",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "oocytes_trisopterus_nucleus_2f",
|
||||
"accuracy": "0.800986",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.717113",
|
||||
"time_spent_std": "0.209608",
|
||||
"accuracy_std": "0.0218449",
|
||||
"nodes": "29.88",
|
||||
"leaves": "15.44",
|
||||
"depth": "7.38"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:44",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "oocytes_trisopterus_states_5b",
|
||||
"accuracy": "0.922249",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.11, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0545047",
|
||||
"time_spent_std": "0.00853014",
|
||||
"accuracy_std": "0.0179203",
|
||||
"nodes": "7.44",
|
||||
"leaves": "4.22",
|
||||
"depth": "3.6"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:44",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "parkinsons",
|
||||
"accuracy": "0.882051",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.00795048",
|
||||
"time_spent_std": "0.00176761",
|
||||
"accuracy_std": "0.0478327",
|
||||
"nodes": "8.48",
|
||||
"leaves": "4.74",
|
||||
"depth": "3.76"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:48",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "pima",
|
||||
"accuracy": "0.766651",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0750048",
|
||||
"time_spent_std": "0.0213995",
|
||||
"accuracy_std": "0.0297203",
|
||||
"nodes": "17.4",
|
||||
"leaves": "9.2",
|
||||
"depth": "5.66"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:48",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "pittsburg-bridges-MATERIAL",
|
||||
"accuracy": "0.867749",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00293318",
|
||||
"time_spent_std": "0.000331469",
|
||||
"accuracy_std": "0.0712226",
|
||||
"nodes": "5.16",
|
||||
"leaves": "3.08",
|
||||
"depth": "3.02"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:49",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "pittsburg-bridges-REL-L",
|
||||
"accuracy": "0.632238",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0136311",
|
||||
"time_spent_std": "0.00322964",
|
||||
"accuracy_std": "0.101211",
|
||||
"nodes": "16.32",
|
||||
"leaves": "8.66",
|
||||
"depth": "5.96"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:50",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "pittsburg-bridges-SPAN",
|
||||
"accuracy": "0.659766",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00524256",
|
||||
"time_spent_std": "0.00158822",
|
||||
"accuracy_std": "0.1165",
|
||||
"nodes": "9.84",
|
||||
"leaves": "5.42",
|
||||
"depth": "4.58"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:50",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "pittsburg-bridges-T-OR-D",
|
||||
"accuracy": "0.861619",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.00295627",
|
||||
"time_spent_std": "0.000578594",
|
||||
"accuracy_std": "0.0693747",
|
||||
"nodes": "4.56",
|
||||
"leaves": "2.78",
|
||||
"depth": "2.68"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:50",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "planning",
|
||||
"accuracy": "0.73527",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 10.0, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0030475",
|
||||
"time_spent_std": "0.000172266",
|
||||
"accuracy_std": "0.0669776",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:51",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "post-operative",
|
||||
"accuracy": "0.711111",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 55, \"degree\": 5, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0018727",
|
||||
"time_spent_std": "0.000481977",
|
||||
"accuracy_std": "0.0753592",
|
||||
"nodes": "2.64",
|
||||
"leaves": "1.82",
|
||||
"depth": "1.82"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:52",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "seeds",
|
||||
"accuracy": "0.952857",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 10000.0, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0203492",
|
||||
"time_spent_std": "0.00518065",
|
||||
"accuracy_std": "0.0279658",
|
||||
"nodes": "9.88",
|
||||
"leaves": "5.44",
|
||||
"depth": "4.44"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:52",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "statlog-australian-credit",
|
||||
"accuracy": "0.678261",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00205337",
|
||||
"time_spent_std": "0.00083162",
|
||||
"accuracy_std": "0.0390498",
|
||||
"nodes": "1.32",
|
||||
"leaves": "1.16",
|
||||
"depth": "1.16"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:53:07",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "statlog-german-credit",
|
||||
"accuracy": "0.7625",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.290754",
|
||||
"time_spent_std": "0.0653152",
|
||||
"accuracy_std": "0.0271892",
|
||||
"nodes": "21.24",
|
||||
"leaves": "11.12",
|
||||
"depth": "6.18"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:53:09",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "statlog-heart",
|
||||
"accuracy": "0.822963",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0138923",
|
||||
"time_spent_std": "0.00323664",
|
||||
"accuracy_std": "0.044004",
|
||||
"nodes": "14.56",
|
||||
"leaves": "7.78",
|
||||
"depth": "5.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:56:43",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "statlog-image",
|
||||
"accuracy": "0.955931",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"max_iter\": 10000.0}",
|
||||
"time_spent": "4.27584",
|
||||
"time_spent_std": "0.200362",
|
||||
"accuracy_std": "0.00956073",
|
||||
"nodes": "36.92",
|
||||
"leaves": "18.96",
|
||||
"depth": "10.8"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:56:57",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "statlog-vehicle",
|
||||
"accuracy": "0.793028",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.278833",
|
||||
"time_spent_std": "0.0392173",
|
||||
"accuracy_std": "0.030104",
|
||||
"nodes": "23.88",
|
||||
"leaves": "12.44",
|
||||
"depth": "7.06"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:57:07",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "synthetic-control",
|
||||
"accuracy": "0.95",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.55, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.205184",
|
||||
"time_spent_std": "0.040793",
|
||||
"accuracy_std": "0.0253859",
|
||||
"nodes": "12.48",
|
||||
"leaves": "6.74",
|
||||
"depth": "6.5"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:57:08",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "tic-tac-toe",
|
||||
"accuracy": "0.984444",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.2, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0123015",
|
||||
"time_spent_std": "0.000423728",
|
||||
"accuracy_std": "0.00838747",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:57:09",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "vertebral-column-2clases",
|
||||
"accuracy": "0.852903",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.00576833",
|
||||
"time_spent_std": "0.000910332",
|
||||
"accuracy_std": "0.0408851",
|
||||
"nodes": "6.04",
|
||||
"leaves": "3.52",
|
||||
"depth": "3.34"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:57:09",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "wine",
|
||||
"accuracy": "0.979159",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.55, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0019741",
|
||||
"time_spent_std": "0.000137745",
|
||||
"accuracy_std": "0.022427",
|
||||
"nodes": "5.0",
|
||||
"leaves": "3.0",
|
||||
"depth": "3.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:57:10",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "zoo",
|
||||
"accuracy": "0.957524",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.1, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00556221",
|
||||
"time_spent_std": "0.000230106",
|
||||
"accuracy_std": "0.0454615",
|
||||
"nodes": "13.04",
|
||||
"leaves": "7.02",
|
||||
"depth": "7.02"
|
||||
}
|
||||
]
|
Reference in New Issue
Block a user