Compare commits

..

50 Commits

Author SHA1 Message Date
18e8e84284 Add openmpi instructions for Oracle Linux 2023-12-17 12:19:50 +01:00
7de11b0e6d Fix format of duration 2023-12-17 01:45:04 +01:00
9b8db37a4b Fix duration of task not set 2023-12-16 19:31:45 +01:00
49b26bd04b fix duration output 2023-12-16 12:53:25 +01:00
b5b5b48864 Update grid progress bar output 2023-12-15 18:09:17 +01:00
19586a3a5a Fix pesky error allocating memory in workers 2023-12-15 01:54:13 +01:00
ffe6d37436 Add messages to control trace 2023-12-14 21:06:43 +01:00
b73f4be146 First try with complete algorithm 2023-12-14 15:55:08 +01:00
dbf2f35502 First compiling version 2023-12-12 18:57:57 +01:00
db9e80a70e Create build tasks 2023-12-12 12:15:22 +01:00
40ae4ad7f9 Include mpi in CMakeLists 2023-12-11 09:06:05 +01:00
234342f2de Add mpi parameter to b_grid 2023-12-10 22:33:17 +01:00
aa0936abd1 Add --exclude parameter to b_grid to exclude datasets 2023-12-08 12:09:08 +01:00
f0d6f0cc38 Fix sample building 2023-12-04 19:12:44 +01:00
cc316bb8d3 Add colors to results of gridsearch 2023-12-04 17:34:00 +01:00
0723564e66 Fix some output in gridsearch 2023-12-03 17:55:44 +01:00
2e95e8999d Complete nested gridsearch 2023-12-03 12:37:25 +01:00
fb9b395748 Begin output nested grid 2023-12-02 13:19:12 +01:00
03e4437fea refactor gridsearch to have only one go method 2023-12-02 10:59:05 +01:00
33cd32c639 Add header to grid output and report 2023-12-01 10:30:53 +01:00
c460ef46ed Refactor gridsearch method 2023-11-30 11:01:37 +01:00
dee9c674da Refactor grid input hyperparameter file 2023-11-29 18:24:34 +01:00
e3f6dc1e0b Fix tolerance hyperp error & gridsearch 2023-11-29 12:33:50 +01:00
460d20a402 Add reports to gridsearch 2023-11-29 00:26:48 +01:00
8dbbb65a2f Add only parameter to gridsearch 2023-11-28 10:08:40 +01:00
d06bf187b2 Implement Random Forest nodes/leaves/depth 2023-11-28 00:35:38 +01:00
4addaefb47 Implement sklearn version in PyWrap 2023-11-27 22:34:34 +01:00
82964190f6 Add nodes/leaves/depth to STree & ODTE 2023-11-27 10:57:57 +01:00
4fefe9a1d2 Add grid input info to grid output 2023-11-26 16:07:32 +01:00
7c12dd25e5 Fix upper case typo 2023-11-26 10:55:32 +01:00
c713c0b1df Add continue from parameter to gridsearch 2023-11-26 10:36:09 +01:00
64069a6cb7 Adapt b_main to the new hyperparam file format 2023-11-25 16:52:25 +01:00
ba2a3f9523 Merge pull request 'gridsearch' (#13) from gridsearch into main
Reviewed-on: #13
2023-11-25 11:16:13 +00:00
f94e2d6a27 Add quiet parameter 2023-11-24 21:16:20 +01:00
2121ba9b98 Refactor input grid parameters to json file 2023-11-24 09:57:29 +01:00
8b7b59d42b Complete first step 2023-11-23 12:59:21 +01:00
bbe5302ab1 Add info to output 2023-11-22 16:38:50 +01:00
c2eb727fc7 Complete output interface of gridsearch 2023-11-22 16:30:04 +01:00
fb347ed5b9 Begin gridsearch implementation 2023-11-22 12:22:30 +01:00
b657762c0c Generate combinations sample 2023-11-22 00:18:24 +01:00
495d8a8528 Begin implementing grid combinations 2023-11-21 13:11:14 +01:00
4628e48d3c Build gridsearch structure 2023-11-20 23:32:34 +01:00
5876be4b24 Add more install instructions of Boost to README 2023-11-20 20:39:22 +01:00
dc3400197f Add coment todo impelemt number of nodes 2023-11-20 01:14:13 +01:00
26d3a57782 Add info to invalid hyperparameter exception 2023-11-19 23:02:28 +01:00
4f3a04058f Refactor Hyperparameters management 2023-11-19 22:36:27 +01:00
89c4613591 Implement hyperparameters with json file 2023-11-18 11:56:10 +01:00
28f3d87e32 Add Python Classifiers
Add STree, Odte, SVC & RandomForest Classifiers
Remove using namespace ... in project
2023-11-17 11:11:05 +01:00
64f5a7f14a Fix header in example 2023-11-16 17:03:40 +01:00
e03efb5f63 set tolerance=0 if feature selection in BoostAODE 2023-11-14 10:12:02 +01:00
50 changed files with 2466 additions and 175 deletions

3
.gitignore vendored
View File

@@ -32,8 +32,7 @@
*.out
*.app
build/**
build_debug/**
build_release/**
build_*/**
*.dSYM/**
cmake-build*/**
.idea

10
.gitmodules vendored
View File

@@ -1,15 +1,25 @@
[submodule "lib/mdlp"]
path = lib/mdlp
url = https://github.com/rmontanana/mdlp
main = main
update = merge
[submodule "lib/catch2"]
path = lib/catch2
main = v2.x
update = merge
url = https://github.com/catchorg/Catch2.git
[submodule "lib/argparse"]
path = lib/argparse
url = https://github.com/p-ranav/argparse
master = master
update = merge
[submodule "lib/json"]
path = lib/json
url = https://github.com/nlohmann/json.git
master = master
update = merge
[submodule "lib/libxlsxwriter"]
path = lib/libxlsxwriter
url = https://github.com/jmcnamara/libxlsxwriter.git
main = main
update = merge

43
.vscode/launch.json vendored
View File

@@ -14,14 +14,14 @@
"-s",
"271",
"-p",
"/home/rmontanana/Code/discretizbench/datasets/",
"/Users/rmontanana/Code/discretizbench/datasets/",
],
//"cwd": "${workspaceFolder}/build/sample/",
},
{
"type": "lldb",
"request": "launch",
"name": "experiment",
"name": "experimentPy",
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
"args": [
"-m",
@@ -33,6 +33,39 @@
// "--hyperparameters",
// "{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "gridsearch",
"program": "${workspaceFolder}/build_debug/src/Platform/b_grid",
"args": [
"-m",
"KDB",
"--discretize",
"--continue",
"glass",
"--only",
"--compute"
],
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
"request": "launch",
"name": "experimentBayes",
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
"args": [
"-m",
"TAN",
"--stratified",
"--discretize",
"-d",
"iris",
"--hyperparameters",
"{\"repeatSparent\": true, \"maxModels\": 12}"
],
"cwd": "/home/rmontanana/Code/discretizbench",
},
{
@@ -47,7 +80,7 @@
"accuracy",
"--build",
],
"cwd": "/home/rmontanana/Code/discretizbench",
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
@@ -58,7 +91,7 @@
"-n",
"20"
],
"cwd": "/home/rmontanana/Code/discretizbench",
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",
@@ -67,7 +100,7 @@
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
"args": [],
//"cwd": "/Users/rmontanana/Code/discretizbench",
"cwd": "/home/rmontanana/Code/covbench",
"cwd": "${workspaceFolder}/../discretizbench",
},
{
"type": "lldb",

View File

@@ -25,12 +25,18 @@ set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
# Options
# -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" OFF)
option(CODE_COVERAGE "Collect coverage from test library" OFF)
option(MPI_ENABLED "Enable MPI options" ON)
if (MPI_ENABLED)
find_package(MPI REQUIRED)
message("MPI_CXX_LIBRARIES=${MPI_CXX_LIBRARIES}")
message("MPI_CXX_INCLUDE_DIRS=${MPI_CXX_INCLUDE_DIRS}")
endif (MPI_ENABLED)
# Boost Library
set(Boost_USE_STATIC_LIBS OFF)

View File

@@ -4,7 +4,7 @@ SHELL := /bin/bash
f_release = build_release
f_debug = build_debug
app_targets = b_best b_list b_main b_manage
app_targets = b_best b_list b_main b_manage b_grid
test_targets = unit_tests_bayesnet unit_tests_platform
n_procs = -j 16
@@ -35,11 +35,13 @@ dest ?= ${HOME}/bin
install: ## Copy binary files to bin folder
@echo "Destination folder: $(dest)"
make buildr
@echo "*******************************************"
@echo ">>> Copying files to $(dest)"
@cp $(f_release)/src/Platform/b_main $(dest)
@cp $(f_release)/src/Platform/b_list $(dest)
@cp $(f_release)/src/Platform/b_manage $(dest)
@cp $(f_release)/src/Platform/b_best $(dest)
@echo "*******************************************"
@for item in $(app_targets); do \
echo ">>> Copying $$item" ; \
cp $(f_release)/src/Platform/$$item $(dest) ; \
done
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
@echo ">>> Creating dependency graph diagram of the project...";
@@ -47,10 +49,10 @@ dependency: ## Create a dependency graph diagram of the project (build/dependenc
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
buildd: ## Build the debug targets
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
cmake --build $(f_debug) -t $(app_targets) BayesNetSample $(n_procs)
buildr: ## Build the release targets
cmake --build $(f_release) -t $(app_targets) $(n_procs)
cmake --build $(f_release) -t $(app_targets) BayesNetSample $(n_procs)
clean: ## Clean the tests info
@echo ">>> Cleaning Debug BayesNet tests...";

View File

@@ -8,6 +8,20 @@ Bayesian Network Classifier with libtorch from scratch
Before compiling BayesNet.
### MPI
In Linux just install openmpi & openmpi-devel packages. Only cmake can't find openmpi install (like in Oracle Linux) set the following variable:
```bash
export MPI_HOME="/usr/lib64/openmpi"
```
In Mac OS X, install mpich with brew and if cmake doesn't find it, edit mpicxx wrapper to remove the ",-commons,use_dylibs" from final_ldflags
```bash
vi /opt/homebrew/bin/mpicx
```
### boost library
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
@@ -18,12 +32,24 @@ The best option is install the packages that the Linux distribution have in its
sudo dnf install boost-devel
```
If this is not possible and the compressed packaged is installed, the following environment variable has to be set:
If this is not possible and the compressed packaged is installed, the following environment variable has to be set pointing to the folder where it was unzipped to:
```bash
export BOOST_ROOT=/path/to/library/
```
In some cases, it is needed to build the library, to do so:
```bash
cd /path/to/library
mkdir own
./bootstrap.sh --prefix=/path/to/library/own
./b2 install
export BOOST_ROOT=/path/to/library/own/
```
Don't forget to add the export BOOST_ROOT statement to .bashrc or wherever it is meant to be.
### libxlswriter
```bash

162
grid_stree.json Normal file
View File

@@ -0,0 +1,162 @@
{
"balance-scale": {
"C": 10000.0,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"balloons": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"breast-cancer-wisc-diag": {
"C": 0.2,
"max_iter": 10000
},
"breast-cancer-wisc-prog": {
"C": 0.2,
"max_iter": 10000
},
"breast-cancer-wisc": {},
"breast-cancer": {},
"cardiotocography-10clases": {},
"cardiotocography-3clases": {},
"conn-bench-sonar-mines-rocks": {},
"cylinder-bands": {},
"dermatology": {
"C": 55,
"max_iter": 10000
},
"echocardiogram": {
"C": 7,
"gamma": 0.1,
"kernel": "poly",
"max_features": "auto",
"max_iter": 10000
},
"fertility": {
"C": 0.05,
"max_features": "auto",
"max_iter": 10000
},
"haberman-survival": {},
"heart-hungarian": {
"C": 0.05,
"max_iter": 10000
},
"hepatitis": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"ilpd-indian-liver": {},
"ionosphere": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"iris": {},
"led-display": {},
"libras": {
"C": 0.08,
"max_iter": 10000
},
"low-res-spect": {
"C": 0.05,
"max_iter": 10000
},
"lymphography": {
"C": 0.05,
"max_iter": 10000
},
"mammographic": {},
"molec-biol-promoter": {
"C": 0.05,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"musk-1": {
"C": 0.05,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"oocytes_merluccius_nucleus_4d": {
"C": 8.25,
"gamma": 0.1,
"kernel": "poly"
},
"oocytes_merluccius_states_2f": {},
"oocytes_trisopterus_nucleus_2f": {},
"oocytes_trisopterus_states_5b": {
"C": 0.11,
"max_iter": 10000
},
"parkinsons": {},
"pima": {},
"pittsburg-bridges-MATERIAL": {
"C": 7,
"gamma": 0.1,
"kernel": "rbf",
"max_iter": 10000
},
"pittsburg-bridges-REL-L": {},
"pittsburg-bridges-SPAN": {
"C": 0.05,
"max_iter": 10000
},
"pittsburg-bridges-T-OR-D": {},
"planning": {
"C": 7,
"gamma": 10.0,
"kernel": "rbf",
"max_iter": 10000
},
"post-operative": {
"C": 55,
"degree": 5,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"seeds": {
"C": 10000.0,
"max_iter": 10000
},
"statlog-australian-credit": {
"C": 0.05,
"max_features": "auto",
"max_iter": 10000
},
"statlog-german-credit": {},
"statlog-heart": {},
"statlog-image": {
"C": 7,
"max_iter": 10000
},
"statlog-vehicle": {},
"synthetic-control": {
"C": 0.55,
"max_iter": 10000
},
"tic-tac-toe": {
"C": 0.2,
"gamma": 0.1,
"kernel": "poly",
"max_iter": 10000
},
"vertebral-column-2clases": {},
"wine": {
"C": 0.55,
"max_iter": 10000
},
"zoo": {
"C": 0.1,
"max_iter": 10000
}
}

View File

@@ -1,8 +1,10 @@
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
include_directories(${Python3_INCLUDE_DIRS})
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)

View File

@@ -1,10 +1,10 @@
#include <iostream>
#include <torch/torch.h>
#include <std::string>
#include <string>
#include <map>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "ArffFiles.h"v
#include "ArffFiles.h"
#include "BayesMetrics.h"
#include "CPPFImdlp.h"
#include "Folding.h"
@@ -29,7 +29,7 @@ pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<
return { Xd, maxes };
}
bool file_exists(const std::std::std::string& name)
bool file_exists(const std::string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
@@ -72,7 +72,7 @@ int main(int argc, char** argv)
argparse::ArgumentParser program("BayesNetSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
.action([valid_datasets](const std::std::std::string& value) {
.action([valid_datasets](const std::string& value) {
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
}
@@ -84,20 +84,20 @@ int main(int argc, char** argv)
.default_value(std::string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->tostd::string())
.action([](const std::std::std::string& value) {
.help("Model to use " + platform::Models::instance()->tostring())
.action([](const std::string& value) {
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of " + platform::Models::instance()->tostd::string());
throw runtime_error("Model must be one of " + platform::Models::instance()->tostring());
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::std::string& value) {
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
@@ -184,8 +184,8 @@ int main(int argc, char** argv)
file.close();
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
std::string stratified_std::string = stratified ? " Stratified" : "";
std::cout << nFolds << " Folds" << stratified_std::string << " Cross validation" << std::endl;
std::string stratified_string = stratified ? " Stratified" : "";
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
std::cout << "==========================================" << std::endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);

View File

@@ -6,8 +6,6 @@
namespace bayesnet {
enum status_t { NORMAL, WARNING, ERROR };
class BaseClassifier {
protected:
virtual void trainModel(const torch::Tensor& weights) = 0;
public:
// X is nxm std::vector, y is nx1 std::vector
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
@@ -29,7 +27,11 @@ namespace bayesnet {
virtual std::string getVersion() = 0;
std::vector<std::string> virtual topological_order() = 0;
void virtual dump_cpt()const = 0;
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
protected:
virtual void trainModel(const torch::Tensor& weights) = 0;
std::vector<std::string> validHyperparameters;
};
}
#endif

View File

@@ -10,7 +10,11 @@
#include "IWSS.h"
namespace bayesnet {
BoostAODE::BoostAODE() : Ensemble() {}
BoostAODE::BoostAODE() : Ensemble()
{
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features", "tolerance" };
}
void BoostAODE::buildModel(const torch::Tensor& weights)
{
// Models shall be built in trainModel
@@ -43,25 +47,32 @@ namespace bayesnet {
y_train = y_;
}
}
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
{
// Check if hyperparameters are valid
const std::vector<std::string> validKeys = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" };
checkHyperparameters(validKeys, hyperparameters);
auto hyperparameters = hyperparameters_;
if (hyperparameters.contains("repeatSparent")) {
repeatSparent = hyperparameters["repeatSparent"];
hyperparameters.erase("repeatSparent");
}
if (hyperparameters.contains("maxModels")) {
maxModels = hyperparameters["maxModels"];
hyperparameters.erase("maxModels");
}
if (hyperparameters.contains("ascending")) {
ascending = hyperparameters["ascending"];
hyperparameters.erase("ascending");
}
if (hyperparameters.contains("convergence")) {
convergence = hyperparameters["convergence"];
hyperparameters.erase("convergence");
}
if (hyperparameters.contains("threshold")) {
threshold = hyperparameters["threshold"];
hyperparameters.erase("threshold");
}
if (hyperparameters.contains("tolerance")) {
tolerance = hyperparameters["tolerance"];
hyperparameters.erase("tolerance");
}
if (hyperparameters.contains("select_features")) {
auto selectedAlgorithm = hyperparameters["select_features"];
@@ -71,6 +82,10 @@ namespace bayesnet {
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
throw std::invalid_argument("Invalid selectFeatures value [IWSS, FCBF, CFS]");
}
hyperparameters.erase("select_features");
}
if (!hyperparameters.empty()) {
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
}
}
std::unordered_set<int> BoostAODE::initializeModels()
@@ -108,10 +123,8 @@ namespace bayesnet {
void BoostAODE::trainModel(const torch::Tensor& weights)
{
std::unordered_set<int> featuresUsed;
int tolerance = 5; // number of times the accuracy can be lower than the threshold
if (selectFeatures) {
featuresUsed = initializeModels();
tolerance = 0; // Remove tolerance if features are selected
}
if (maxModels == 0)
maxModels = .1 * n > 10 ? .1 * n : n;

View File

@@ -8,9 +8,9 @@ namespace bayesnet {
class BoostAODE : public Ensemble {
public:
BoostAODE();
virtual ~BoostAODE() {};
virtual ~BoostAODE() = default;
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
void setHyperparameters(const nlohmann::json& hyperparameters) override;
protected:
void buildModel(const torch::Tensor& weights) override;
void trainModel(const torch::Tensor& weights) override;
@@ -21,6 +21,7 @@ namespace bayesnet {
// Hyperparameters
bool repeatSparent = false; // if true, a feature can be selected more than once
int maxModels = 0;
int tolerance = 0;
bool ascending = false; //Process KBest features ascending or descending order
bool convergence = false; //if true, stop when the model does not improve
bool selectFeatures = false; // if true, use feature selection

View File

@@ -153,18 +153,8 @@ namespace bayesnet {
{
model.dump_cpt();
}
void Classifier::checkHyperparameters(const std::vector<std::string>& validKeys, nlohmann::json& hyperparameters)
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
{
for (const auto& item : hyperparameters.items()) {
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid");
}
}
}
void Classifier::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid, default is no hyperparameters
const std::vector<std::string> validKeys = { };
checkHyperparameters(validKeys, hyperparameters);
//For classifiers that don't have hyperparameters
}
}

View File

@@ -22,7 +22,6 @@ namespace bayesnet {
void checkFitParameters();
virtual void buildModel(const torch::Tensor& weights) = 0;
void trainModel(const torch::Tensor& weights) override;
void checkHyperparameters(const std::vector<std::string>& validKeys, nlohmann::json& hyperparameters);
void buildDataset(torch::Tensor& y);
public:
Classifier(Network model);
@@ -44,7 +43,7 @@ namespace bayesnet {
std::vector<std::string> show() const override;
std::vector<std::string> topological_order() override;
void dump_cpt() const override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
};
}
#endif

View File

@@ -1,12 +1,13 @@
#include "KDB.h"
namespace bayesnet {
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
void KDB::setHyperparameters(nlohmann::json& hyperparameters)
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)
{
validHyperparameters = { "k", "theta" };
}
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const std::vector<std::string> validKeys = { "k", "theta" };
checkHyperparameters(validKeys, hyperparameters);
if (hyperparameters.contains("k")) {
k = hyperparameters["k"];
}

View File

@@ -13,8 +13,8 @@ namespace bayesnet {
void buildModel(const torch::Tensor& weights) override;
public:
explicit KDB(int k, float theta = 0.03);
virtual ~KDB() {};
void setHyperparameters(nlohmann::json& hyperparameters) override;
virtual ~KDB() = default;
void setHyperparameters(const nlohmann::json& hyperparameters) override;
std::vector<std::string> graph(const std::string& name = "KDB") const override;
};
}

View File

@@ -10,7 +10,7 @@ namespace bayesnet {
void buildModel(const torch::Tensor& weights) override;
public:
explicit SPODE(int root);
virtual ~SPODE() {};
virtual ~SPODE() = default;
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
};
}

View File

@@ -8,7 +8,7 @@ namespace bayesnet {
void buildModel(const torch::Tensor& weights) override;
public:
TAN();
virtual ~TAN() {};
virtual ~TAN() = default;
std::vector<std::string> graph(const std::string& name = "TAN") const override;
};
}

View File

@@ -7,13 +7,16 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
include_directories(${Python3_INCLUDE_DIRS})
include_directories(${MPI_CXX_INCLUDE_DIRS})
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc ReportConsole.cc ReportBase.cc)
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Folding.cc Datasets.cc Dataset.cc)
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc HyperParameters.cc ReportConsole.cc ReportBase.cc)
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
target_link_libraries(b_grid BayesNet PyWrap ${MPI_CXX_LIBRARIES})
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")

View File

@@ -9,6 +9,7 @@ public:
static std::string YELLOW() { return "\033[1;33m"; }
static std::string RED() { return "\033[1;31m"; }
static std::string WHITE() { return "\033[1;37m"; }
static std::string IBLUE() { return "\033[0;94m"; }
static std::string RESET() { return "\033[0m"; }
};
#endif // COLORS_H

View File

@@ -26,7 +26,6 @@ namespace platform {
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
Experiment::Experiment() : hyperparameters(json::parse("{}")) {}
std::string Experiment::get_file_name()
{
std::string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
@@ -134,7 +133,7 @@ namespace platform {
}
void Experiment::cross_validation(const std::string& fileName, bool quiet)
{
auto datasets = platform::Datasets(discretized, Paths::datasets());
auto datasets = Datasets(discretized, Paths::datasets());
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
@@ -148,7 +147,7 @@ namespace platform {
auto result = Result();
auto [values, counts] = at::_unique(y);
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
result.setHyperparameters(hyperparameters);
result.setHyperparameters(hyperparameters.get(fileName));
// Initialize results std::vectors
int nResults = nfolds * static_cast<int>(randomSeeds.size());
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
@@ -171,9 +170,9 @@ namespace platform {
for (int nfold = 0; nfold < nfolds; nfold++) {
auto clf = Models::instance()->create(model);
setModelVersion(clf->getVersion());
if (hyperparameters.size() != 0) {
clf->setHyperparameters(hyperparameters);
}
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, fileName);
clf->setHyperparameters(hyperparameters.get(fileName));
// Split train - test dataset
train_timer.start();
auto [train, test] = fold->getFold(nfold);

View File

@@ -3,29 +3,16 @@
#include <torch/torch.h>
#include <nlohmann/json.hpp>
#include <string>
#include <chrono>
#include "Folding.h"
#include "BaseClassifier.h"
#include "HyperParameters.h"
#include "TAN.h"
#include "KDB.h"
#include "AODE.h"
#include "Timer.h"
namespace platform {
using json = nlohmann::json;
class Timer {
private:
std::chrono::high_resolution_clock::time_point begin;
public:
Timer() = default;
~Timer() = default;
void start() { begin = std::chrono::high_resolution_clock::now(); }
double getDuration()
{
std::chrono::high_resolution_clock::time_point end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
return time_span.count();
}
};
class Result {
private:
std::string dataset, model_version;
@@ -80,17 +67,8 @@ namespace platform {
const std::vector<double>& getTimesTest() const { return times_test; }
};
class Experiment {
private:
std::string title, model, platform, score_name, model_version, language_version, language;
bool discretized{ false }, stratified{ false };
std::vector<Result> results;
std::vector<int> randomSeeds;
json hyperparameters = "{}";
int nfolds{ 0 };
float duration{ 0 };
json build_json();
public:
Experiment();
Experiment() = default;
Experiment& setTitle(const std::string& title) { this->title = title; return *this; }
Experiment& setModel(const std::string& model) { this->model = model; return *this; }
Experiment& setPlatform(const std::string& platform) { this->platform = platform; return *this; }
@@ -104,13 +82,22 @@ namespace platform {
Experiment& addResult(Result result) { results.push_back(result); return *this; }
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
Experiment& setHyperparameters(const HyperParameters& hyperparameters_) { this->hyperparameters = hyperparameters_; return *this; }
std::string get_file_name();
void save(const std::string& path);
void cross_validation(const std::string& fileName, bool quiet);
void go(std::vector<std::string> filesToProcess, bool quiet);
void show();
void report();
private:
std::string title, model, platform, score_name, model_version, language_version, language;
bool discretized{ false }, stratified{ false };
std::vector<Result> results;
std::vector<int> randomSeeds;
HyperParameters hyperparameters;
int nfolds{ 0 };
float duration{ 0 };
json build_json();
};
}
#endif

75
src/Platform/GridData.cc Normal file
View File

@@ -0,0 +1,75 @@
#include "GridData.h"
#include <fstream>
namespace platform {
GridData::GridData(const std::string& fileName)
{
json grid_file;
std::ifstream resultData(fileName);
if (resultData.is_open()) {
grid_file = json::parse(resultData);
} else {
throw std::invalid_argument("Unable to open input file. [" + fileName + "]");
}
for (const auto& item : grid_file.items()) {
auto key = item.key();
auto value = item.value();
grid[key] = value;
}
}
int GridData::computeNumCombinations(const json& line)
{
int numCombinations = 1;
for (const auto& item : line.items()) {
numCombinations *= item.value().size();
}
return numCombinations;
}
int GridData::getNumCombinations(const std::string& dataset)
{
int numCombinations = 0;
auto selected = decide_dataset(dataset);
for (const auto& line : grid.at(selected)) {
numCombinations += computeNumCombinations(line);
}
return numCombinations;
}
json GridData::generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination)
{
if (index == last) {
// If we reached the end of input, store the current combination
output.push_back(currentCombination);
return currentCombination;
}
const auto& key = index.key();
const auto& values = index.value();
for (const auto& value : values) {
auto combination = currentCombination;
combination[key] = value;
json::iterator nextIndex = index;
generateCombinations(++nextIndex, last, output, combination);
}
return currentCombination;
}
std::vector<json> GridData::getGrid(const std::string& dataset)
{
auto selected = decide_dataset(dataset);
auto result = std::vector<json>();
for (json line : grid.at(selected)) {
generateCombinations(line.begin(), line.end(), result, json({}));
}
return result;
}
json& GridData::getInputGrid(const std::string& dataset)
{
auto selected = decide_dataset(dataset);
return grid.at(selected);
}
std::string GridData::decide_dataset(const std::string& dataset)
{
if (grid.find(dataset) != grid.end())
return dataset;
return ALL_DATASETS;
}
} /* namespace platform */

26
src/Platform/GridData.h Normal file
View File

@@ -0,0 +1,26 @@
#ifndef GRIDDATA_H
#define GRIDDATA_H
#include <string>
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
const std::string ALL_DATASETS = "all";
class GridData {
public:
explicit GridData(const std::string& fileName);
~GridData() = default;
std::vector<json> getGrid(const std::string& dataset = ALL_DATASETS);
int getNumCombinations(const std::string& dataset = ALL_DATASETS);
json& getInputGrid(const std::string& dataset = ALL_DATASETS);
std::map<std::string, json>& getGridFile() { return grid; }
private:
std::string decide_dataset(const std::string& dataset);
json generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination);
int computeNumCombinations(const json& line);
std::map<std::string, json> grid;
};
} /* namespace platform */
#endif /* GRIDDATA_H */

599
src/Platform/GridSearch.cc Normal file
View File

@@ -0,0 +1,599 @@
#include <iostream>
#include <torch/torch.h>
#include "GridSearch.h"
#include "Models.h"
#include "Paths.h"
#include "Folding.h"
#include "Colors.h"
namespace platform {
std::string get_date()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%Y-%m-%d");
return oss.str();
}
std::string get_time()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
{
}
json GridSearch::getResults()
{
std::ifstream file(Paths::grid_output(config.model));
if (file.is_open()) {
return json::parse(file);
}
return json();
}
vector<std::string> GridSearch::processDatasets(Datasets& datasets)
{
// Load datasets
auto datasets_names = datasets.getNames();
if (config.continue_from != NO_CONTINUE()) {
// Continue previous execution:
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
}
// Remove datasets already processed
vector< string >::iterator it = datasets_names.begin();
while (it != datasets_names.end()) {
if (*it != config.continue_from) {
it = datasets_names.erase(it);
} else {
if (config.only)
++it;
else
break;
}
}
}
// Exclude datasets
for (const auto& name : config.excluded) {
auto dataset = name.get<std::string>();
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
if (it == datasets_names.end()) {
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
}
datasets_names.erase(it);
}
return datasets_names;
}
void showProgressComb(const int num, const int n_folds, const int total, const std::string& color)
{
int spaces = int(log(total) / log(10)) + 1;
int magic = n_folds * 3 + 22 + 2 * spaces;
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
}
void showProgressFold(int fold, const std::string& color, const std::string& phase)
{
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
}
std::string getColor(bayesnet::status_t status)
{
switch (status) {
case bayesnet::NORMAL:
return Colors::GREEN();
case bayesnet::WARNING:
return Colors::YELLOW();
case bayesnet::ERROR:
return Colors::RED();
default:
return Colors::RESET();
}
}
json GridSearch::build_tasks_mpi()
{
auto tasks = json::array();
auto grid = GridData(Paths::grid_input(config.model));
auto datasets = Datasets(false, Paths::datasets());
auto datasets_names = processDatasets(datasets);
for (const auto& dataset : datasets_names) {
for (const auto& seed : config.seeds) {
auto combinations = grid.getGrid(dataset);
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
json task = {
{ "dataset", dataset },
{ "seed", seed },
{ "fold", n_fold}
};
tasks.push_back(task);
}
}
}
// It's important to shuffle the array so heavy datasets are spread across the Workers
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
std::shuffle(tasks.begin(), tasks.end(), g);
std::cout << "Tasks size: " << tasks.size() << std::endl;
std::cout << "|";
for (int i = 0; i < tasks.size(); ++i) {
std::cout << (i + 1) % 10;
}
std::cout << "|" << std::endl << "|" << std::flush;
return tasks;
}
std::pair<int, int> GridSearch::part_range_mpi(int n_tasks, int nprocs, int rank)
{
int assigned = 0;
int remainder = n_tasks % nprocs;
int start = 0;
if (rank < remainder) {
assigned = n_tasks / nprocs + 1;
} else {
assigned = n_tasks / nprocs;
start = remainder;
}
start += rank * assigned;
int end = start + assigned;
if (rank == nprocs - 1) {
end = n_tasks;
}
return { start, end };
}
std::string get_color_rank(int rank)
{
auto colors = { Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
return *(colors.begin() + rank % colors.size());
}
void GridSearch::process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results)
{
// Process the task and store the result in the results json
Timer timer;
timer.start();
auto grid = GridData(Paths::grid_input(config.model));
auto dataset = task["dataset"].get<std::string>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
// Generate the hyperparamters combinations
auto combinations = grid.getGrid(dataset);
auto [X, y] = datasets.getTensors(dataset);
auto states = datasets.getStates(dataset);
auto features = datasets.getFeatures(dataset);
auto className = datasets.getClassName(dataset);
//
// Start working on task
//
Fold* fold;
if (config.stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
auto num = 0;
double best_fold_score = 0.0;
json best_fold_hyper;
for (const auto& hyperparam_line : combinations) {
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
Fold* nested_fold;
if (config.stratified)
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new KFold(config.nested, y_train.size(0), seed);
double score = 0.0;
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nested_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(hyperparameters.get(dataset));
// Train model
clf->fit(X_nested_train, y_nested_train, features, className, states);
// Test model
score += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
score /= config.nested;
if (score > best_fold_score) {
best_fold_score = score;
best_fold_hyper = hyperparam_line;
}
}
delete fold;
// Build Classifier with the best hyperparameters to obtain the best score
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states);
best_fold_score = clf->score(X_test, y_test);
// Save results
results[dataset][std::to_string(n_fold)]["score"] = best_fold_score;
results[dataset][std::to_string(n_fold)]["hyperparameters"] = best_fold_hyper;
results[dataset][std::to_string(n_fold)]["seed"] = seed;
results[dataset][std::to_string(n_fold)]["duration"] = timer.getDuration();
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
}
void GridSearch::go_mpi(struct ConfigMPI& config_mpi)
{
/*
* Each task is a json object with the following structure:
* {
* "dataset": "dataset_name",
* "seed": # of seed to use,
* "model": "model_name",
* "Fold": # of fold to process
* }
*
* The overall process consists in these steps:
* 1. Manager will broadcast the tasks to all the processes
* 1.1 Broadcast the number of tasks
* 1.2 Broadcast the length of the following string
* 1.2 Broadcast the tasks as a char* string
* 2. Workers will receive the tasks and start the process
* 2.1 A method will tell each worker the range of tasks to process
* 2.2 Each worker will process the tasks and generate the best score for each task
* 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
* 3.1 Obtain the maximum size of the results message of all the workers
* 3.2 Gather all the results from the workers into the manager
* 3.3 Compile the results from all the workers
* 3.4 Filter the best hyperparameters for each dataset
*/
char* msg;
int tasks_size;
if (config_mpi.rank == config_mpi.manager) {
timer.start();
auto tasks = build_tasks_mpi();
auto tasks_str = tasks.dump();
tasks_size = tasks_str.size();
msg = new char[tasks_size + 1];
strcpy(msg, tasks_str.c_str());
}
//
// 1. Manager will broadcast the tasks to all the processes
//
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
if (config_mpi.rank != config_mpi.manager) {
msg = new char[tasks_size + 1];
}
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
json tasks = json::parse(msg);
delete[] msg;
//
// 2. All Workers will receive the tasks and start the process
//
int num_tasks = tasks.size();
// 2.1 A method will tell each worker the range of tasks to process
auto [start, end] = part_range_mpi(num_tasks, config_mpi.n_procs, config_mpi.rank);
// 2.2 Each worker will process the tasks and return the best scores obtained
auto datasets = Datasets(config.discretize, Paths::datasets());
json results;
for (int i = start; i < end; ++i) {
// Process task
process_task_mpi(config_mpi, tasks[i], datasets, results);
}
int size = results.dump().size() + 1;
int max_size = 0;
//
// 3. Manager gather the scores from all the workers and find out the best hyperparameters for each dataset
//
//3.1 Obtain the maximum size of the results message of all the workers
MPI_Allreduce(&size, &max_size, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
// Assign the memory to the message and initialize it to 0s
char* total = NULL;
msg = new char[max_size];
strncpy(msg, results.dump().c_str(), size);
if (config_mpi.rank == config_mpi.manager) {
total = new char[max_size * config_mpi.n_procs];
}
// 3.2 Gather all the results from the workers into the manager
MPI_Gather(msg, max_size, MPI_CHAR, total, max_size, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
delete[] msg;
if (config_mpi.rank == config_mpi.manager) {
std::cout << Colors::RESET() << "|" << std::endl;
json total_results;
json best_results;
// 3.3 Compile the results from all the workers
for (int i = 0; i < config_mpi.n_procs; ++i) {
json partial_results = json::parse(total + i * max_size);
for (auto& [dataset, folds] : partial_results.items()) {
for (auto& [fold, result] : folds.items()) {
total_results[dataset][fold] = result;
}
}
}
delete[] total;
// 3.4 Filter the best hyperparameters for each dataset
auto grid = GridData(Paths::grid_input(config.model));
for (auto& [dataset, folds] : total_results.items()) {
double best_score = 0.0;
double duration = 0.0;
json best_hyper;
for (auto& [fold, result] : folds.items()) {
duration += result["duration"].get<double>();
if (result["score"] > best_score) {
best_score = result["score"];
best_hyper = result["hyperparameters"];
}
}
auto timer = Timer();
json result = {
{ "score", best_score },
{ "hyperparameters", best_hyper },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", timer.translate2String(duration) }
};
best_results[dataset] = result;
}
save(best_results);
}
}
void GridSearch::go()
{
timer.start();
auto grid_type = config.nested == 0 ? "Single" : "Nested";
auto datasets = Datasets(config.discretize, Paths::datasets());
auto datasets_names = processDatasets(datasets);
json results = initializeResults();
std::cout << "***************** Starting " << grid_type << " Gridsearch *****************" << std::endl;
std::cout << "input file=" << Paths::grid_input(config.model) << std::endl;
auto grid = GridData(Paths::grid_input(config.model));
Timer timer_dataset;
double bestScore = 0;
json bestHyperparameters;
for (const auto& dataset : datasets_names) {
if (!config.quiet)
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
auto combinations = grid.getGrid(dataset);
timer_dataset.start();
if (config.nested == 0)
// for dataset // for hyperparameters // for seed // for fold
tie(bestScore, bestHyperparameters) = processFileSingle(dataset, datasets, combinations);
else
// for dataset // for seed // for fold // for hyperparameters // for nested fold
tie(bestScore, bestHyperparameters) = processFileNested(dataset, datasets, combinations);
if (!config.quiet) {
std::cout << "end." << " Score: " << Colors::IBLUE() << setw(9) << setprecision(7) << fixed
<< bestScore << Colors::BLUE() << " [" << bestHyperparameters.dump() << "]"
<< Colors::RESET() << ::endl;
}
json result = {
{ "score", bestScore },
{ "hyperparameters", bestHyperparameters },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", timer_dataset.getDurationString() }
};
results[dataset] = result;
// Save partial results
save(results);
}
// Save final results
save(results);
std::cout << "***************** Ending " << grid_type << " Gridsearch *******************" << std::endl;
}
pair<double, json> GridSearch::processFileSingle(std::string fileName, Datasets& datasets, vector<json>& combinations)
{
int num = 0;
double bestScore = 0.0;
json bestHyperparameters;
auto totalComb = combinations.size();
for (const auto& hyperparam_line : combinations) {
if (!config.quiet)
showProgressComb(++num, config.n_folds, totalComb, Colors::CYAN());
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto className = datasets.getClassName(fileName);
double totalScore = 0.0;
int numItems = 0;
for (const auto& seed : config.seeds) {
if (!config.quiet)
std::cout << "(" << seed << ") doing Fold: " << flush;
Fold* fold;
if (config.stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
for (int nfold = 0; nfold < config.n_folds; nfold++) {
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, fileName);
clf->setHyperparameters(hyperparameters.get(fileName));
auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
// Train model
if (!config.quiet)
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
clf->fit(X_train, y_train, features, className, states);
// Test model
if (!config.quiet)
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
totalScore += clf->score(X_test, y_test);
numItems++;
if (!config.quiet)
std::cout << "\b\b\b, \b" << flush;
}
delete fold;
}
double score = numItems == 0 ? 0.0 : totalScore / numItems;
if (score > bestScore) {
bestScore = score;
bestHyperparameters = hyperparam_line;
}
}
return { bestScore, bestHyperparameters };
}
pair<double, json> GridSearch::processFileNested(std::string fileName, Datasets& datasets, vector<json>& combinations)
{
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto className = datasets.getClassName(fileName);
int spcs_combinations = int(log(combinations.size()) / log(10)) + 1;
double goatScore = 0.0;
json goatHyperparameters;
// for dataset // for seed // for fold // for hyperparameters // for nested fold
for (const auto& seed : config.seeds) {
Fold* fold;
if (config.stratified)
fold = new StratifiedKFold(config.n_folds, y, seed);
else
fold = new KFold(config.n_folds, y.size(0), seed);
double bestScore = 0.0;
json bestHyperparameters;
std::cout << "(" << seed << ") doing Fold: " << flush;
for (int nfold = 0; nfold < config.n_folds; nfold++) {
if (!config.quiet)
std::cout << Colors::GREEN() << nfold + 1 << " " << flush;
// First level fold
auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
auto num = 0;
json result_fold;
double hypScore = 0.0;
double bestHypScore = 0.0;
json bestHypHyperparameters;
for (const auto& hyperparam_line : combinations) {
std::cout << "[" << setw(spcs_combinations) << ++num << "/" << setw(spcs_combinations)
<< combinations.size() << "] " << std::flush;
Fold* nested_fold;
if (config.stratified)
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new KFold(config.nested, y_train.size(0), seed);
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nexted_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, fileName);
clf->setHyperparameters(hyperparameters.get(fileName));
// Train model
if (!config.quiet)
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "a");
clf->fit(X_nexted_train, y_nested_train, features, className, states);
// Test model
if (!config.quiet)
showProgressFold(n_nested_fold + 1, getColor(clf->getStatus()), "b");
hypScore += clf->score(X_nested_test, y_nested_test);
if (!config.quiet)
std::cout << "\b\b\b, \b" << flush;
}
int magic = 3 * config.nested + 2 * spcs_combinations + 4;
std::cout << string(magic, '\b') << string(magic, ' ') << string(magic, '\b') << flush;
delete nested_fold;
hypScore /= config.nested;
if (hypScore > bestHypScore) {
bestHypScore = hypScore;
bestHypHyperparameters = hyperparam_line;
}
}
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
clf->setHyperparameters(bestHypHyperparameters);
// Train model
if (!config.quiet)
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
clf->fit(X_train, y_train, features, className, states);
// Test model
if (!config.quiet)
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
double score = clf->score(X_test, y_test);
if (!config.quiet)
std::cout << string(2 * config.nested - 1, '\b') << "," << string(2 * config.nested, ' ') << string(2 * config.nested - 1, '\b') << flush;
if (score > bestScore) {
bestScore = score;
bestHyperparameters = bestHypHyperparameters;
}
}
if (bestScore > goatScore) {
goatScore = bestScore;
goatHyperparameters = bestHyperparameters;
}
delete fold;
}
return { goatScore, goatHyperparameters };
}
json GridSearch::initializeResults()
{
// Load previous results
json results;
if (config.continue_from != NO_CONTINUE()) {
if (!config.quiet)
std::cout << "* Loading previous results" << std::endl;
try {
std::ifstream file(Paths::grid_output(config.model));
if (file.is_open()) {
results = json::parse(file);
results = results["results"];
}
}
catch (const std::exception& e) {
std::cerr << "* There were no previous results" << std::endl;
std::cerr << "* Initizalizing new results" << std::endl;
results = json();
}
}
return results;
}
void GridSearch::save(json& results)
{
std::ofstream file(Paths::grid_output(config.model));
json output = {
{ "model", config.model },
{ "score", config.score },
{ "discretize", config.discretize },
{ "stratified", config.stratified },
{ "n_folds", config.n_folds },
{ "seeds", config.seeds },
{ "date", get_date() + " " + get_time()},
{ "nested", config.nested},
{ "platform", config.platform },
{ "duration", timer.getDurationString(true)},
{ "results", results }
};
file << output.dump(4);
}
} /* namespace platform */

54
src/Platform/GridSearch.h Normal file
View File

@@ -0,0 +1,54 @@
#ifndef GRIDSEARCH_H
#define GRIDSEARCH_H
#include <string>
#include <map>
#include <mpi.h>
#include <nlohmann/json.hpp>
#include "Datasets.h"
#include "HyperParameters.h"
#include "GridData.h"
#include "Timer.h"
namespace platform {
using json = nlohmann::json;
struct ConfigGrid {
std::string model;
std::string score;
std::string continue_from;
std::string platform;
bool quiet;
bool only; // used with continue_from to only compute that dataset
bool discretize;
bool stratified;
int nested;
int n_folds;
json excluded;
std::vector<int> seeds;
};
struct ConfigMPI {
int rank;
int n_procs;
int manager;
};
class GridSearch {
public:
explicit GridSearch(struct ConfigGrid& config);
void go();
void go_mpi(struct ConfigMPI& config_mpi);
~GridSearch() = default;
json getResults();
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
private:
void save(json& results);
json initializeResults();
vector<std::string> processDatasets(Datasets& datasets);
pair<double, json> processFileSingle(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
pair<double, json> processFileNested(std::string fileName, Datasets& datasets, std::vector<json>& combinations);
struct ConfigGrid config;
pair<int, int> part_range_mpi(int n_tasks, int nprocs, int rank);
json build_tasks_mpi();
void process_task_mpi(struct ConfigMPI& config_mpi, json& task, Datasets& datasets, json& results);
Timer timer; // used to measure the time of the whole process
};
} /* namespace platform */
#endif /* GRIDSEARCH_H */

View File

@@ -0,0 +1,55 @@
#include "HyperParameters.h"
#include <fstream>
#include <sstream>
#include <iostream>
namespace platform {
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_)
{
// Initialize all datasets with the given hyperparameters
for (const auto& item : datasets) {
hyperparameters[item] = hyperparameters_;
}
}
// https://www.techiedelight.com/implode-a-vector-of-strings-into-a-comma-separated-string-in-cpp/
std::string join(std::vector<std::string> const& strings, std::string delim)
{
std::stringstream ss;
std::copy(strings.begin(), strings.end(),
std::ostream_iterator<std::string>(ss, delim.c_str()));
return ss.str();
}
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file)
{
// Check if file exists
std::ifstream file(hyperparameters_file);
if (!file.is_open()) {
throw std::runtime_error("File " + hyperparameters_file + " not found");
}
// Check if file is a json
json input_hyperparameters = json::parse(file);
// Check if hyperparameters are valid
for (const auto& dataset : datasets) {
if (!input_hyperparameters.contains(dataset)) {
std::cerr << "*Warning: Dataset " << dataset << " not found in hyperparameters file" << " assuming default hyperparameters" << std::endl;
hyperparameters[dataset] = json({});
continue;
}
hyperparameters[dataset] = input_hyperparameters[dataset]["hyperparameters"].get<json>();
}
}
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
{
json result = hyperparameters.at(fileName);
for (const auto& item : result.items()) {
if (find(valid.begin(), valid.end(), item.key()) == valid.end()) {
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid. Passed Hyperparameters are: "
+ result.dump(4) + "\n Valid hyperparameters are: {" + join(valid, ",") + "}");
}
}
}
json HyperParameters::get(const std::string& fileName)
{
return hyperparameters.at(fileName);
}
} /* namespace platform */

View File

@@ -0,0 +1,23 @@
#ifndef HYPERPARAMETERS_H
#define HYPERPARAMETERS_H
#include <string>
#include <map>
#include <vector>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
class HyperParameters {
public:
HyperParameters() = default;
explicit HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_);
explicit HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file);
~HyperParameters() = default;
bool notEmpty(const std::string& key) const { return !hyperparameters.at(key).empty(); }
void check(const std::vector<std::string>& valid, const std::string& fileName);
json get(const std::string& fileName);
private:
std::map<std::string, json> hyperparameters;
};
} /* namespace platform */
#endif /* HYPERPARAMETERS_H */

View File

@@ -1,6 +1,7 @@
#ifndef PATHS_H
#define PATHS_H
#include <string>
#include <filesystem>
#include "DotEnv.h"
namespace platform {
class Paths {
@@ -8,13 +9,31 @@ namespace platform {
static std::string results() { return "results/"; }
static std::string hiddenResults() { return "hidden_results/"; }
static std::string excel() { return "excel/"; }
static std::string cfs() { return "cfs/"; }
static std::string grid() { return "grid/"; }
static std::string datasets()
{
auto env = platform::DotEnv();
return env.get("source_data");
}
static void createPath(const std::string& path)
{
// Create directory if it does not exist
try {
std::filesystem::create_directory(path);
}
catch (std::exception& e) {
throw std::runtime_error("Could not create directory " + path);
}
}
static std::string excelResults() { return "some_results.xlsx"; }
static std::string grid_input(const std::string& model)
{
return grid() + "grid_" + model + "_input.json";
}
static std::string grid_output(const std::string& model)
{
return grid() + "grid_" + model + "_output.json";
}
};
}
#endif

View File

@@ -32,5 +32,4 @@ namespace platform {
bool complete;
};
};
#endif

View File

@@ -7,7 +7,6 @@
#include "Result.h"
namespace platform {
using json = nlohmann::json;
class Results {
public:
Results(const std::string& path, const std::string& model, const std::string& score, bool complete, bool partial);
@@ -34,5 +33,4 @@ namespace platform {
void load(); // Loads the list of results
};
};
#endif

43
src/Platform/Timer.h Normal file
View File

@@ -0,0 +1,43 @@
#ifndef TIMER_H
#define TIMER_H
#include <chrono>
#include <string>
#include <sstream>
namespace platform {
class Timer {
private:
std::chrono::high_resolution_clock::time_point begin;
std::chrono::high_resolution_clock::time_point end;
public:
Timer() = default;
~Timer() = default;
void start() { begin = std::chrono::high_resolution_clock::now(); }
void stop() { end = std::chrono::high_resolution_clock::now(); }
double getDuration()
{
stop();
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
return time_span.count();
}
double getLapse()
{
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (std::chrono::high_resolution_clock::now() - begin);
return time_span.count();
}
std::string getDurationString(bool lapse = false)
{
double duration = lapse ? getLapse() : getDuration();
return translate2String(duration);
}
std::string translate2String(double duration)
{
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
std::stringstream ss;
ss << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit;
return ss.str();
}
};
} /* namespace platform */
#endif /* TIMER_H */

View File

@@ -5,9 +5,8 @@
#include "Colors.h"
argparse::ArgumentParser manageArguments(int argc, char** argv)
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
{
argparse::ArgumentParser program("best");
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
@@ -28,12 +27,12 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
catch (...) {
throw std::runtime_error("Number of folds must be an decimal number");
}});
return program;
}
int main(int argc, char** argv)
{
auto program = manageArguments(argc, argv);
argparse::ArgumentParser program("b_sbest");
manageArguments(program, argc, argv);
std::string model, score;
bool build, report, friedman, excel;
double level;

227
src/Platform/b_grid.cc Normal file
View File

@@ -0,0 +1,227 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include <map>
#include <nlohmann/json.hpp>
#include <mpi.h>
#include "DotEnv.h"
#include "Models.h"
#include "modelRegister.h"
#include "GridSearch.h"
#include "Paths.h"
#include "Timer.h"
#include "Colors.h"
using json = nlohmann::json;
const int MAXL = 133;
void manageArguments(argparse::ArgumentParser& program)
{
auto env = platform::DotEnv();
auto& group = program.add_mutually_exclusive_group(true);
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->tostring())
.action([](const std::string& value) {
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
}
);
group.add_argument("--dump").help("Show the grid combinations").default_value(false).implicit_value(true);
group.add_argument("--report").help("Report the computed hyperparameters").default_value(false).implicit_value(true);
group.add_argument("--compute").help("Perform computation of the grid output hyperparameters").default_value(false).implicit_value(true);
program.add_argument("--discretize").help("Discretize input datasets").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
program.add_argument("--mpi").help("Use MPI computing grid").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
program.add_argument("--continue").help("Continue computing from that dataset").default_value(platform::GridSearch::NO_CONTINUE());
program.add_argument("--only").help("Used with continue to compute that dataset only").default_value(false).implicit_value(true);
program.add_argument("--exclude").default_value("[]").help("Datasets to exclude in json format, e.g. [\"dataset1\", \"dataset2\"]");
program.add_argument("--nested").help("Do a double/nested cross validation with n folds").default_value(0).scan<'i', int>();
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of folds must be an integer");
}});
auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
}
void list_dump(std::string& model)
{
auto data = platform::GridData(platform::Paths::grid_input(model));
std::cout << Colors::MAGENTA() << "Listing configuration input file (Grid)" << std::endl << std::endl;
int index = 0;
int max_hyper = 15;
int max_dataset = 7;
auto combinations = data.getGridFile();
for (auto const& item : combinations) {
if (item.first.size() > max_dataset) {
max_dataset = item.first.size();
}
if (item.second.dump().size() > max_hyper) {
max_hyper = item.second.dump().size();
}
}
std::cout << Colors::GREEN() << left << " # " << left << setw(max_dataset) << "Dataset" << " #Com. "
<< setw(max_hyper) << "Hyperparameters" << std::endl;
std::cout << "=== " << string(max_dataset, '=') << " ===== " << string(max_hyper, '=') << std::endl;
bool odd = true;
for (auto const& item : combinations) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
std::cout << color;
auto num_combinations = data.getNumCombinations(item.first);
std::cout << setw(3) << fixed << right << ++index << left << " " << setw(max_dataset) << item.first
<< " " << setw(5) << right << num_combinations << " " << setw(max_hyper) << item.second.dump() << std::endl;
odd = !odd;
}
std::cout << Colors::RESET() << std::endl;
}
std::string headerLine(const std::string& text, int utf = 0)
{
int n = MAXL - text.length() - 3;
n = n < 0 ? 0 : n;
return "* " + text + std::string(n + utf, ' ') + "*\n";
}
void list_results(json& results, std::string& model)
{
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
std::cout << headerLine("Listing computed hyperparameters for model " + model);
std::cout << headerLine("Date & time: " + results["date"].get<std::string>() + " Duration: " + results["duration"].get<std::string>());
std::cout << headerLine("Score: " + results["score"].get<std::string>());
std::cout << headerLine(
"Random seeds: " + results["seeds"].dump()
+ " Discretized: " + (results["discretize"].get<bool>() ? "True" : "False")
+ " Stratified: " + (results["stratified"].get<bool>() ? "True" : "False")
+ " #Folds: " + std::to_string(results["n_folds"].get<int>())
+ " Nested: " + (results["nested"].get<int>() == 0 ? "False" : to_string(results["nested"].get<int>()))
);
std::cout << std::string(MAXL, '*') << std::endl;
int spaces = 0;
int hyperparameters_spaces = 0;
for (const auto& item : results["results"].items()) {
auto key = item.key();
auto value = item.value();
if (key.size() > spaces) {
spaces = key.size();
}
if (value["hyperparameters"].dump().size() > hyperparameters_spaces) {
hyperparameters_spaces = value["hyperparameters"].dump().size();
}
}
std::cout << Colors::GREEN() << " # " << left << setw(spaces) << "Dataset" << " " << setw(19) << "Date" << " "
<< "Duration " << setw(8) << "Score" << " " << "Hyperparameters" << std::endl;
std::cout << "=== " << string(spaces, '=') << " " << string(19, '=') << " " << string(8, '=') << " "
<< string(8, '=') << " " << string(hyperparameters_spaces, '=') << std::endl;
bool odd = true;
int index = 0;
for (const auto& item : results["results"].items()) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
auto key = item.key();
auto value = item.value();
std::cout << color;
std::cout << std::setw(3) << std::right << index++ << " ";
std::cout << left << setw(spaces) << key << " " << value["date"].get<string>()
<< " " << setw(8) << right << value["duration"].get<string>() << " " << setw(8) << setprecision(6)
<< fixed << right << value["score"].get<double>() << " " << value["hyperparameters"].dump() << std::endl;
odd = !odd;
}
std::cout << Colors::RESET() << std::endl;
}
/*
* Main
*/
int main(int argc, char** argv)
{
argparse::ArgumentParser program("b_grid");
manageArguments(program);
struct platform::ConfigGrid config;
bool dump, compute;
try {
program.parse_args(argc, argv);
config.model = program.get<std::string>("model");
config.score = program.get<std::string>("score");
config.discretize = program.get<bool>("discretize");
config.stratified = program.get<bool>("stratified");
config.n_folds = program.get<int>("folds");
config.quiet = program.get<bool>("quiet");
config.only = program.get<bool>("only");
config.seeds = program.get<std::vector<int>>("seeds");
config.nested = program.get<int>("nested");
config.continue_from = program.get<std::string>("continue");
if (config.continue_from == platform::GridSearch::NO_CONTINUE() && config.only) {
throw std::runtime_error("Cannot use --only without --continue");
}
dump = program.get<bool>("dump");
compute = program.get<bool>("compute");
if (dump && (config.continue_from != platform::GridSearch::NO_CONTINUE() || config.only)) {
throw std::runtime_error("Cannot use --dump with --continue or --only");
}
auto excluded = program.get<std::string>("exclude");
config.excluded = json::parse(excluded);
if (program.get<bool>("mpi")) {
if (!compute || config.nested == 0) {
throw std::runtime_error("Cannot use --mpi without --compute or without --nested");
}
}
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
/*
* Begin Processing
*/
auto env = platform::DotEnv();
config.platform = env.get("platform");
platform::Paths::createPath(platform::Paths::grid());
auto grid_search = platform::GridSearch(config);
platform::Timer timer;
timer.start();
if (dump) {
list_dump(config.model);
} else {
if (compute) {
if (program.get<bool>("mpi")) {
struct platform::ConfigMPI mpi_config;
mpi_config.manager = 0; // which process is the manager
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_config.rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
grid_search.go_mpi(mpi_config);
if (mpi_config.rank == mpi_config.manager) {
auto results = grid_search.getResults();
list_results(results, config.model);
std::cout << "Process took " << timer.getDurationString() << std::endl;
}
MPI_Finalize();
} else {
grid_search.go();
std::cout << "Process took " << timer.getDurationString() << std::endl;
}
} else {
// List results
auto results = grid_search.getResults();
if (results.empty()) {
std::cout << "** No results found" << std::endl;
} else {
list_results(results, config.model);
}
}
}
std::cout << "Done!" << std::endl;
return 0;
}

View File

@@ -11,12 +11,13 @@
using json = nlohmann::json;
argparse::ArgumentParser manageArguments()
void manageArguments(argparse::ArgumentParser& program)
{
auto env = platform::DotEnv();
argparse::ArgumentParser program("main");
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparamters passed to the model in Experiment");
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->tostring())
.action([](const std::string& value) {
@@ -48,18 +49,18 @@ argparse::ArgumentParser manageArguments()
}});
auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
return program;
}
int main(int argc, char** argv)
{
std::string file_name, model_name, title;
argparse::ArgumentParser program("b_main");
manageArguments(program);
std::string file_name, model_name, title, hyperparameters_file;
json hyperparameters_json;
bool discretize_dataset, stratified, saveResults, quiet;
std::vector<int> seeds;
std::vector<std::string> filesToTest;
int n_folds;
auto program = manageArguments();
try {
program.parse_args(argc, argv);
file_name = program.get<std::string>("dataset");
@@ -71,6 +72,10 @@ int main(int argc, char** argv)
seeds = program.get<std::vector<int>>("seeds");
auto hyperparameters = program.get<std::string>("hyperparameters");
hyperparameters_json = json::parse(hyperparameters);
hyperparameters_file = program.get<std::string>("hyper-file");
if (hyperparameters_file != "" && hyperparameters != "{}") {
throw runtime_error("hyperparameters and hyper_file are mutually exclusive");
}
title = program.get<std::string>("title");
if (title == "" && file_name == "") {
throw runtime_error("title is mandatory if dataset is not provided");
@@ -96,6 +101,13 @@ int main(int argc, char** argv)
filesToTest = datasets.getNames();
saveResults = true;
}
platform::HyperParameters test_hyperparams;
if (hyperparameters_file != "") {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_file);
} else {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_json);
}
/*
* Begin Processing
*/
@@ -104,7 +116,7 @@ int main(int argc, char** argv)
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
experiment.setHyperparameters(hyperparameters_json);
experiment.setHyperparameters(test_hyperparams);
for (auto seed : seeds) {
experiment.addRandomSeed(seed);
}

View File

@@ -3,9 +3,8 @@
#include "ManageResults.h"
argparse::ArgumentParser manageArguments(int argc, char** argv)
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
{
argparse::ArgumentParser program("manage");
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
@@ -29,12 +28,12 @@ argparse::ArgumentParser manageArguments(int argc, char** argv)
std::cerr << program;
exit(1);
}
return program;
}
int main(int argc, char** argv)
{
auto program = manageArguments(argc, argv);
auto program = argparse::ArgumentParser("b_manage");
manageArguments(program, argc, argv);
int number = program.get<int>("number");
std::string model = program.get<std::string>("model");
std::string score = program.get<std::string>("score");

View File

@@ -1,15 +1,24 @@
#include "ODTE.h"
namespace pywrap {
ODTE::ODTE() : PyClassifier("odte", "Odte")
{
validHyperparameters = { "n_jobs", "n_estimators", "random_state" };
}
int ODTE::getNumberOfNodes() const
{
return callMethodInt("get_nodes");
}
int ODTE::getNumberOfEdges() const
{
return callMethodInt("get_leaves");
}
int ODTE::getNumberOfStates() const
{
return callMethodInt("get_depth");
}
std::string ODTE::graph()
{
return callMethodString("graph");
}
void ODTE::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const std::vector<std::string> validKeys = { "n_jobs", "n_estimators", "random_state" };
checkHyperparameters(validKeys, hyperparameters);
this->hyperparameters = hyperparameters;
}
} /* namespace pywrap */

View File

@@ -6,10 +6,12 @@
namespace pywrap {
class ODTE : public PyClassifier {
public:
ODTE() : PyClassifier("odte", "Odte") {};
ODTE();
~ODTE() = default;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
std::string graph();
void setHyperparameters(nlohmann::json& hyperparameters) override;
};
} /* namespace pywrap */
#endif /* ODTE_H */

View File

@@ -38,6 +38,14 @@ namespace pywrap {
{
return pyWrap->callMethodString(id, method);
}
int PyClassifier::callMethodSumOfItems(const std::string& method) const
{
return pyWrap->callMethodSumOfItems(id, method);
}
int PyClassifier::callMethodInt(const std::string& method) const
{
return pyWrap->callMethodInt(id, method);
}
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y)
{
if (!fitted && hyperparameters.size() > 0) {
@@ -81,19 +89,8 @@ namespace pywrap {
float result = pyWrap->score(id, Xp, yp);
return result;
}
void PyClassifier::setHyperparameters(nlohmann::json& hyperparameters)
void PyClassifier::setHyperparameters(const nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid, default is no hyperparameters
const std::vector<std::string> validKeys = { };
checkHyperparameters(validKeys, hyperparameters);
this->hyperparameters = hyperparameters;
}
void PyClassifier::checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters)
{
for (const auto& item : hyperparameters.items()) {
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid");
}
}
}
} /* namespace pywrap */

View File

@@ -27,9 +27,10 @@ namespace pywrap {
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); };
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override { return 0.0; };
float score(torch::Tensor& X, torch::Tensor& y) override;
void setHyperparameters(nlohmann::json& hyperparameters) override;
std::string version();
std::string callMethodString(const std::string& method);
int callMethodSumOfItems(const std::string& method) const;
int callMethodInt(const std::string& method) const;
std::string getVersion() override { return this->version(); };
int getNumberOfNodes() const override { return 0; };
int getNumberOfEdges() const override { return 0; };
@@ -39,8 +40,8 @@ namespace pywrap {
bayesnet::status_t getStatus() const override { return bayesnet::NORMAL; };
std::vector<std::string> topological_order() override { return std::vector<std::string>(); }
void dump_cpt() const override {};
void setHyperparameters(const nlohmann::json& hyperparameters) override;
protected:
void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters);
nlohmann::json hyperparameters;
void trainModel(const torch::Tensor& weights) override {};
private:

View File

@@ -110,17 +110,80 @@ namespace pywrap {
Py_XDECREF(result);
return value;
}
int PyWrap::callMethodInt(const clfId_t id, const std::string& method)
{
PyObject* instance = getClass(id);
PyObject* result;
try {
if (!(result = PyObject_CallMethod(instance, method.c_str(), NULL)))
errorAbort("Couldn't call method " + method);
}
catch (const std::exception& e) {
errorAbort(e.what());
}
int value = PyLong_AsLong(result);
Py_XDECREF(result);
return value;
}
std::string PyWrap::sklearnVersion()
{
return "1.0";
// CPyObject data = PyRun_SimpleString("import sklearn;return sklearn.__version__");
// std::string result = PyUnicode_AsUTF8(data);
// return result;
PyObject* sklearnModule = PyImport_ImportModule("sklearn");
if (sklearnModule == nullptr) {
errorAbort("Couldn't import sklearn");
}
PyObject* versionAttr = PyObject_GetAttrString(sklearnModule, "__version__");
if (versionAttr == nullptr || !PyUnicode_Check(versionAttr)) {
Py_XDECREF(sklearnModule);
errorAbort("Couldn't get sklearn version");
}
std::string result = PyUnicode_AsUTF8(versionAttr);
Py_XDECREF(versionAttr);
Py_XDECREF(sklearnModule);
return result;
}
std::string PyWrap::version(const clfId_t id)
{
return callMethodString(id, "version");
}
int PyWrap::callMethodSumOfItems(const clfId_t id, const std::string& method)
{
// Call method on each estimator and sum the results (made for RandomForest)
PyObject* instance = getClass(id);
PyObject* estimators = PyObject_GetAttrString(instance, "estimators_");
if (estimators == nullptr) {
errorAbort("Failed to get attribute: " + method);
}
int sumOfItems = 0;
Py_ssize_t len = PyList_Size(estimators);
for (Py_ssize_t i = 0; i < len; i++) {
PyObject* estimator = PyList_GetItem(estimators, i);
PyObject* result;
if (method == "node_count") {
PyObject* owner = PyObject_GetAttrString(estimator, "tree_");
if (owner == nullptr) {
Py_XDECREF(estimators);
errorAbort("Failed to get attribute tree_ for: " + method);
}
result = PyObject_GetAttrString(owner, method.c_str());
if (result == nullptr) {
Py_XDECREF(estimators);
Py_XDECREF(owner);
errorAbort("Failed to get attribute node_count: " + method);
}
Py_DECREF(owner);
} else {
result = PyObject_CallMethod(estimator, method.c_str(), nullptr);
if (result == nullptr) {
Py_XDECREF(estimators);
errorAbort("Failed to call method: " + method);
}
}
sumOfItems += PyLong_AsLong(result);
Py_DECREF(result);
}
Py_DECREF(estimators);
return sumOfItems;
}
void PyWrap::setHyperparameters(const clfId_t id, const json& hyperparameters)
{
// Set hyperparameters as attributes of the class

View File

@@ -24,8 +24,10 @@ namespace pywrap {
void operator=(const PyWrap&) = delete;
~PyWrap() = default;
std::string callMethodString(const clfId_t id, const std::string& method);
int callMethodInt(const clfId_t id, const std::string& method);
std::string sklearnVersion();
std::string version(const clfId_t id);
int callMethodSumOfItems(const clfId_t id, const std::string& method);
void setHyperparameters(const clfId_t id, const json& hyperparameters);
void fit(const clfId_t id, CPyObject& X, CPyObject& y);
PyObject* predict(const clfId_t id, CPyObject& X);

View File

@@ -1,11 +1,20 @@
#include "RandomForest.h"
namespace pywrap {
void RandomForest::setHyperparameters(nlohmann::json& hyperparameters)
RandomForest::RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier", true)
{
// Check if hyperparameters are valid
const std::vector<std::string> validKeys = { "n_estimators", "n_jobs", "random_state" };
checkHyperparameters(validKeys, hyperparameters);
this->hyperparameters = hyperparameters;
validHyperparameters = { "n_estimators", "n_jobs", "random_state" };
}
int RandomForest::getNumberOfEdges() const
{
return callMethodSumOfItems("get_n_leaves");
}
int RandomForest::getNumberOfStates() const
{
return callMethodSumOfItems("get_depth");
}
int RandomForest::getNumberOfNodes() const
{
return callMethodSumOfItems("node_count");
}
} /* namespace pywrap */

View File

@@ -5,9 +5,11 @@
namespace pywrap {
class RandomForest : public PyClassifier {
public:
RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier", true) {};
RandomForest();
~RandomForest() = default;
void setHyperparameters(nlohmann::json& hyperparameters) override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
int getNumberOfNodes() const override;
};
} /* namespace pywrap */
#endif /* RANDOMFOREST_H */

View File

@@ -1,15 +1,24 @@
#include "STree.h"
namespace pywrap {
STree::STree() : PyClassifier("stree", "Stree")
{
validHyperparameters = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy", "gamma", "max_features", "degree" };
};
int STree::getNumberOfNodes() const
{
return callMethodInt("get_nodes");
}
int STree::getNumberOfEdges() const
{
return callMethodInt("get_leaves");
}
int STree::getNumberOfStates() const
{
return callMethodInt("get_depth");
}
std::string STree::graph()
{
return callMethodString("graph");
}
void STree::setHyperparameters(nlohmann::json& hyperparameters)
{
// Check if hyperparameters are valid
const std::vector<std::string> validKeys = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy" };
checkHyperparameters(validKeys, hyperparameters);
this->hyperparameters = hyperparameters;
}
} /* namespace pywrap */

View File

@@ -6,10 +6,12 @@
namespace pywrap {
class STree : public PyClassifier {
public:
STree() : PyClassifier("stree", "Stree") {};
STree();
~STree() = default;
int getNumberOfNodes() const override;
int getNumberOfEdges() const override;
int getNumberOfStates() const override;
std::string graph();
void setHyperparameters(nlohmann::json& hyperparameters) override;
};
} /* namespace pywrap */
#endif /* STREE_H */

View File

@@ -1,11 +1,8 @@
#include "SVC.h"
namespace pywrap {
void SVC::setHyperparameters(nlohmann::json& hyperparameters)
SVC::SVC() : PyClassifier("sklearn.svm", "SVC", true)
{
// Check if hyperparameters are valid
const std::vector<std::string> validKeys = { "C", "gamma", "kernel", "random_state" };
checkHyperparameters(validKeys, hyperparameters);
this->hyperparameters = hyperparameters;
validHyperparameters = { "C", "gamma", "kernel", "random_state" };
}
} /* namespace pywrap */

View File

@@ -5,10 +5,9 @@
namespace pywrap {
class SVC : public PyClassifier {
public:
SVC() : PyClassifier("sklearn.svm", "SVC", true) {};
SVC();
~SVC() = default;
void setHyperparameters(nlohmann::json& hyperparameters) override;
};
} /* namespace pywrap */
#endif /* STREE_H */
#endif /* SVC_H */

835
stree_results.json Normal file
View File

@@ -0,0 +1,835 @@
[
{
"date": "2021-04-11",
"time": "18:46:29",
"type": "crossval",
"classifier": "stree",
"dataset": "balance-scale",
"accuracy": "0.97056",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 10000.0, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
"time_spent": "0.0135214",
"time_spent_std": "0.00111213",
"accuracy_std": "0.0150468",
"nodes": "7.0",
"leaves": "4.0",
"depth": "3.0"
},
{
"date": "2021-04-11",
"time": "18:46:29",
"type": "crossval",
"classifier": "stree",
"dataset": "balloons",
"accuracy": "0.86",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
"time_spent": "0.000804768",
"time_spent_std": "7.74797e-05",
"accuracy_std": "0.285015",
"nodes": "3.0",
"leaves": "2.0",
"depth": "2.0"
},
{
"date": "2021-04-11",
"time": "18:46:29",
"type": "crossval",
"classifier": "stree",
"dataset": "breast-cancer-wisc-diag",
"accuracy": "0.972764",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.2, \"max_iter\": 10000.0}",
"time_spent": "0.00380772",
"time_spent_std": "0.000638676",
"accuracy_std": "0.0173132",
"nodes": "3.24",
"leaves": "2.12",
"depth": "2.12"
},
{
"date": "2021-04-11",
"time": "18:46:30",
"type": "crossval",
"classifier": "stree",
"dataset": "breast-cancer-wisc-prog",
"accuracy": "0.811128",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.2, \"max_iter\": 10000.0}",
"time_spent": "0.00767535",
"time_spent_std": "0.00148114",
"accuracy_std": "0.0584601",
"nodes": "5.84",
"leaves": "3.42",
"depth": "3.24"
},
{
"date": "2021-04-11",
"time": "18:46:31",
"type": "crossval",
"classifier": "stree",
"dataset": "breast-cancer-wisc",
"accuracy": "0.966661",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.00652217",
"time_spent_std": "0.000726579",
"accuracy_std": "0.0139421",
"nodes": "8.88",
"leaves": "4.94",
"depth": "4.08"
},
{
"date": "2021-04-11",
"time": "18:46:32",
"type": "crossval",
"classifier": "stree",
"dataset": "breast-cancer",
"accuracy": "0.734211",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.023475",
"time_spent_std": "0.00584447",
"accuracy_std": "0.0479774",
"nodes": "21.72",
"leaves": "11.36",
"depth": "5.86"
},
{
"date": "2021-04-11",
"time": "18:49:08",
"type": "crossval",
"classifier": "stree",
"dataset": "cardiotocography-10clases",
"accuracy": "0.791487",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "3.10582",
"time_spent_std": "0.339218",
"accuracy_std": "0.0192082",
"nodes": "160.76",
"leaves": "80.88",
"depth": "22.86"
},
{
"date": "2021-04-11",
"time": "18:50:01",
"type": "crossval",
"classifier": "stree",
"dataset": "cardiotocography-3clases",
"accuracy": "0.900613",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "1.05228",
"time_spent_std": "0.138768",
"accuracy_std": "0.0154004",
"nodes": "47.68",
"leaves": "24.34",
"depth": "8.84"
},
{
"date": "2021-04-11",
"time": "18:50:01",
"type": "crossval",
"classifier": "stree",
"dataset": "conn-bench-sonar-mines-rocks",
"accuracy": "0.755528",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.011577",
"time_spent_std": "0.00341148",
"accuracy_std": "0.0678424",
"nodes": "6.08",
"leaves": "3.54",
"depth": "2.86"
},
{
"date": "2021-04-11",
"time": "18:50:17",
"type": "crossval",
"classifier": "stree",
"dataset": "cylinder-bands",
"accuracy": "0.715049",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.301143",
"time_spent_std": "0.109773",
"accuracy_std": "0.0367646",
"nodes": "26.2",
"leaves": "13.6",
"depth": "6.82"
},
{
"date": "2021-04-11",
"time": "18:50:19",
"type": "crossval",
"classifier": "stree",
"dataset": "dermatology",
"accuracy": "0.971833",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 55, \"max_iter\": 10000.0}",
"time_spent": "0.0377538",
"time_spent_std": "0.010726",
"accuracy_std": "0.0206883",
"nodes": "11.0",
"leaves": "6.0",
"depth": "6.0"
},
{
"date": "2021-04-11",
"time": "18:50:19",
"type": "crossval",
"classifier": "stree",
"dataset": "echocardiogram",
"accuracy": "0.814758",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_features\": \"auto\", \"max_iter\": 10000.0}",
"time_spent": "0.00333449",
"time_spent_std": "0.000964686",
"accuracy_std": "0.0998078",
"nodes": "7.0",
"leaves": "4.0",
"depth": "3.54"
},
{
"date": "2021-04-11",
"time": "18:50:20",
"type": "crossval",
"classifier": "stree",
"dataset": "fertility",
"accuracy": "0.88",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0}",
"time_spent": "0.00090271",
"time_spent_std": "8.96446e-05",
"accuracy_std": "0.0547723",
"nodes": "1.0",
"leaves": "1.0",
"depth": "1.0"
},
{
"date": "2021-04-11",
"time": "18:50:21",
"type": "crossval",
"classifier": "stree",
"dataset": "haberman-survival",
"accuracy": "0.735637",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.0171611",
"time_spent_std": "0.00334945",
"accuracy_std": "0.0434614",
"nodes": "23.4",
"leaves": "12.2",
"depth": "5.98"
},
{
"date": "2021-04-11",
"time": "18:50:21",
"type": "crossval",
"classifier": "stree",
"dataset": "heart-hungarian",
"accuracy": "0.827522",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
"time_spent": "0.00493946",
"time_spent_std": "0.000738198",
"accuracy_std": "0.0505283",
"nodes": "10.16",
"leaves": "5.58",
"depth": "4.0"
},
{
"date": "2021-04-11",
"time": "18:50:21",
"type": "crossval",
"classifier": "stree",
"dataset": "hepatitis",
"accuracy": "0.824516",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
"time_spent": "0.0021534",
"time_spent_std": "0.000133715",
"accuracy_std": "0.0738872",
"nodes": "3.0",
"leaves": "2.0",
"depth": "2.0"
},
{
"date": "2021-04-11",
"time": "18:50:23",
"type": "crossval",
"classifier": "stree",
"dataset": "ilpd-indian-liver",
"accuracy": "0.723498",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.0345243",
"time_spent_std": "0.015789",
"accuracy_std": "0.0384886",
"nodes": "16.04",
"leaves": "8.52",
"depth": "5.28"
},
{
"date": "2021-04-11",
"time": "18:50:24",
"type": "crossval",
"classifier": "stree",
"dataset": "ionosphere",
"accuracy": "0.953276",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
"time_spent": "0.00881722",
"time_spent_std": "0.000843108",
"accuracy_std": "0.0238537",
"nodes": "3.16",
"leaves": "2.08",
"depth": "2.08"
},
{
"date": "2021-04-11",
"time": "18:50:24",
"type": "crossval",
"classifier": "stree",
"dataset": "iris",
"accuracy": "0.965333",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.00357342",
"time_spent_std": "0.000400509",
"accuracy_std": "0.0319444",
"nodes": "5.0",
"leaves": "3.0",
"depth": "3.0"
},
{
"date": "2021-04-11",
"time": "18:50:36",
"type": "crossval",
"classifier": "stree",
"dataset": "led-display",
"accuracy": "0.703",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.222106",
"time_spent_std": "0.0116922",
"accuracy_std": "0.0291204",
"nodes": "47.16",
"leaves": "24.08",
"depth": "17.76"
},
{
"date": "2021-04-11",
"time": "18:51:18",
"type": "crossval",
"classifier": "stree",
"dataset": "libras",
"accuracy": "0.788611",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.08, \"max_iter\": 10000.0}",
"time_spent": "0.841714",
"time_spent_std": "0.0830966",
"accuracy_std": "0.0516913",
"nodes": "82.28",
"leaves": "41.64",
"depth": "28.84"
},
{
"date": "2021-04-11",
"time": "18:51:41",
"type": "crossval",
"classifier": "stree",
"dataset": "low-res-spect",
"accuracy": "0.883782",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
"time_spent": "0.446301",
"time_spent_std": "0.0411822",
"accuracy_std": "0.0324593",
"nodes": "27.4",
"leaves": "14.2",
"depth": "10.74"
},
{
"date": "2021-04-11",
"time": "18:51:41",
"type": "crossval",
"classifier": "stree",
"dataset": "lymphography",
"accuracy": "0.835034",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
"time_spent": "0.00539465",
"time_spent_std": "0.000754365",
"accuracy_std": "0.0590649",
"nodes": "9.04",
"leaves": "5.02",
"depth": "4.48"
},
{
"date": "2021-04-11",
"time": "18:51:43",
"type": "crossval",
"classifier": "stree",
"dataset": "mammographic",
"accuracy": "0.81915",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.0227931",
"time_spent_std": "0.00328533",
"accuracy_std": "0.0222517",
"nodes": "7.4",
"leaves": "4.2",
"depth": "4.0"
},
{
"date": "2021-04-11",
"time": "18:51:43",
"type": "crossval",
"classifier": "stree",
"dataset": "molec-biol-promoter",
"accuracy": "0.767056",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
"time_spent": "0.00130273",
"time_spent_std": "0.000105772",
"accuracy_std": "0.0910923",
"nodes": "3.0",
"leaves": "2.0",
"depth": "2.0"
},
{
"date": "2021-04-11",
"time": "18:51:44",
"type": "crossval",
"classifier": "stree",
"dataset": "musk-1",
"accuracy": "0.916388",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
"time_spent": "0.0116367",
"time_spent_std": "0.000331845",
"accuracy_std": "0.0275208",
"nodes": "3.0",
"leaves": "2.0",
"depth": "2.0"
},
{
"date": "2021-04-11",
"time": "18:51:55",
"type": "crossval",
"classifier": "stree",
"dataset": "oocytes_merluccius_nucleus_4d",
"accuracy": "0.835125",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 8.25, \"gamma\": 0.1, \"kernel\": \"poly\"}",
"time_spent": "0.208895",
"time_spent_std": "0.0270573",
"accuracy_std": "0.0220961",
"nodes": "10.52",
"leaves": "5.76",
"depth": "4.42"
},
{
"date": "2021-04-11",
"time": "18:52:04",
"type": "crossval",
"classifier": "stree",
"dataset": "oocytes_merluccius_states_2f",
"accuracy": "0.915365",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.182198",
"time_spent_std": "0.0294267",
"accuracy_std": "0.020396",
"nodes": "18.04",
"leaves": "9.52",
"depth": "5.3"
},
{
"date": "2021-04-11",
"time": "18:52:41",
"type": "crossval",
"classifier": "stree",
"dataset": "oocytes_trisopterus_nucleus_2f",
"accuracy": "0.800986",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.717113",
"time_spent_std": "0.209608",
"accuracy_std": "0.0218449",
"nodes": "29.88",
"leaves": "15.44",
"depth": "7.38"
},
{
"date": "2021-04-11",
"time": "18:52:44",
"type": "crossval",
"classifier": "stree",
"dataset": "oocytes_trisopterus_states_5b",
"accuracy": "0.922249",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.11, \"max_iter\": 10000.0}",
"time_spent": "0.0545047",
"time_spent_std": "0.00853014",
"accuracy_std": "0.0179203",
"nodes": "7.44",
"leaves": "4.22",
"depth": "3.6"
},
{
"date": "2021-04-11",
"time": "18:52:44",
"type": "crossval",
"classifier": "stree",
"dataset": "parkinsons",
"accuracy": "0.882051",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.00795048",
"time_spent_std": "0.00176761",
"accuracy_std": "0.0478327",
"nodes": "8.48",
"leaves": "4.74",
"depth": "3.76"
},
{
"date": "2021-04-11",
"time": "18:52:48",
"type": "crossval",
"classifier": "stree",
"dataset": "pima",
"accuracy": "0.766651",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.0750048",
"time_spent_std": "0.0213995",
"accuracy_std": "0.0297203",
"nodes": "17.4",
"leaves": "9.2",
"depth": "5.66"
},
{
"date": "2021-04-11",
"time": "18:52:48",
"type": "crossval",
"classifier": "stree",
"dataset": "pittsburg-bridges-MATERIAL",
"accuracy": "0.867749",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
"time_spent": "0.00293318",
"time_spent_std": "0.000331469",
"accuracy_std": "0.0712226",
"nodes": "5.16",
"leaves": "3.08",
"depth": "3.02"
},
{
"date": "2021-04-11",
"time": "18:52:49",
"type": "crossval",
"classifier": "stree",
"dataset": "pittsburg-bridges-REL-L",
"accuracy": "0.632238",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.0136311",
"time_spent_std": "0.00322964",
"accuracy_std": "0.101211",
"nodes": "16.32",
"leaves": "8.66",
"depth": "5.96"
},
{
"date": "2021-04-11",
"time": "18:52:50",
"type": "crossval",
"classifier": "stree",
"dataset": "pittsburg-bridges-SPAN",
"accuracy": "0.659766",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
"time_spent": "0.00524256",
"time_spent_std": "0.00158822",
"accuracy_std": "0.1165",
"nodes": "9.84",
"leaves": "5.42",
"depth": "4.58"
},
{
"date": "2021-04-11",
"time": "18:52:50",
"type": "crossval",
"classifier": "stree",
"dataset": "pittsburg-bridges-T-OR-D",
"accuracy": "0.861619",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.00295627",
"time_spent_std": "0.000578594",
"accuracy_std": "0.0693747",
"nodes": "4.56",
"leaves": "2.78",
"depth": "2.68"
},
{
"date": "2021-04-11",
"time": "18:52:50",
"type": "crossval",
"classifier": "stree",
"dataset": "planning",
"accuracy": "0.73527",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 7, \"gamma\": 10.0, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
"time_spent": "0.0030475",
"time_spent_std": "0.000172266",
"accuracy_std": "0.0669776",
"nodes": "3.0",
"leaves": "2.0",
"depth": "2.0"
},
{
"date": "2021-04-11",
"time": "18:52:51",
"type": "crossval",
"classifier": "stree",
"dataset": "post-operative",
"accuracy": "0.711111",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 55, \"degree\": 5, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
"time_spent": "0.0018727",
"time_spent_std": "0.000481977",
"accuracy_std": "0.0753592",
"nodes": "2.64",
"leaves": "1.82",
"depth": "1.82"
},
{
"date": "2021-04-11",
"time": "18:52:52",
"type": "crossval",
"classifier": "stree",
"dataset": "seeds",
"accuracy": "0.952857",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 10000.0, \"max_iter\": 10000.0}",
"time_spent": "0.0203492",
"time_spent_std": "0.00518065",
"accuracy_std": "0.0279658",
"nodes": "9.88",
"leaves": "5.44",
"depth": "4.44"
},
{
"date": "2021-04-11",
"time": "18:52:52",
"type": "crossval",
"classifier": "stree",
"dataset": "statlog-australian-credit",
"accuracy": "0.678261",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0}",
"time_spent": "0.00205337",
"time_spent_std": "0.00083162",
"accuracy_std": "0.0390498",
"nodes": "1.32",
"leaves": "1.16",
"depth": "1.16"
},
{
"date": "2021-04-11",
"time": "18:53:07",
"type": "crossval",
"classifier": "stree",
"dataset": "statlog-german-credit",
"accuracy": "0.7625",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.290754",
"time_spent_std": "0.0653152",
"accuracy_std": "0.0271892",
"nodes": "21.24",
"leaves": "11.12",
"depth": "6.18"
},
{
"date": "2021-04-11",
"time": "18:53:09",
"type": "crossval",
"classifier": "stree",
"dataset": "statlog-heart",
"accuracy": "0.822963",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.0138923",
"time_spent_std": "0.00323664",
"accuracy_std": "0.044004",
"nodes": "14.56",
"leaves": "7.78",
"depth": "5.0"
},
{
"date": "2021-04-11",
"time": "18:56:43",
"type": "crossval",
"classifier": "stree",
"dataset": "statlog-image",
"accuracy": "0.955931",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 7, \"max_iter\": 10000.0}",
"time_spent": "4.27584",
"time_spent_std": "0.200362",
"accuracy_std": "0.00956073",
"nodes": "36.92",
"leaves": "18.96",
"depth": "10.8"
},
{
"date": "2021-04-11",
"time": "18:56:57",
"type": "crossval",
"classifier": "stree",
"dataset": "statlog-vehicle",
"accuracy": "0.793028",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.278833",
"time_spent_std": "0.0392173",
"accuracy_std": "0.030104",
"nodes": "23.88",
"leaves": "12.44",
"depth": "7.06"
},
{
"date": "2021-04-11",
"time": "18:57:07",
"type": "crossval",
"classifier": "stree",
"dataset": "synthetic-control",
"accuracy": "0.95",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.55, \"max_iter\": 10000.0}",
"time_spent": "0.205184",
"time_spent_std": "0.040793",
"accuracy_std": "0.0253859",
"nodes": "12.48",
"leaves": "6.74",
"depth": "6.5"
},
{
"date": "2021-04-11",
"time": "18:57:08",
"type": "crossval",
"classifier": "stree",
"dataset": "tic-tac-toe",
"accuracy": "0.984444",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.2, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
"time_spent": "0.0123015",
"time_spent_std": "0.000423728",
"accuracy_std": "0.00838747",
"nodes": "3.0",
"leaves": "2.0",
"depth": "2.0"
},
{
"date": "2021-04-11",
"time": "18:57:09",
"type": "crossval",
"classifier": "stree",
"dataset": "vertebral-column-2clases",
"accuracy": "0.852903",
"norm": 1,
"stand": 0,
"parameters": "{}",
"time_spent": "0.00576833",
"time_spent_std": "0.000910332",
"accuracy_std": "0.0408851",
"nodes": "6.04",
"leaves": "3.52",
"depth": "3.34"
},
{
"date": "2021-04-11",
"time": "18:57:09",
"type": "crossval",
"classifier": "stree",
"dataset": "wine",
"accuracy": "0.979159",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.55, \"max_iter\": 10000.0}",
"time_spent": "0.0019741",
"time_spent_std": "0.000137745",
"accuracy_std": "0.022427",
"nodes": "5.0",
"leaves": "3.0",
"depth": "3.0"
},
{
"date": "2021-04-11",
"time": "18:57:10",
"type": "crossval",
"classifier": "stree",
"dataset": "zoo",
"accuracy": "0.957524",
"norm": 1,
"stand": 0,
"parameters": "{\"C\": 0.1, \"max_iter\": 10000.0}",
"time_spent": "0.00556221",
"time_spent_std": "0.000230106",
"accuracy_std": "0.0454615",
"nodes": "13.04",
"leaves": "7.02",
"depth": "7.02"
}
]