Compare commits
17 Commits
PythonLink
...
gridsearch
Author | SHA1 | Date | |
---|---|---|---|
f94e2d6a27
|
|||
2121ba9b98
|
|||
8b7b59d42b
|
|||
bbe5302ab1
|
|||
c2eb727fc7
|
|||
fb347ed5b9
|
|||
b657762c0c
|
|||
495d8a8528
|
|||
4628e48d3c
|
|||
5876be4b24
|
|||
dc3400197f
|
|||
26d3a57782
|
|||
4f3a04058f
|
|||
89c4613591
|
|||
28f3d87e32 | |||
64f5a7f14a
|
|||
e03efb5f63
|
3
.gitignore
vendored
3
.gitignore
vendored
@@ -32,8 +32,7 @@
|
|||||||
*.out
|
*.out
|
||||||
*.app
|
*.app
|
||||||
build/**
|
build/**
|
||||||
build_debug/**
|
build_*/**
|
||||||
build_release/**
|
|
||||||
*.dSYM/**
|
*.dSYM/**
|
||||||
cmake-build*/**
|
cmake-build*/**
|
||||||
.idea
|
.idea
|
||||||
|
19
.vscode/launch.json
vendored
19
.vscode/launch.json
vendored
@@ -21,7 +21,7 @@
|
|||||||
{
|
{
|
||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
"request": "launch",
|
"request": "launch",
|
||||||
"name": "experiment",
|
"name": "experimentPy",
|
||||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
||||||
"args": [
|
"args": [
|
||||||
"-m",
|
"-m",
|
||||||
@@ -35,6 +35,23 @@
|
|||||||
],
|
],
|
||||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"type": "lldb",
|
||||||
|
"request": "launch",
|
||||||
|
"name": "experimentBayes",
|
||||||
|
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
||||||
|
"args": [
|
||||||
|
"-m",
|
||||||
|
"TAN",
|
||||||
|
"--stratified",
|
||||||
|
"--discretize",
|
||||||
|
"-d",
|
||||||
|
"iris",
|
||||||
|
"--hyperparameters",
|
||||||
|
"{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||||
|
],
|
||||||
|
"cwd": "/home/rmontanana/Code/discretizbench",
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
"request": "launch",
|
"request": "launch",
|
||||||
|
12
Makefile
12
Makefile
@@ -4,7 +4,7 @@ SHELL := /bin/bash
|
|||||||
|
|
||||||
f_release = build_release
|
f_release = build_release
|
||||||
f_debug = build_debug
|
f_debug = build_debug
|
||||||
app_targets = b_best b_list b_main b_manage
|
app_targets = b_best b_list b_main b_manage b_grid
|
||||||
test_targets = unit_tests_bayesnet unit_tests_platform
|
test_targets = unit_tests_bayesnet unit_tests_platform
|
||||||
n_procs = -j 16
|
n_procs = -j 16
|
||||||
|
|
||||||
@@ -35,11 +35,13 @@ dest ?= ${HOME}/bin
|
|||||||
install: ## Copy binary files to bin folder
|
install: ## Copy binary files to bin folder
|
||||||
@echo "Destination folder: $(dest)"
|
@echo "Destination folder: $(dest)"
|
||||||
make buildr
|
make buildr
|
||||||
|
@echo "*******************************************"
|
||||||
@echo ">>> Copying files to $(dest)"
|
@echo ">>> Copying files to $(dest)"
|
||||||
@cp $(f_release)/src/Platform/b_main $(dest)
|
@echo "*******************************************"
|
||||||
@cp $(f_release)/src/Platform/b_list $(dest)
|
@for item in $(app_targets); do \
|
||||||
@cp $(f_release)/src/Platform/b_manage $(dest)
|
echo ">>> Copying $$item" ; \
|
||||||
@cp $(f_release)/src/Platform/b_best $(dest)
|
cp $(f_release)/src/Platform/$$item $(dest) ; \
|
||||||
|
done
|
||||||
|
|
||||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
||||||
@echo ">>> Creating dependency graph diagram of the project...";
|
@echo ">>> Creating dependency graph diagram of the project...";
|
||||||
|
14
README.md
14
README.md
@@ -18,12 +18,24 @@ The best option is install the packages that the Linux distribution have in its
|
|||||||
sudo dnf install boost-devel
|
sudo dnf install boost-devel
|
||||||
```
|
```
|
||||||
|
|
||||||
If this is not possible and the compressed packaged is installed, the following environment variable has to be set:
|
If this is not possible and the compressed packaged is installed, the following environment variable has to be set pointing to the folder where it was unzipped to:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
export BOOST_ROOT=/path/to/library/
|
export BOOST_ROOT=/path/to/library/
|
||||||
```
|
```
|
||||||
|
|
||||||
|
In some cases, it is needed to build the library, to do so:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd /path/to/library
|
||||||
|
mkdir own
|
||||||
|
./bootstrap.sh --prefix=/path/to/library/own
|
||||||
|
./b2 install
|
||||||
|
export BOOST_ROOT=/path/to/library/own/
|
||||||
|
```
|
||||||
|
|
||||||
|
Don't forget to add the export BOOST_ROOT statement to .bashrc or wherever it is meant to be.
|
||||||
|
|
||||||
### libxlswriter
|
### libxlswriter
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
|
162
grid_stree.json
Normal file
162
grid_stree.json
Normal file
@@ -0,0 +1,162 @@
|
|||||||
|
{
|
||||||
|
"balance-scale": {
|
||||||
|
"C": 10000.0,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "rbf",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"balloons": {
|
||||||
|
"C": 7,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "rbf",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"breast-cancer-wisc-diag": {
|
||||||
|
"C": 0.2,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"breast-cancer-wisc-prog": {
|
||||||
|
"C": 0.2,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"breast-cancer-wisc": {},
|
||||||
|
"breast-cancer": {},
|
||||||
|
"cardiotocography-10clases": {},
|
||||||
|
"cardiotocography-3clases": {},
|
||||||
|
"conn-bench-sonar-mines-rocks": {},
|
||||||
|
"cylinder-bands": {},
|
||||||
|
"dermatology": {
|
||||||
|
"C": 55,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"echocardiogram": {
|
||||||
|
"C": 7,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "poly",
|
||||||
|
"max_features": "auto",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"fertility": {
|
||||||
|
"C": 0.05,
|
||||||
|
"max_features": "auto",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"haberman-survival": {},
|
||||||
|
"heart-hungarian": {
|
||||||
|
"C": 0.05,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"hepatitis": {
|
||||||
|
"C": 7,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "rbf",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"ilpd-indian-liver": {},
|
||||||
|
"ionosphere": {
|
||||||
|
"C": 7,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "rbf",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"iris": {},
|
||||||
|
"led-display": {},
|
||||||
|
"libras": {
|
||||||
|
"C": 0.08,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"low-res-spect": {
|
||||||
|
"C": 0.05,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"lymphography": {
|
||||||
|
"C": 0.05,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"mammographic": {},
|
||||||
|
"molec-biol-promoter": {
|
||||||
|
"C": 0.05,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "poly",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"musk-1": {
|
||||||
|
"C": 0.05,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "poly",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"oocytes_merluccius_nucleus_4d": {
|
||||||
|
"C": 8.25,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "poly"
|
||||||
|
},
|
||||||
|
"oocytes_merluccius_states_2f": {},
|
||||||
|
"oocytes_trisopterus_nucleus_2f": {},
|
||||||
|
"oocytes_trisopterus_states_5b": {
|
||||||
|
"C": 0.11,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"parkinsons": {},
|
||||||
|
"pima": {},
|
||||||
|
"pittsburg-bridges-MATERIAL": {
|
||||||
|
"C": 7,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "rbf",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"pittsburg-bridges-REL-L": {},
|
||||||
|
"pittsburg-bridges-SPAN": {
|
||||||
|
"C": 0.05,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"pittsburg-bridges-T-OR-D": {},
|
||||||
|
"planning": {
|
||||||
|
"C": 7,
|
||||||
|
"gamma": 10.0,
|
||||||
|
"kernel": "rbf",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"post-operative": {
|
||||||
|
"C": 55,
|
||||||
|
"degree": 5,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "poly",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"seeds": {
|
||||||
|
"C": 10000.0,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"statlog-australian-credit": {
|
||||||
|
"C": 0.05,
|
||||||
|
"max_features": "auto",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"statlog-german-credit": {},
|
||||||
|
"statlog-heart": {},
|
||||||
|
"statlog-image": {
|
||||||
|
"C": 7,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"statlog-vehicle": {},
|
||||||
|
"synthetic-control": {
|
||||||
|
"C": 0.55,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"tic-tac-toe": {
|
||||||
|
"C": 0.2,
|
||||||
|
"gamma": 0.1,
|
||||||
|
"kernel": "poly",
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"vertebral-column-2clases": {},
|
||||||
|
"wine": {
|
||||||
|
"C": 0.55,
|
||||||
|
"max_iter": 10000
|
||||||
|
},
|
||||||
|
"zoo": {
|
||||||
|
"C": 0.1,
|
||||||
|
"max_iter": 10000
|
||||||
|
}
|
||||||
|
}
|
@@ -1,10 +1,10 @@
|
|||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
#include <std::string>
|
#include <string>
|
||||||
#include <map>
|
#include <map>
|
||||||
#include <argparse/argparse.hpp>
|
#include <argparse/argparse.hpp>
|
||||||
#include <nlohmann/json.hpp>
|
#include <nlohmann/json.hpp>
|
||||||
#include "ArffFiles.h"v
|
#include "ArffFiles.h"
|
||||||
#include "BayesMetrics.h"
|
#include "BayesMetrics.h"
|
||||||
#include "CPPFImdlp.h"
|
#include "CPPFImdlp.h"
|
||||||
#include "Folding.h"
|
#include "Folding.h"
|
||||||
|
@@ -6,8 +6,6 @@
|
|||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
enum status_t { NORMAL, WARNING, ERROR };
|
enum status_t { NORMAL, WARNING, ERROR };
|
||||||
class BaseClassifier {
|
class BaseClassifier {
|
||||||
protected:
|
|
||||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
|
||||||
public:
|
public:
|
||||||
// X is nxm std::vector, y is nx1 std::vector
|
// X is nxm std::vector, y is nx1 std::vector
|
||||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||||
@@ -29,7 +27,11 @@ namespace bayesnet {
|
|||||||
virtual std::string getVersion() = 0;
|
virtual std::string getVersion() = 0;
|
||||||
std::vector<std::string> virtual topological_order() = 0;
|
std::vector<std::string> virtual topological_order() = 0;
|
||||||
void virtual dump_cpt()const = 0;
|
void virtual dump_cpt()const = 0;
|
||||||
virtual void setHyperparameters(nlohmann::json& hyperparameters) = 0;
|
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||||
|
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||||
|
protected:
|
||||||
|
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||||
|
std::vector<std::string> validHyperparameters;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@@ -10,7 +10,11 @@
|
|||||||
#include "IWSS.h"
|
#include "IWSS.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
BoostAODE::BoostAODE() : Ensemble() {}
|
BoostAODE::BoostAODE() : Ensemble()
|
||||||
|
{
|
||||||
|
validHyperparameters = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" };
|
||||||
|
|
||||||
|
}
|
||||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
// Models shall be built in trainModel
|
// Models shall be built in trainModel
|
||||||
@@ -43,11 +47,8 @@ namespace bayesnet {
|
|||||||
y_train = y_;
|
y_train = y_;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void BoostAODE::setHyperparameters(nlohmann::json& hyperparameters)
|
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||||
{
|
{
|
||||||
// Check if hyperparameters are valid
|
|
||||||
const std::vector<std::string> validKeys = { "repeatSparent", "maxModels", "ascending", "convergence", "threshold", "select_features" };
|
|
||||||
checkHyperparameters(validKeys, hyperparameters);
|
|
||||||
if (hyperparameters.contains("repeatSparent")) {
|
if (hyperparameters.contains("repeatSparent")) {
|
||||||
repeatSparent = hyperparameters["repeatSparent"];
|
repeatSparent = hyperparameters["repeatSparent"];
|
||||||
}
|
}
|
||||||
|
@@ -8,9 +8,9 @@ namespace bayesnet {
|
|||||||
class BoostAODE : public Ensemble {
|
class BoostAODE : public Ensemble {
|
||||||
public:
|
public:
|
||||||
BoostAODE();
|
BoostAODE();
|
||||||
virtual ~BoostAODE() {};
|
virtual ~BoostAODE() = default;
|
||||||
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||||
protected:
|
protected:
|
||||||
void buildModel(const torch::Tensor& weights) override;
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
void trainModel(const torch::Tensor& weights) override;
|
void trainModel(const torch::Tensor& weights) override;
|
||||||
|
@@ -153,18 +153,8 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
model.dump_cpt();
|
model.dump_cpt();
|
||||||
}
|
}
|
||||||
void Classifier::checkHyperparameters(const std::vector<std::string>& validKeys, nlohmann::json& hyperparameters)
|
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||||
{
|
{
|
||||||
for (const auto& item : hyperparameters.items()) {
|
//For classifiers that don't have hyperparameters
|
||||||
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
|
|
||||||
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void Classifier::setHyperparameters(nlohmann::json& hyperparameters)
|
|
||||||
{
|
|
||||||
// Check if hyperparameters are valid, default is no hyperparameters
|
|
||||||
const std::vector<std::string> validKeys = { };
|
|
||||||
checkHyperparameters(validKeys, hyperparameters);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
@@ -22,7 +22,6 @@ namespace bayesnet {
|
|||||||
void checkFitParameters();
|
void checkFitParameters();
|
||||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||||
void trainModel(const torch::Tensor& weights) override;
|
void trainModel(const torch::Tensor& weights) override;
|
||||||
void checkHyperparameters(const std::vector<std::string>& validKeys, nlohmann::json& hyperparameters);
|
|
||||||
void buildDataset(torch::Tensor& y);
|
void buildDataset(torch::Tensor& y);
|
||||||
public:
|
public:
|
||||||
Classifier(Network model);
|
Classifier(Network model);
|
||||||
@@ -44,7 +43,7 @@ namespace bayesnet {
|
|||||||
std::vector<std::string> show() const override;
|
std::vector<std::string> show() const override;
|
||||||
std::vector<std::string> topological_order() override;
|
std::vector<std::string> topological_order() override;
|
||||||
void dump_cpt() const override;
|
void dump_cpt() const override;
|
||||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@@ -1,12 +1,13 @@
|
|||||||
#include "KDB.h"
|
#include "KDB.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta) {}
|
KDB::KDB(int k, float theta) : Classifier(Network()), k(k), theta(theta)
|
||||||
void KDB::setHyperparameters(nlohmann::json& hyperparameters)
|
{
|
||||||
|
validHyperparameters = { "k", "theta" };
|
||||||
|
|
||||||
|
}
|
||||||
|
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||||
{
|
{
|
||||||
// Check if hyperparameters are valid
|
|
||||||
const std::vector<std::string> validKeys = { "k", "theta" };
|
|
||||||
checkHyperparameters(validKeys, hyperparameters);
|
|
||||||
if (hyperparameters.contains("k")) {
|
if (hyperparameters.contains("k")) {
|
||||||
k = hyperparameters["k"];
|
k = hyperparameters["k"];
|
||||||
}
|
}
|
||||||
|
@@ -13,8 +13,8 @@ namespace bayesnet {
|
|||||||
void buildModel(const torch::Tensor& weights) override;
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
public:
|
public:
|
||||||
explicit KDB(int k, float theta = 0.03);
|
explicit KDB(int k, float theta = 0.03);
|
||||||
virtual ~KDB() {};
|
virtual ~KDB() = default;
|
||||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
@@ -10,7 +10,7 @@ namespace bayesnet {
|
|||||||
void buildModel(const torch::Tensor& weights) override;
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
public:
|
public:
|
||||||
explicit SPODE(int root);
|
explicit SPODE(int root);
|
||||||
virtual ~SPODE() {};
|
virtual ~SPODE() = default;
|
||||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
@@ -8,7 +8,7 @@ namespace bayesnet {
|
|||||||
void buildModel(const torch::Tensor& weights) override;
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
public:
|
public:
|
||||||
TAN();
|
TAN();
|
||||||
virtual ~TAN() {};
|
virtual ~TAN() = default;
|
||||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
@@ -8,12 +8,14 @@ include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
|||||||
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
|
include_directories(${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include)
|
||||||
include_directories(${Python3_INCLUDE_DIRS})
|
include_directories(${Python3_INCLUDE_DIRS})
|
||||||
|
|
||||||
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc ReportConsole.cc ReportBase.cc)
|
|
||||||
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
|
||||||
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
|
|
||||||
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||||
|
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Folding.cc Datasets.cc Dataset.cc)
|
||||||
|
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
|
||||||
|
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc HyperParameters.cc ReportConsole.cc ReportBase.cc)
|
||||||
|
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||||
|
|
||||||
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
|
||||||
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
|
|
||||||
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
|
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
|
||||||
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
target_link_libraries(b_grid BayesNet PyWrap)
|
||||||
|
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||||
|
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
||||||
|
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
|
@@ -26,7 +26,6 @@ namespace platform {
|
|||||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||||
return oss.str();
|
return oss.str();
|
||||||
}
|
}
|
||||||
Experiment::Experiment() : hyperparameters(json::parse("{}")) {}
|
|
||||||
std::string Experiment::get_file_name()
|
std::string Experiment::get_file_name()
|
||||||
{
|
{
|
||||||
std::string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
|
std::string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
|
||||||
@@ -134,7 +133,7 @@ namespace platform {
|
|||||||
}
|
}
|
||||||
void Experiment::cross_validation(const std::string& fileName, bool quiet)
|
void Experiment::cross_validation(const std::string& fileName, bool quiet)
|
||||||
{
|
{
|
||||||
auto datasets = platform::Datasets(discretized, Paths::datasets());
|
auto datasets = Datasets(discretized, Paths::datasets());
|
||||||
// Get dataset
|
// Get dataset
|
||||||
auto [X, y] = datasets.getTensors(fileName);
|
auto [X, y] = datasets.getTensors(fileName);
|
||||||
auto states = datasets.getStates(fileName);
|
auto states = datasets.getStates(fileName);
|
||||||
@@ -148,7 +147,7 @@ namespace platform {
|
|||||||
auto result = Result();
|
auto result = Result();
|
||||||
auto [values, counts] = at::_unique(y);
|
auto [values, counts] = at::_unique(y);
|
||||||
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
||||||
result.setHyperparameters(hyperparameters);
|
result.setHyperparameters(hyperparameters.get(fileName));
|
||||||
// Initialize results std::vectors
|
// Initialize results std::vectors
|
||||||
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
||||||
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
||||||
@@ -171,9 +170,9 @@ namespace platform {
|
|||||||
for (int nfold = 0; nfold < nfolds; nfold++) {
|
for (int nfold = 0; nfold < nfolds; nfold++) {
|
||||||
auto clf = Models::instance()->create(model);
|
auto clf = Models::instance()->create(model);
|
||||||
setModelVersion(clf->getVersion());
|
setModelVersion(clf->getVersion());
|
||||||
if (hyperparameters.size() != 0) {
|
auto valid = clf->getValidHyperparameters();
|
||||||
clf->setHyperparameters(hyperparameters);
|
hyperparameters.check(valid, fileName);
|
||||||
}
|
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||||
// Split train - test dataset
|
// Split train - test dataset
|
||||||
train_timer.start();
|
train_timer.start();
|
||||||
auto [train, test] = fold->getFold(nfold);
|
auto [train, test] = fold->getFold(nfold);
|
||||||
|
@@ -3,29 +3,16 @@
|
|||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
#include <nlohmann/json.hpp>
|
#include <nlohmann/json.hpp>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <chrono>
|
|
||||||
#include "Folding.h"
|
#include "Folding.h"
|
||||||
#include "BaseClassifier.h"
|
#include "BaseClassifier.h"
|
||||||
|
#include "HyperParameters.h"
|
||||||
#include "TAN.h"
|
#include "TAN.h"
|
||||||
#include "KDB.h"
|
#include "KDB.h"
|
||||||
#include "AODE.h"
|
#include "AODE.h"
|
||||||
|
#include "Timer.h"
|
||||||
|
|
||||||
namespace platform {
|
namespace platform {
|
||||||
using json = nlohmann::json;
|
using json = nlohmann::json;
|
||||||
class Timer {
|
|
||||||
private:
|
|
||||||
std::chrono::high_resolution_clock::time_point begin;
|
|
||||||
public:
|
|
||||||
Timer() = default;
|
|
||||||
~Timer() = default;
|
|
||||||
void start() { begin = std::chrono::high_resolution_clock::now(); }
|
|
||||||
double getDuration()
|
|
||||||
{
|
|
||||||
std::chrono::high_resolution_clock::time_point end = std::chrono::high_resolution_clock::now();
|
|
||||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
|
|
||||||
return time_span.count();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
class Result {
|
class Result {
|
||||||
private:
|
private:
|
||||||
std::string dataset, model_version;
|
std::string dataset, model_version;
|
||||||
@@ -80,17 +67,8 @@ namespace platform {
|
|||||||
const std::vector<double>& getTimesTest() const { return times_test; }
|
const std::vector<double>& getTimesTest() const { return times_test; }
|
||||||
};
|
};
|
||||||
class Experiment {
|
class Experiment {
|
||||||
private:
|
|
||||||
std::string title, model, platform, score_name, model_version, language_version, language;
|
|
||||||
bool discretized{ false }, stratified{ false };
|
|
||||||
std::vector<Result> results;
|
|
||||||
std::vector<int> randomSeeds;
|
|
||||||
json hyperparameters = "{}";
|
|
||||||
int nfolds{ 0 };
|
|
||||||
float duration{ 0 };
|
|
||||||
json build_json();
|
|
||||||
public:
|
public:
|
||||||
Experiment();
|
Experiment() = default;
|
||||||
Experiment& setTitle(const std::string& title) { this->title = title; return *this; }
|
Experiment& setTitle(const std::string& title) { this->title = title; return *this; }
|
||||||
Experiment& setModel(const std::string& model) { this->model = model; return *this; }
|
Experiment& setModel(const std::string& model) { this->model = model; return *this; }
|
||||||
Experiment& setPlatform(const std::string& platform) { this->platform = platform; return *this; }
|
Experiment& setPlatform(const std::string& platform) { this->platform = platform; return *this; }
|
||||||
@@ -104,13 +82,22 @@ namespace platform {
|
|||||||
Experiment& addResult(Result result) { results.push_back(result); return *this; }
|
Experiment& addResult(Result result) { results.push_back(result); return *this; }
|
||||||
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
|
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
|
||||||
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
|
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
|
||||||
Experiment& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
Experiment& setHyperparameters(const HyperParameters& hyperparameters_) { this->hyperparameters = hyperparameters_; return *this; }
|
||||||
std::string get_file_name();
|
std::string get_file_name();
|
||||||
void save(const std::string& path);
|
void save(const std::string& path);
|
||||||
void cross_validation(const std::string& fileName, bool quiet);
|
void cross_validation(const std::string& fileName, bool quiet);
|
||||||
void go(std::vector<std::string> filesToProcess, bool quiet);
|
void go(std::vector<std::string> filesToProcess, bool quiet);
|
||||||
void show();
|
void show();
|
||||||
void report();
|
void report();
|
||||||
|
private:
|
||||||
|
std::string title, model, platform, score_name, model_version, language_version, language;
|
||||||
|
bool discretized{ false }, stratified{ false };
|
||||||
|
std::vector<Result> results;
|
||||||
|
std::vector<int> randomSeeds;
|
||||||
|
HyperParameters hyperparameters;
|
||||||
|
int nfolds{ 0 };
|
||||||
|
float duration{ 0 };
|
||||||
|
json build_json();
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
55
src/Platform/GridData.cc
Normal file
55
src/Platform/GridData.cc
Normal file
@@ -0,0 +1,55 @@
|
|||||||
|
#include "GridData.h"
|
||||||
|
#include <fstream>
|
||||||
|
|
||||||
|
namespace platform {
|
||||||
|
GridData::GridData(const std::string& fileName)
|
||||||
|
{
|
||||||
|
std::ifstream resultData(fileName);
|
||||||
|
if (resultData.is_open()) {
|
||||||
|
grid = json::parse(resultData);
|
||||||
|
} else {
|
||||||
|
throw std::invalid_argument("Unable to open input file. [" + fileName + "]");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
int GridData::computeNumCombinations(const json& line)
|
||||||
|
{
|
||||||
|
int numCombinations = 1;
|
||||||
|
for (const auto& item : line.items()) {
|
||||||
|
numCombinations *= item.value().size();
|
||||||
|
}
|
||||||
|
return numCombinations;
|
||||||
|
}
|
||||||
|
int GridData::getNumCombinations()
|
||||||
|
{
|
||||||
|
int numCombinations = 0;
|
||||||
|
for (const auto& line : grid) {
|
||||||
|
numCombinations += computeNumCombinations(line);
|
||||||
|
}
|
||||||
|
return numCombinations;
|
||||||
|
}
|
||||||
|
json GridData::generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination)
|
||||||
|
{
|
||||||
|
if (index == last) {
|
||||||
|
// If we reached the end of input, store the current combination
|
||||||
|
output.push_back(currentCombination);
|
||||||
|
return currentCombination;
|
||||||
|
}
|
||||||
|
const auto& key = index.key();
|
||||||
|
const auto& values = index.value();
|
||||||
|
for (const auto& value : values) {
|
||||||
|
auto combination = currentCombination;
|
||||||
|
combination[key] = value;
|
||||||
|
json::iterator nextIndex = index;
|
||||||
|
generateCombinations(++nextIndex, last, output, combination);
|
||||||
|
}
|
||||||
|
return currentCombination;
|
||||||
|
}
|
||||||
|
std::vector<json> GridData::getGrid()
|
||||||
|
{
|
||||||
|
auto result = std::vector<json>();
|
||||||
|
for (json line : grid) {
|
||||||
|
generateCombinations(line.begin(), line.end(), result, json({}));
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
} /* namespace platform */
|
22
src/Platform/GridData.h
Normal file
22
src/Platform/GridData.h
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
#ifndef GRIDDATA_H
|
||||||
|
#define GRIDDATA_H
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include <map>
|
||||||
|
#include <nlohmann/json.hpp>
|
||||||
|
|
||||||
|
namespace platform {
|
||||||
|
using json = nlohmann::json;
|
||||||
|
class GridData {
|
||||||
|
public:
|
||||||
|
explicit GridData(const std::string& fileName);
|
||||||
|
~GridData() = default;
|
||||||
|
std::vector<json> getGrid();
|
||||||
|
int getNumCombinations();
|
||||||
|
private:
|
||||||
|
json generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination);
|
||||||
|
int computeNumCombinations(const json& line);
|
||||||
|
json grid;
|
||||||
|
};
|
||||||
|
} /* namespace platform */
|
||||||
|
#endif /* GRIDDATA_H */
|
130
src/Platform/GridSearch.cc
Normal file
130
src/Platform/GridSearch.cc
Normal file
@@ -0,0 +1,130 @@
|
|||||||
|
#include <iostream>
|
||||||
|
#include <torch/torch.h>
|
||||||
|
#include "GridSearch.h"
|
||||||
|
#include "Models.h"
|
||||||
|
#include "Paths.h"
|
||||||
|
#include "Folding.h"
|
||||||
|
#include "Colors.h"
|
||||||
|
|
||||||
|
namespace platform {
|
||||||
|
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
||||||
|
{
|
||||||
|
this->config.output_file = config.path + "grid_" + config.model + "_output.json";
|
||||||
|
this->config.input_file = config.path + "grid_" + config.model + "_input.json";
|
||||||
|
}
|
||||||
|
void showProgressComb(const int num, const int total, const std::string& color)
|
||||||
|
{
|
||||||
|
int spaces = int(log(total) / log(10)) + 1;
|
||||||
|
int magic = 37 + 2 * spaces;
|
||||||
|
std::string prefix = num == 1 ? "" : string(magic, '\b') + string(magic + 1, ' ') + string(magic + 1, '\b');
|
||||||
|
std::cout << prefix << color << "(" << setw(spaces) << num << "/" << setw(spaces) << total << ") " << Colors::RESET() << flush;
|
||||||
|
}
|
||||||
|
void showProgressFold(int fold, const std::string& color, const std::string& phase)
|
||||||
|
{
|
||||||
|
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
|
||||||
|
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
||||||
|
}
|
||||||
|
std::string getColor(bayesnet::status_t status)
|
||||||
|
{
|
||||||
|
switch (status) {
|
||||||
|
case bayesnet::NORMAL:
|
||||||
|
return Colors::GREEN();
|
||||||
|
case bayesnet::WARNING:
|
||||||
|
return Colors::YELLOW();
|
||||||
|
case bayesnet::ERROR:
|
||||||
|
return Colors::RED();
|
||||||
|
default:
|
||||||
|
return Colors::RESET();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
double GridSearch::processFile(std::string fileName, Datasets& datasets, HyperParameters& hyperparameters)
|
||||||
|
{
|
||||||
|
// Get dataset
|
||||||
|
auto [X, y] = datasets.getTensors(fileName);
|
||||||
|
auto states = datasets.getStates(fileName);
|
||||||
|
auto features = datasets.getFeatures(fileName);
|
||||||
|
auto samples = datasets.getNSamples(fileName);
|
||||||
|
auto className = datasets.getClassName(fileName);
|
||||||
|
double totalScore = 0.0;
|
||||||
|
int numItems = 0;
|
||||||
|
for (const auto& seed : config.seeds) {
|
||||||
|
if (!config.quiet)
|
||||||
|
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||||
|
Fold* fold;
|
||||||
|
if (config.stratified)
|
||||||
|
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||||
|
else
|
||||||
|
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||||
|
double bestScore = 0.0;
|
||||||
|
for (int nfold = 0; nfold < config.n_folds; nfold++) {
|
||||||
|
auto clf = Models::instance()->create(config.model);
|
||||||
|
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||||
|
auto [train, test] = fold->getFold(nfold);
|
||||||
|
auto train_t = torch::tensor(train);
|
||||||
|
auto test_t = torch::tensor(test);
|
||||||
|
auto X_train = X.index({ "...", train_t });
|
||||||
|
auto y_train = y.index({ train_t });
|
||||||
|
auto X_test = X.index({ "...", test_t });
|
||||||
|
auto y_test = y.index({ test_t });
|
||||||
|
// Train model
|
||||||
|
if (!config.quiet)
|
||||||
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "a");
|
||||||
|
clf->fit(X_train, y_train, features, className, states);
|
||||||
|
// Test model
|
||||||
|
if (!config.quiet)
|
||||||
|
showProgressFold(nfold + 1, getColor(clf->getStatus()), "b");
|
||||||
|
totalScore += clf->score(X_test, y_test);
|
||||||
|
numItems++;
|
||||||
|
if (!config.quiet)
|
||||||
|
std::cout << "\b\b\b, \b" << flush;
|
||||||
|
}
|
||||||
|
delete fold;
|
||||||
|
}
|
||||||
|
return numItems == 0 ? 0.0 : totalScore / numItems;
|
||||||
|
}
|
||||||
|
void GridSearch::go()
|
||||||
|
{
|
||||||
|
// Load datasets
|
||||||
|
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||||
|
// Create model
|
||||||
|
std::cout << "***************** Starting Gridsearch *****************" << std::endl;
|
||||||
|
std::cout << "input file=" << config.input_file << std::endl;
|
||||||
|
auto grid = GridData(config.input_file);
|
||||||
|
auto totalComb = grid.getNumCombinations();
|
||||||
|
std::cout << "* Doing " << totalComb << " combinations for each dataset/seed/fold" << std::endl;
|
||||||
|
// Generate hyperparameters grid & run gridsearch
|
||||||
|
// Check each combination of hyperparameters for each dataset and each seed
|
||||||
|
for (const auto& dataset : datasets.getNames()) {
|
||||||
|
if (!config.quiet)
|
||||||
|
std::cout << "- " << setw(20) << left << dataset << " " << right << flush;
|
||||||
|
int num = 0;
|
||||||
|
double bestScore = 0.0;
|
||||||
|
json bestHyperparameters;
|
||||||
|
for (const auto& hyperparam_line : grid.getGrid()) {
|
||||||
|
if (!config.quiet)
|
||||||
|
showProgressComb(++num, totalComb, Colors::CYAN());
|
||||||
|
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||||
|
double score = processFile(dataset, datasets, hyperparameters);
|
||||||
|
if (score > bestScore) {
|
||||||
|
bestScore = score;
|
||||||
|
bestHyperparameters = hyperparam_line;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!config.quiet) {
|
||||||
|
std::cout << "end." << " Score: " << setw(9) << setprecision(7) << fixed
|
||||||
|
<< bestScore << " [" << bestHyperparameters.dump() << "]" << std::endl;
|
||||||
|
}
|
||||||
|
results[dataset]["score"] = bestScore;
|
||||||
|
results[dataset]["hyperparameters"] = bestHyperparameters;
|
||||||
|
}
|
||||||
|
// Save results
|
||||||
|
save();
|
||||||
|
std::cout << "***************** Ending Gridsearch *******************" << std::endl;
|
||||||
|
}
|
||||||
|
void GridSearch::save() const
|
||||||
|
{
|
||||||
|
std::ofstream file(config.output_file);
|
||||||
|
file << results.dump(4);
|
||||||
|
file.close();
|
||||||
|
}
|
||||||
|
} /* namespace platform */
|
36
src/Platform/GridSearch.h
Normal file
36
src/Platform/GridSearch.h
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
#ifndef GRIDSEARCH_H
|
||||||
|
#define GRIDSEARCH_H
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include <nlohmann/json.hpp>
|
||||||
|
#include "Datasets.h"
|
||||||
|
#include "HyperParameters.h"
|
||||||
|
#include "GridData.h"
|
||||||
|
|
||||||
|
namespace platform {
|
||||||
|
using json = nlohmann::json;
|
||||||
|
struct ConfigGrid {
|
||||||
|
std::string model;
|
||||||
|
std::string score;
|
||||||
|
std::string path;
|
||||||
|
std::string input_file;
|
||||||
|
std::string output_file;
|
||||||
|
bool quiet;
|
||||||
|
bool discretize;
|
||||||
|
bool stratified;
|
||||||
|
int n_folds;
|
||||||
|
std::vector<int> seeds;
|
||||||
|
};
|
||||||
|
class GridSearch {
|
||||||
|
public:
|
||||||
|
explicit GridSearch(struct ConfigGrid& config);
|
||||||
|
void go();
|
||||||
|
void save() const;
|
||||||
|
~GridSearch() = default;
|
||||||
|
private:
|
||||||
|
double processFile(std::string fileName, Datasets& datasets, HyperParameters& hyperparameters);
|
||||||
|
json results;
|
||||||
|
struct ConfigGrid config;
|
||||||
|
};
|
||||||
|
} /* namespace platform */
|
||||||
|
#endif /* GRIDSEARCH_H */
|
55
src/Platform/HyperParameters.cc
Normal file
55
src/Platform/HyperParameters.cc
Normal file
@@ -0,0 +1,55 @@
|
|||||||
|
#include "HyperParameters.h"
|
||||||
|
#include <fstream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
namespace platform {
|
||||||
|
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_)
|
||||||
|
{
|
||||||
|
// Initialize all datasets with the given hyperparameters
|
||||||
|
for (const auto& item : datasets) {
|
||||||
|
hyperparameters[item] = hyperparameters_;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// https://www.techiedelight.com/implode-a-vector-of-strings-into-a-comma-separated-string-in-cpp/
|
||||||
|
std::string join(std::vector<std::string> const& strings, std::string delim)
|
||||||
|
{
|
||||||
|
std::stringstream ss;
|
||||||
|
std::copy(strings.begin(), strings.end(),
|
||||||
|
std::ostream_iterator<std::string>(ss, delim.c_str()));
|
||||||
|
return ss.str();
|
||||||
|
}
|
||||||
|
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file)
|
||||||
|
{
|
||||||
|
// Check if file exists
|
||||||
|
std::ifstream file(hyperparameters_file);
|
||||||
|
if (!file.is_open()) {
|
||||||
|
throw std::runtime_error("File " + hyperparameters_file + " not found");
|
||||||
|
}
|
||||||
|
// Check if file is a json
|
||||||
|
json input_hyperparameters = json::parse(file);
|
||||||
|
// Check if hyperparameters are valid
|
||||||
|
for (const auto& dataset : datasets) {
|
||||||
|
if (!input_hyperparameters.contains(dataset)) {
|
||||||
|
std::cerr << "*Warning: Dataset " << dataset << " not found in hyperparameters file" << " assuming default hyperparameters" << std::endl;
|
||||||
|
hyperparameters[dataset] = json({});
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
hyperparameters[dataset] = input_hyperparameters[dataset].get<json>();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
|
||||||
|
{
|
||||||
|
json result = hyperparameters.at(fileName);
|
||||||
|
for (const auto& item : result.items()) {
|
||||||
|
if (find(valid.begin(), valid.end(), item.key()) == valid.end()) {
|
||||||
|
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid. Passed Hyperparameters are: "
|
||||||
|
+ result.dump(4) + "\n Valid hyperparameters are: {" + join(valid, ",") + "}");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
json HyperParameters::get(const std::string& fileName)
|
||||||
|
{
|
||||||
|
return hyperparameters.at(fileName);
|
||||||
|
}
|
||||||
|
} /* namespace platform */
|
23
src/Platform/HyperParameters.h
Normal file
23
src/Platform/HyperParameters.h
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
#ifndef HYPERPARAMETERS_H
|
||||||
|
#define HYPERPARAMETERS_H
|
||||||
|
#include <string>
|
||||||
|
#include <map>
|
||||||
|
#include <vector>
|
||||||
|
#include <nlohmann/json.hpp>
|
||||||
|
|
||||||
|
namespace platform {
|
||||||
|
using json = nlohmann::json;
|
||||||
|
class HyperParameters {
|
||||||
|
public:
|
||||||
|
HyperParameters() = default;
|
||||||
|
explicit HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_);
|
||||||
|
explicit HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file);
|
||||||
|
~HyperParameters() = default;
|
||||||
|
bool notEmpty(const std::string& key) const { return !hyperparameters.at(key).empty(); }
|
||||||
|
void check(const std::vector<std::string>& valid, const std::string& fileName);
|
||||||
|
json get(const std::string& fileName);
|
||||||
|
private:
|
||||||
|
std::map<std::string, json> hyperparameters;
|
||||||
|
};
|
||||||
|
} /* namespace platform */
|
||||||
|
#endif /* HYPERPARAMETERS_H */
|
@@ -1,6 +1,7 @@
|
|||||||
#ifndef PATHS_H
|
#ifndef PATHS_H
|
||||||
#define PATHS_H
|
#define PATHS_H
|
||||||
#include <string>
|
#include <string>
|
||||||
|
#include <filesystem>
|
||||||
#include "DotEnv.h"
|
#include "DotEnv.h"
|
||||||
namespace platform {
|
namespace platform {
|
||||||
class Paths {
|
class Paths {
|
||||||
@@ -8,12 +9,22 @@ namespace platform {
|
|||||||
static std::string results() { return "results/"; }
|
static std::string results() { return "results/"; }
|
||||||
static std::string hiddenResults() { return "hidden_results/"; }
|
static std::string hiddenResults() { return "hidden_results/"; }
|
||||||
static std::string excel() { return "excel/"; }
|
static std::string excel() { return "excel/"; }
|
||||||
static std::string cfs() { return "cfs/"; }
|
static std::string grid() { return "grid/"; }
|
||||||
static std::string datasets()
|
static std::string datasets()
|
||||||
{
|
{
|
||||||
auto env = platform::DotEnv();
|
auto env = platform::DotEnv();
|
||||||
return env.get("source_data");
|
return env.get("source_data");
|
||||||
}
|
}
|
||||||
|
static void createPath(const std::string& path)
|
||||||
|
{
|
||||||
|
// Create directory if it does not exist
|
||||||
|
try {
|
||||||
|
std::filesystem::create_directory(path);
|
||||||
|
}
|
||||||
|
catch (std::exception& e) {
|
||||||
|
throw std::runtime_error("Could not create directory " + path);
|
||||||
|
}
|
||||||
|
}
|
||||||
static std::string excelResults() { return "some_results.xlsx"; }
|
static std::string excelResults() { return "some_results.xlsx"; }
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
34
src/Platform/Timer.h
Normal file
34
src/Platform/Timer.h
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
#ifndef TIMER_H
|
||||||
|
#define TIMER_H
|
||||||
|
#include <chrono>
|
||||||
|
#include <string>
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
|
namespace platform {
|
||||||
|
class Timer {
|
||||||
|
private:
|
||||||
|
std::chrono::high_resolution_clock::time_point begin;
|
||||||
|
std::chrono::high_resolution_clock::time_point end;
|
||||||
|
public:
|
||||||
|
Timer() = default;
|
||||||
|
~Timer() = default;
|
||||||
|
void start() { begin = std::chrono::high_resolution_clock::now(); }
|
||||||
|
void stop() { end = std::chrono::high_resolution_clock::now(); }
|
||||||
|
double getDuration()
|
||||||
|
{
|
||||||
|
stop();
|
||||||
|
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
|
||||||
|
return time_span.count();
|
||||||
|
}
|
||||||
|
std::string getDurationString()
|
||||||
|
{
|
||||||
|
double duration = getDuration();
|
||||||
|
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
|
||||||
|
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
|
||||||
|
std::stringstream ss;
|
||||||
|
ss << std::setw(7) << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit << " ";
|
||||||
|
return ss.str();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} /* namespace platform */
|
||||||
|
#endif /* TIMER_H */
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||||
{
|
{
|
||||||
argparse::ArgumentParser program("best");
|
argparse::ArgumentParser program("b_sbest");
|
||||||
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
|
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
|
||||||
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
|
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
|
||||||
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
|
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
|
||||||
|
81
src/Platform/b_grid.cc
Normal file
81
src/Platform/b_grid.cc
Normal file
@@ -0,0 +1,81 @@
|
|||||||
|
#include <iostream>
|
||||||
|
#include <argparse/argparse.hpp>
|
||||||
|
#include "DotEnv.h"
|
||||||
|
#include "Models.h"
|
||||||
|
#include "modelRegister.h"
|
||||||
|
#include "GridSearch.h"
|
||||||
|
#include "Paths.h"
|
||||||
|
#include "Timer.h"
|
||||||
|
|
||||||
|
|
||||||
|
argparse::ArgumentParser manageArguments(std::string program_name)
|
||||||
|
{
|
||||||
|
auto env = platform::DotEnv();
|
||||||
|
argparse::ArgumentParser program(program_name);
|
||||||
|
program.add_argument("-m", "--model")
|
||||||
|
.help("Model to use " + platform::Models::instance()->tostring())
|
||||||
|
.action([](const std::string& value) {
|
||||||
|
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
|
||||||
|
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||||
|
return value;
|
||||||
|
}
|
||||||
|
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||||
|
}
|
||||||
|
);
|
||||||
|
program.add_argument("--discretize").help("Discretize input datasets").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
||||||
|
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
|
||||||
|
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
||||||
|
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
|
||||||
|
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
|
||||||
|
try {
|
||||||
|
auto k = stoi(value);
|
||||||
|
if (k < 2) {
|
||||||
|
throw std::runtime_error("Number of folds must be greater than 1");
|
||||||
|
}
|
||||||
|
return k;
|
||||||
|
}
|
||||||
|
catch (const runtime_error& err) {
|
||||||
|
throw std::runtime_error(err.what());
|
||||||
|
}
|
||||||
|
catch (...) {
|
||||||
|
throw std::runtime_error("Number of folds must be an integer");
|
||||||
|
}});
|
||||||
|
auto seed_values = env.getSeeds();
|
||||||
|
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||||
|
return program;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char** argv)
|
||||||
|
{
|
||||||
|
auto program = manageArguments("b_grid");
|
||||||
|
struct platform::ConfigGrid config;
|
||||||
|
try {
|
||||||
|
program.parse_args(argc, argv);
|
||||||
|
config.model = program.get<std::string>("model");
|
||||||
|
config.score = program.get<std::string>("score");
|
||||||
|
config.discretize = program.get<bool>("discretize");
|
||||||
|
config.stratified = program.get<bool>("stratified");
|
||||||
|
config.n_folds = program.get<int>("folds");
|
||||||
|
config.quiet = program.get<bool>("quiet");
|
||||||
|
config.seeds = program.get<std::vector<int>>("seeds");
|
||||||
|
}
|
||||||
|
catch (const exception& err) {
|
||||||
|
cerr << err.what() << std::endl;
|
||||||
|
cerr << program;
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
* Begin Processing
|
||||||
|
*/
|
||||||
|
auto env = platform::DotEnv();
|
||||||
|
platform::Paths::createPath(platform::Paths::grid());
|
||||||
|
config.path = platform::Paths::grid();
|
||||||
|
auto grid_search = platform::GridSearch(config);
|
||||||
|
platform::Timer timer;
|
||||||
|
timer.start();
|
||||||
|
grid_search.go();
|
||||||
|
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||||
|
grid_search.save();
|
||||||
|
std::cout << "Done!" << std::endl;
|
||||||
|
return 0;
|
||||||
|
}
|
@@ -11,12 +11,14 @@
|
|||||||
|
|
||||||
using json = nlohmann::json;
|
using json = nlohmann::json;
|
||||||
|
|
||||||
argparse::ArgumentParser manageArguments()
|
argparse::ArgumentParser manageArguments(std::string program_name)
|
||||||
{
|
{
|
||||||
auto env = platform::DotEnv();
|
auto env = platform::DotEnv();
|
||||||
argparse::ArgumentParser program("main");
|
argparse::ArgumentParser program(program_name);
|
||||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparamters passed to the model in Experiment");
|
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
|
||||||
|
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
|
||||||
|
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
|
||||||
program.add_argument("-m", "--model")
|
program.add_argument("-m", "--model")
|
||||||
.help("Model to use " + platform::Models::instance()->tostring())
|
.help("Model to use " + platform::Models::instance()->tostring())
|
||||||
.action([](const std::string& value) {
|
.action([](const std::string& value) {
|
||||||
@@ -53,13 +55,13 @@ argparse::ArgumentParser manageArguments()
|
|||||||
|
|
||||||
int main(int argc, char** argv)
|
int main(int argc, char** argv)
|
||||||
{
|
{
|
||||||
std::string file_name, model_name, title;
|
std::string file_name, model_name, title, hyperparameters_file;
|
||||||
json hyperparameters_json;
|
json hyperparameters_json;
|
||||||
bool discretize_dataset, stratified, saveResults, quiet;
|
bool discretize_dataset, stratified, saveResults, quiet;
|
||||||
std::vector<int> seeds;
|
std::vector<int> seeds;
|
||||||
std::vector<std::string> filesToTest;
|
std::vector<std::string> filesToTest;
|
||||||
int n_folds;
|
int n_folds;
|
||||||
auto program = manageArguments();
|
auto program = manageArguments("b_main");
|
||||||
try {
|
try {
|
||||||
program.parse_args(argc, argv);
|
program.parse_args(argc, argv);
|
||||||
file_name = program.get<std::string>("dataset");
|
file_name = program.get<std::string>("dataset");
|
||||||
@@ -71,6 +73,10 @@ int main(int argc, char** argv)
|
|||||||
seeds = program.get<std::vector<int>>("seeds");
|
seeds = program.get<std::vector<int>>("seeds");
|
||||||
auto hyperparameters = program.get<std::string>("hyperparameters");
|
auto hyperparameters = program.get<std::string>("hyperparameters");
|
||||||
hyperparameters_json = json::parse(hyperparameters);
|
hyperparameters_json = json::parse(hyperparameters);
|
||||||
|
hyperparameters_file = program.get<std::string>("hyper-file");
|
||||||
|
if (hyperparameters_file != "" && hyperparameters != "{}") {
|
||||||
|
throw runtime_error("hyperparameters and hyper_file are mutually exclusive");
|
||||||
|
}
|
||||||
title = program.get<std::string>("title");
|
title = program.get<std::string>("title");
|
||||||
if (title == "" && file_name == "") {
|
if (title == "" && file_name == "") {
|
||||||
throw runtime_error("title is mandatory if dataset is not provided");
|
throw runtime_error("title is mandatory if dataset is not provided");
|
||||||
@@ -96,15 +102,22 @@ int main(int argc, char** argv)
|
|||||||
filesToTest = datasets.getNames();
|
filesToTest = datasets.getNames();
|
||||||
saveResults = true;
|
saveResults = true;
|
||||||
}
|
}
|
||||||
|
platform::HyperParameters test_hyperparams;
|
||||||
|
if (hyperparameters_file != "") {
|
||||||
|
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_file);
|
||||||
|
} else {
|
||||||
|
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_json);
|
||||||
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Begin Processing
|
* Begin Processing
|
||||||
*/
|
*/
|
||||||
auto env = platform::DotEnv();
|
auto env = platform::DotEnv();
|
||||||
auto experiment = platform::Experiment();
|
auto experiment = platform::Experiment();
|
||||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
|
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
|
||||||
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
|
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
|
||||||
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
||||||
experiment.setHyperparameters(hyperparameters_json);
|
experiment.setHyperparameters(test_hyperparams);
|
||||||
for (auto seed : seeds) {
|
for (auto seed : seeds) {
|
||||||
experiment.addRandomSeed(seed);
|
experiment.addRandomSeed(seed);
|
||||||
}
|
}
|
||||||
|
@@ -5,7 +5,7 @@
|
|||||||
|
|
||||||
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
argparse::ArgumentParser manageArguments(int argc, char** argv)
|
||||||
{
|
{
|
||||||
argparse::ArgumentParser program("manage");
|
argparse::ArgumentParser program("b_manage");
|
||||||
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
||||||
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
||||||
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
||||||
|
@@ -1,15 +1,12 @@
|
|||||||
#include "ODTE.h"
|
#include "ODTE.h"
|
||||||
|
|
||||||
namespace pywrap {
|
namespace pywrap {
|
||||||
|
ODTE::ODTE() : PyClassifier("odte", "Odte")
|
||||||
|
{
|
||||||
|
validHyperparameters = { "n_jobs", "n_estimators", "random_state" };
|
||||||
|
}
|
||||||
std::string ODTE::graph()
|
std::string ODTE::graph()
|
||||||
{
|
{
|
||||||
return callMethodString("graph");
|
return callMethodString("graph");
|
||||||
}
|
}
|
||||||
void ODTE::setHyperparameters(nlohmann::json& hyperparameters)
|
|
||||||
{
|
|
||||||
// Check if hyperparameters are valid
|
|
||||||
const std::vector<std::string> validKeys = { "n_jobs", "n_estimators", "random_state" };
|
|
||||||
checkHyperparameters(validKeys, hyperparameters);
|
|
||||||
this->hyperparameters = hyperparameters;
|
|
||||||
}
|
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
@@ -6,10 +6,9 @@
|
|||||||
namespace pywrap {
|
namespace pywrap {
|
||||||
class ODTE : public PyClassifier {
|
class ODTE : public PyClassifier {
|
||||||
public:
|
public:
|
||||||
ODTE() : PyClassifier("odte", "Odte") {};
|
ODTE();
|
||||||
~ODTE() = default;
|
~ODTE() = default;
|
||||||
std::string graph();
|
std::string graph();
|
||||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
|
||||||
};
|
};
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
||||||
#endif /* ODTE_H */
|
#endif /* ODTE_H */
|
@@ -81,19 +81,8 @@ namespace pywrap {
|
|||||||
float result = pyWrap->score(id, Xp, yp);
|
float result = pyWrap->score(id, Xp, yp);
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
void PyClassifier::setHyperparameters(nlohmann::json& hyperparameters)
|
void PyClassifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||||
{
|
{
|
||||||
// Check if hyperparameters are valid, default is no hyperparameters
|
|
||||||
const std::vector<std::string> validKeys = { };
|
|
||||||
checkHyperparameters(validKeys, hyperparameters);
|
|
||||||
this->hyperparameters = hyperparameters;
|
this->hyperparameters = hyperparameters;
|
||||||
}
|
}
|
||||||
void PyClassifier::checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters)
|
|
||||||
{
|
|
||||||
for (const auto& item : hyperparameters.items()) {
|
|
||||||
if (find(validKeys.begin(), validKeys.end(), item.key()) == validKeys.end()) {
|
|
||||||
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
@@ -27,10 +27,10 @@ namespace pywrap {
|
|||||||
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); };
|
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); };
|
||||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override { return 0.0; };
|
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override { return 0.0; };
|
||||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
|
||||||
std::string version();
|
std::string version();
|
||||||
std::string callMethodString(const std::string& method);
|
std::string callMethodString(const std::string& method);
|
||||||
std::string getVersion() override { return this->version(); };
|
std::string getVersion() override { return this->version(); };
|
||||||
|
// TODO: Implement these 3 methods
|
||||||
int getNumberOfNodes()const override { return 0; };
|
int getNumberOfNodes()const override { return 0; };
|
||||||
int getNumberOfEdges()const override { return 0; };
|
int getNumberOfEdges()const override { return 0; };
|
||||||
int getNumberOfStates() const override { return 0; };
|
int getNumberOfStates() const override { return 0; };
|
||||||
@@ -39,8 +39,8 @@ namespace pywrap {
|
|||||||
bayesnet::status_t getStatus() const override { return bayesnet::NORMAL; };
|
bayesnet::status_t getStatus() const override { return bayesnet::NORMAL; };
|
||||||
std::vector<std::string> topological_order() override { return std::vector<std::string>(); }
|
std::vector<std::string> topological_order() override { return std::vector<std::string>(); }
|
||||||
void dump_cpt() const override {};
|
void dump_cpt() const override {};
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||||
protected:
|
protected:
|
||||||
void checkHyperparameters(const std::vector<std::string>& validKeys, const nlohmann::json& hyperparameters);
|
|
||||||
nlohmann::json hyperparameters;
|
nlohmann::json hyperparameters;
|
||||||
void trainModel(const torch::Tensor& weights) override {};
|
void trainModel(const torch::Tensor& weights) override {};
|
||||||
private:
|
private:
|
||||||
|
@@ -1,11 +1,8 @@
|
|||||||
#include "RandomForest.h"
|
#include "RandomForest.h"
|
||||||
|
|
||||||
namespace pywrap {
|
namespace pywrap {
|
||||||
void RandomForest::setHyperparameters(nlohmann::json& hyperparameters)
|
RandomForest::RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier", true)
|
||||||
{
|
{
|
||||||
// Check if hyperparameters are valid
|
validHyperparameters = { "n_estimators", "n_jobs", "random_state" };
|
||||||
const std::vector<std::string> validKeys = { "n_estimators", "n_jobs", "random_state" };
|
|
||||||
checkHyperparameters(validKeys, hyperparameters);
|
|
||||||
this->hyperparameters = hyperparameters;
|
|
||||||
}
|
}
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
@@ -5,9 +5,8 @@
|
|||||||
namespace pywrap {
|
namespace pywrap {
|
||||||
class RandomForest : public PyClassifier {
|
class RandomForest : public PyClassifier {
|
||||||
public:
|
public:
|
||||||
RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier", true) {};
|
RandomForest();
|
||||||
~RandomForest() = default;
|
~RandomForest() = default;
|
||||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
|
||||||
};
|
};
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
||||||
#endif /* RANDOMFOREST_H */
|
#endif /* RANDOMFOREST_H */
|
@@ -1,15 +1,12 @@
|
|||||||
#include "STree.h"
|
#include "STree.h"
|
||||||
|
|
||||||
namespace pywrap {
|
namespace pywrap {
|
||||||
|
STree::STree() : PyClassifier("stree", "Stree")
|
||||||
|
{
|
||||||
|
validHyperparameters = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy", "gamma", "max_features", "degree" };
|
||||||
|
};
|
||||||
std::string STree::graph()
|
std::string STree::graph()
|
||||||
{
|
{
|
||||||
return callMethodString("graph");
|
return callMethodString("graph");
|
||||||
}
|
}
|
||||||
void STree::setHyperparameters(nlohmann::json& hyperparameters)
|
|
||||||
{
|
|
||||||
// Check if hyperparameters are valid
|
|
||||||
const std::vector<std::string> validKeys = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy" };
|
|
||||||
checkHyperparameters(validKeys, hyperparameters);
|
|
||||||
this->hyperparameters = hyperparameters;
|
|
||||||
}
|
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
@@ -6,10 +6,9 @@
|
|||||||
namespace pywrap {
|
namespace pywrap {
|
||||||
class STree : public PyClassifier {
|
class STree : public PyClassifier {
|
||||||
public:
|
public:
|
||||||
STree() : PyClassifier("stree", "Stree") {};
|
STree();
|
||||||
~STree() = default;
|
~STree() = default;
|
||||||
std::string graph();
|
std::string graph();
|
||||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
|
||||||
};
|
};
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
||||||
#endif /* STREE_H */
|
#endif /* STREE_H */
|
@@ -1,11 +1,8 @@
|
|||||||
#include "SVC.h"
|
#include "SVC.h"
|
||||||
|
|
||||||
namespace pywrap {
|
namespace pywrap {
|
||||||
void SVC::setHyperparameters(nlohmann::json& hyperparameters)
|
SVC::SVC() : PyClassifier("sklearn.svm", "SVC", true)
|
||||||
{
|
{
|
||||||
// Check if hyperparameters are valid
|
validHyperparameters = { "C", "gamma", "kernel", "random_state" };
|
||||||
const std::vector<std::string> validKeys = { "C", "gamma", "kernel", "random_state" };
|
|
||||||
checkHyperparameters(validKeys, hyperparameters);
|
|
||||||
this->hyperparameters = hyperparameters;
|
|
||||||
}
|
}
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
@@ -5,10 +5,9 @@
|
|||||||
namespace pywrap {
|
namespace pywrap {
|
||||||
class SVC : public PyClassifier {
|
class SVC : public PyClassifier {
|
||||||
public:
|
public:
|
||||||
SVC() : PyClassifier("sklearn.svm", "SVC", true) {};
|
SVC();
|
||||||
~SVC() = default;
|
~SVC() = default;
|
||||||
void setHyperparameters(nlohmann::json& hyperparameters) override;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
} /* namespace pywrap */
|
} /* namespace pywrap */
|
||||||
#endif /* STREE_H */
|
#endif /* SVC_H */
|
835
stree_results.json
Normal file
835
stree_results.json
Normal file
@@ -0,0 +1,835 @@
|
|||||||
|
[
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:46:29",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "balance-scale",
|
||||||
|
"accuracy": "0.97056",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 10000.0, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.0135214",
|
||||||
|
"time_spent_std": "0.00111213",
|
||||||
|
"accuracy_std": "0.0150468",
|
||||||
|
"nodes": "7.0",
|
||||||
|
"leaves": "4.0",
|
||||||
|
"depth": "3.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:46:29",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "balloons",
|
||||||
|
"accuracy": "0.86",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.000804768",
|
||||||
|
"time_spent_std": "7.74797e-05",
|
||||||
|
"accuracy_std": "0.285015",
|
||||||
|
"nodes": "3.0",
|
||||||
|
"leaves": "2.0",
|
||||||
|
"depth": "2.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:46:29",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "breast-cancer-wisc-diag",
|
||||||
|
"accuracy": "0.972764",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.2, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00380772",
|
||||||
|
"time_spent_std": "0.000638676",
|
||||||
|
"accuracy_std": "0.0173132",
|
||||||
|
"nodes": "3.24",
|
||||||
|
"leaves": "2.12",
|
||||||
|
"depth": "2.12"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:46:30",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "breast-cancer-wisc-prog",
|
||||||
|
"accuracy": "0.811128",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.2, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00767535",
|
||||||
|
"time_spent_std": "0.00148114",
|
||||||
|
"accuracy_std": "0.0584601",
|
||||||
|
"nodes": "5.84",
|
||||||
|
"leaves": "3.42",
|
||||||
|
"depth": "3.24"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:46:31",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "breast-cancer-wisc",
|
||||||
|
"accuracy": "0.966661",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.00652217",
|
||||||
|
"time_spent_std": "0.000726579",
|
||||||
|
"accuracy_std": "0.0139421",
|
||||||
|
"nodes": "8.88",
|
||||||
|
"leaves": "4.94",
|
||||||
|
"depth": "4.08"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:46:32",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "breast-cancer",
|
||||||
|
"accuracy": "0.734211",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.023475",
|
||||||
|
"time_spent_std": "0.00584447",
|
||||||
|
"accuracy_std": "0.0479774",
|
||||||
|
"nodes": "21.72",
|
||||||
|
"leaves": "11.36",
|
||||||
|
"depth": "5.86"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:49:08",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "cardiotocography-10clases",
|
||||||
|
"accuracy": "0.791487",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "3.10582",
|
||||||
|
"time_spent_std": "0.339218",
|
||||||
|
"accuracy_std": "0.0192082",
|
||||||
|
"nodes": "160.76",
|
||||||
|
"leaves": "80.88",
|
||||||
|
"depth": "22.86"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:01",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "cardiotocography-3clases",
|
||||||
|
"accuracy": "0.900613",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "1.05228",
|
||||||
|
"time_spent_std": "0.138768",
|
||||||
|
"accuracy_std": "0.0154004",
|
||||||
|
"nodes": "47.68",
|
||||||
|
"leaves": "24.34",
|
||||||
|
"depth": "8.84"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:01",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "conn-bench-sonar-mines-rocks",
|
||||||
|
"accuracy": "0.755528",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.011577",
|
||||||
|
"time_spent_std": "0.00341148",
|
||||||
|
"accuracy_std": "0.0678424",
|
||||||
|
"nodes": "6.08",
|
||||||
|
"leaves": "3.54",
|
||||||
|
"depth": "2.86"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:17",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "cylinder-bands",
|
||||||
|
"accuracy": "0.715049",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.301143",
|
||||||
|
"time_spent_std": "0.109773",
|
||||||
|
"accuracy_std": "0.0367646",
|
||||||
|
"nodes": "26.2",
|
||||||
|
"leaves": "13.6",
|
||||||
|
"depth": "6.82"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:19",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "dermatology",
|
||||||
|
"accuracy": "0.971833",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 55, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.0377538",
|
||||||
|
"time_spent_std": "0.010726",
|
||||||
|
"accuracy_std": "0.0206883",
|
||||||
|
"nodes": "11.0",
|
||||||
|
"leaves": "6.0",
|
||||||
|
"depth": "6.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:19",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "echocardiogram",
|
||||||
|
"accuracy": "0.814758",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_features\": \"auto\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00333449",
|
||||||
|
"time_spent_std": "0.000964686",
|
||||||
|
"accuracy_std": "0.0998078",
|
||||||
|
"nodes": "7.0",
|
||||||
|
"leaves": "4.0",
|
||||||
|
"depth": "3.54"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:20",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "fertility",
|
||||||
|
"accuracy": "0.88",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00090271",
|
||||||
|
"time_spent_std": "8.96446e-05",
|
||||||
|
"accuracy_std": "0.0547723",
|
||||||
|
"nodes": "1.0",
|
||||||
|
"leaves": "1.0",
|
||||||
|
"depth": "1.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:21",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "haberman-survival",
|
||||||
|
"accuracy": "0.735637",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.0171611",
|
||||||
|
"time_spent_std": "0.00334945",
|
||||||
|
"accuracy_std": "0.0434614",
|
||||||
|
"nodes": "23.4",
|
||||||
|
"leaves": "12.2",
|
||||||
|
"depth": "5.98"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:21",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "heart-hungarian",
|
||||||
|
"accuracy": "0.827522",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00493946",
|
||||||
|
"time_spent_std": "0.000738198",
|
||||||
|
"accuracy_std": "0.0505283",
|
||||||
|
"nodes": "10.16",
|
||||||
|
"leaves": "5.58",
|
||||||
|
"depth": "4.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:21",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "hepatitis",
|
||||||
|
"accuracy": "0.824516",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.0021534",
|
||||||
|
"time_spent_std": "0.000133715",
|
||||||
|
"accuracy_std": "0.0738872",
|
||||||
|
"nodes": "3.0",
|
||||||
|
"leaves": "2.0",
|
||||||
|
"depth": "2.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:23",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "ilpd-indian-liver",
|
||||||
|
"accuracy": "0.723498",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.0345243",
|
||||||
|
"time_spent_std": "0.015789",
|
||||||
|
"accuracy_std": "0.0384886",
|
||||||
|
"nodes": "16.04",
|
||||||
|
"leaves": "8.52",
|
||||||
|
"depth": "5.28"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:24",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "ionosphere",
|
||||||
|
"accuracy": "0.953276",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00881722",
|
||||||
|
"time_spent_std": "0.000843108",
|
||||||
|
"accuracy_std": "0.0238537",
|
||||||
|
"nodes": "3.16",
|
||||||
|
"leaves": "2.08",
|
||||||
|
"depth": "2.08"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:24",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "iris",
|
||||||
|
"accuracy": "0.965333",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.00357342",
|
||||||
|
"time_spent_std": "0.000400509",
|
||||||
|
"accuracy_std": "0.0319444",
|
||||||
|
"nodes": "5.0",
|
||||||
|
"leaves": "3.0",
|
||||||
|
"depth": "3.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:50:36",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "led-display",
|
||||||
|
"accuracy": "0.703",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.222106",
|
||||||
|
"time_spent_std": "0.0116922",
|
||||||
|
"accuracy_std": "0.0291204",
|
||||||
|
"nodes": "47.16",
|
||||||
|
"leaves": "24.08",
|
||||||
|
"depth": "17.76"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:51:18",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "libras",
|
||||||
|
"accuracy": "0.788611",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.08, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.841714",
|
||||||
|
"time_spent_std": "0.0830966",
|
||||||
|
"accuracy_std": "0.0516913",
|
||||||
|
"nodes": "82.28",
|
||||||
|
"leaves": "41.64",
|
||||||
|
"depth": "28.84"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:51:41",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "low-res-spect",
|
||||||
|
"accuracy": "0.883782",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.446301",
|
||||||
|
"time_spent_std": "0.0411822",
|
||||||
|
"accuracy_std": "0.0324593",
|
||||||
|
"nodes": "27.4",
|
||||||
|
"leaves": "14.2",
|
||||||
|
"depth": "10.74"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:51:41",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "lymphography",
|
||||||
|
"accuracy": "0.835034",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00539465",
|
||||||
|
"time_spent_std": "0.000754365",
|
||||||
|
"accuracy_std": "0.0590649",
|
||||||
|
"nodes": "9.04",
|
||||||
|
"leaves": "5.02",
|
||||||
|
"depth": "4.48"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:51:43",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "mammographic",
|
||||||
|
"accuracy": "0.81915",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.0227931",
|
||||||
|
"time_spent_std": "0.00328533",
|
||||||
|
"accuracy_std": "0.0222517",
|
||||||
|
"nodes": "7.4",
|
||||||
|
"leaves": "4.2",
|
||||||
|
"depth": "4.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:51:43",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "molec-biol-promoter",
|
||||||
|
"accuracy": "0.767056",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00130273",
|
||||||
|
"time_spent_std": "0.000105772",
|
||||||
|
"accuracy_std": "0.0910923",
|
||||||
|
"nodes": "3.0",
|
||||||
|
"leaves": "2.0",
|
||||||
|
"depth": "2.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:51:44",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "musk-1",
|
||||||
|
"accuracy": "0.916388",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.0116367",
|
||||||
|
"time_spent_std": "0.000331845",
|
||||||
|
"accuracy_std": "0.0275208",
|
||||||
|
"nodes": "3.0",
|
||||||
|
"leaves": "2.0",
|
||||||
|
"depth": "2.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:51:55",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "oocytes_merluccius_nucleus_4d",
|
||||||
|
"accuracy": "0.835125",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 8.25, \"gamma\": 0.1, \"kernel\": \"poly\"}",
|
||||||
|
"time_spent": "0.208895",
|
||||||
|
"time_spent_std": "0.0270573",
|
||||||
|
"accuracy_std": "0.0220961",
|
||||||
|
"nodes": "10.52",
|
||||||
|
"leaves": "5.76",
|
||||||
|
"depth": "4.42"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:04",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "oocytes_merluccius_states_2f",
|
||||||
|
"accuracy": "0.915365",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.182198",
|
||||||
|
"time_spent_std": "0.0294267",
|
||||||
|
"accuracy_std": "0.020396",
|
||||||
|
"nodes": "18.04",
|
||||||
|
"leaves": "9.52",
|
||||||
|
"depth": "5.3"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:41",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "oocytes_trisopterus_nucleus_2f",
|
||||||
|
"accuracy": "0.800986",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.717113",
|
||||||
|
"time_spent_std": "0.209608",
|
||||||
|
"accuracy_std": "0.0218449",
|
||||||
|
"nodes": "29.88",
|
||||||
|
"leaves": "15.44",
|
||||||
|
"depth": "7.38"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:44",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "oocytes_trisopterus_states_5b",
|
||||||
|
"accuracy": "0.922249",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.11, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.0545047",
|
||||||
|
"time_spent_std": "0.00853014",
|
||||||
|
"accuracy_std": "0.0179203",
|
||||||
|
"nodes": "7.44",
|
||||||
|
"leaves": "4.22",
|
||||||
|
"depth": "3.6"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:44",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "parkinsons",
|
||||||
|
"accuracy": "0.882051",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.00795048",
|
||||||
|
"time_spent_std": "0.00176761",
|
||||||
|
"accuracy_std": "0.0478327",
|
||||||
|
"nodes": "8.48",
|
||||||
|
"leaves": "4.74",
|
||||||
|
"depth": "3.76"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:48",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "pima",
|
||||||
|
"accuracy": "0.766651",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.0750048",
|
||||||
|
"time_spent_std": "0.0213995",
|
||||||
|
"accuracy_std": "0.0297203",
|
||||||
|
"nodes": "17.4",
|
||||||
|
"leaves": "9.2",
|
||||||
|
"depth": "5.66"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:48",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "pittsburg-bridges-MATERIAL",
|
||||||
|
"accuracy": "0.867749",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00293318",
|
||||||
|
"time_spent_std": "0.000331469",
|
||||||
|
"accuracy_std": "0.0712226",
|
||||||
|
"nodes": "5.16",
|
||||||
|
"leaves": "3.08",
|
||||||
|
"depth": "3.02"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:49",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "pittsburg-bridges-REL-L",
|
||||||
|
"accuracy": "0.632238",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.0136311",
|
||||||
|
"time_spent_std": "0.00322964",
|
||||||
|
"accuracy_std": "0.101211",
|
||||||
|
"nodes": "16.32",
|
||||||
|
"leaves": "8.66",
|
||||||
|
"depth": "5.96"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:50",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "pittsburg-bridges-SPAN",
|
||||||
|
"accuracy": "0.659766",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00524256",
|
||||||
|
"time_spent_std": "0.00158822",
|
||||||
|
"accuracy_std": "0.1165",
|
||||||
|
"nodes": "9.84",
|
||||||
|
"leaves": "5.42",
|
||||||
|
"depth": "4.58"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:50",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "pittsburg-bridges-T-OR-D",
|
||||||
|
"accuracy": "0.861619",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.00295627",
|
||||||
|
"time_spent_std": "0.000578594",
|
||||||
|
"accuracy_std": "0.0693747",
|
||||||
|
"nodes": "4.56",
|
||||||
|
"leaves": "2.78",
|
||||||
|
"depth": "2.68"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:50",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "planning",
|
||||||
|
"accuracy": "0.73527",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 7, \"gamma\": 10.0, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.0030475",
|
||||||
|
"time_spent_std": "0.000172266",
|
||||||
|
"accuracy_std": "0.0669776",
|
||||||
|
"nodes": "3.0",
|
||||||
|
"leaves": "2.0",
|
||||||
|
"depth": "2.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:51",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "post-operative",
|
||||||
|
"accuracy": "0.711111",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 55, \"degree\": 5, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.0018727",
|
||||||
|
"time_spent_std": "0.000481977",
|
||||||
|
"accuracy_std": "0.0753592",
|
||||||
|
"nodes": "2.64",
|
||||||
|
"leaves": "1.82",
|
||||||
|
"depth": "1.82"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:52",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "seeds",
|
||||||
|
"accuracy": "0.952857",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 10000.0, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.0203492",
|
||||||
|
"time_spent_std": "0.00518065",
|
||||||
|
"accuracy_std": "0.0279658",
|
||||||
|
"nodes": "9.88",
|
||||||
|
"leaves": "5.44",
|
||||||
|
"depth": "4.44"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:52:52",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "statlog-australian-credit",
|
||||||
|
"accuracy": "0.678261",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00205337",
|
||||||
|
"time_spent_std": "0.00083162",
|
||||||
|
"accuracy_std": "0.0390498",
|
||||||
|
"nodes": "1.32",
|
||||||
|
"leaves": "1.16",
|
||||||
|
"depth": "1.16"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:53:07",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "statlog-german-credit",
|
||||||
|
"accuracy": "0.7625",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.290754",
|
||||||
|
"time_spent_std": "0.0653152",
|
||||||
|
"accuracy_std": "0.0271892",
|
||||||
|
"nodes": "21.24",
|
||||||
|
"leaves": "11.12",
|
||||||
|
"depth": "6.18"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:53:09",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "statlog-heart",
|
||||||
|
"accuracy": "0.822963",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.0138923",
|
||||||
|
"time_spent_std": "0.00323664",
|
||||||
|
"accuracy_std": "0.044004",
|
||||||
|
"nodes": "14.56",
|
||||||
|
"leaves": "7.78",
|
||||||
|
"depth": "5.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:56:43",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "statlog-image",
|
||||||
|
"accuracy": "0.955931",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 7, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "4.27584",
|
||||||
|
"time_spent_std": "0.200362",
|
||||||
|
"accuracy_std": "0.00956073",
|
||||||
|
"nodes": "36.92",
|
||||||
|
"leaves": "18.96",
|
||||||
|
"depth": "10.8"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:56:57",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "statlog-vehicle",
|
||||||
|
"accuracy": "0.793028",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.278833",
|
||||||
|
"time_spent_std": "0.0392173",
|
||||||
|
"accuracy_std": "0.030104",
|
||||||
|
"nodes": "23.88",
|
||||||
|
"leaves": "12.44",
|
||||||
|
"depth": "7.06"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:57:07",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "synthetic-control",
|
||||||
|
"accuracy": "0.95",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.55, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.205184",
|
||||||
|
"time_spent_std": "0.040793",
|
||||||
|
"accuracy_std": "0.0253859",
|
||||||
|
"nodes": "12.48",
|
||||||
|
"leaves": "6.74",
|
||||||
|
"depth": "6.5"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:57:08",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "tic-tac-toe",
|
||||||
|
"accuracy": "0.984444",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.2, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.0123015",
|
||||||
|
"time_spent_std": "0.000423728",
|
||||||
|
"accuracy_std": "0.00838747",
|
||||||
|
"nodes": "3.0",
|
||||||
|
"leaves": "2.0",
|
||||||
|
"depth": "2.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:57:09",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "vertebral-column-2clases",
|
||||||
|
"accuracy": "0.852903",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{}",
|
||||||
|
"time_spent": "0.00576833",
|
||||||
|
"time_spent_std": "0.000910332",
|
||||||
|
"accuracy_std": "0.0408851",
|
||||||
|
"nodes": "6.04",
|
||||||
|
"leaves": "3.52",
|
||||||
|
"depth": "3.34"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:57:09",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "wine",
|
||||||
|
"accuracy": "0.979159",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.55, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.0019741",
|
||||||
|
"time_spent_std": "0.000137745",
|
||||||
|
"accuracy_std": "0.022427",
|
||||||
|
"nodes": "5.0",
|
||||||
|
"leaves": "3.0",
|
||||||
|
"depth": "3.0"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"date": "2021-04-11",
|
||||||
|
"time": "18:57:10",
|
||||||
|
"type": "crossval",
|
||||||
|
"classifier": "stree",
|
||||||
|
"dataset": "zoo",
|
||||||
|
"accuracy": "0.957524",
|
||||||
|
"norm": 1,
|
||||||
|
"stand": 0,
|
||||||
|
"parameters": "{\"C\": 0.1, \"max_iter\": 10000.0}",
|
||||||
|
"time_spent": "0.00556221",
|
||||||
|
"time_spent_std": "0.000230106",
|
||||||
|
"accuracy_std": "0.0454615",
|
||||||
|
"nodes": "13.04",
|
||||||
|
"leaves": "7.02",
|
||||||
|
"depth": "7.02"
|
||||||
|
}
|
||||||
|
]
|
Reference in New Issue
Block a user