Compare commits
16 Commits
AnDE
...
b0bd0e6eee
Author | SHA1 | Date | |
---|---|---|---|
b0bd0e6eee
|
|||
d43be27821
|
|||
a2853dd2e5
|
|||
0341bd5648
|
|||
22b742f068
|
|||
2584e8294d
|
|||
291ba0fb0e
|
|||
80043d5181
|
|||
677ec5613d
|
|||
cccaa6e0af
|
|||
2e3e0e0fc2
|
|||
8784a24898
|
|||
54496c68f1
|
|||
1f236a70db
|
|||
ef3c74633c
|
|||
7efd95095c |
4
.gitignore
vendored
4
.gitignore
vendored
@@ -40,4 +40,8 @@ puml/**
|
|||||||
.vscode/settings.json
|
.vscode/settings.json
|
||||||
sample/build
|
sample/build
|
||||||
**/.DS_Store
|
**/.DS_Store
|
||||||
|
docs/manual
|
||||||
|
docs/man3
|
||||||
|
docs/man
|
||||||
|
docs/Doxyfile
|
||||||
|
|
||||||
|
3
.gitmodules
vendored
3
.gitmodules
vendored
@@ -18,3 +18,6 @@
|
|||||||
url = https://github.com/catchorg/Catch2.git
|
url = https://github.com/catchorg/Catch2.git
|
||||||
main = main
|
main = main
|
||||||
update = merge
|
update = merge
|
||||||
|
[submodule "tests/lib/Files"]
|
||||||
|
path = tests/lib/Files
|
||||||
|
url = https://github.com/rmontanana/ArffFiles
|
||||||
|
@@ -25,8 +25,11 @@ set(CMAKE_CXX_EXTENSIONS OFF)
|
|||||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -fno-elide-constructors -fno-default-inline")
|
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -fno-elide-constructors")
|
||||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
|
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
|
||||||
|
if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||||
|
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
|
||||||
|
endif()
|
||||||
|
|
||||||
# Options
|
# Options
|
||||||
# -------
|
# -------
|
||||||
@@ -63,7 +66,6 @@ endif (ENABLE_CLANG_TIDY)
|
|||||||
# include(FetchContent)
|
# include(FetchContent)
|
||||||
add_git_submodule("lib/json")
|
add_git_submodule("lib/json")
|
||||||
add_git_submodule("lib/mdlp")
|
add_git_submodule("lib/mdlp")
|
||||||
add_subdirectory("lib/Files")
|
|
||||||
|
|
||||||
# Subdirectories
|
# Subdirectories
|
||||||
# --------------
|
# --------------
|
||||||
@@ -86,4 +88,15 @@ install(TARGETS BayesNet
|
|||||||
LIBRARY DESTINATION lib
|
LIBRARY DESTINATION lib
|
||||||
CONFIGURATIONS Release)
|
CONFIGURATIONS Release)
|
||||||
install(DIRECTORY bayesnet/ DESTINATION include/bayesnet FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h")
|
install(DIRECTORY bayesnet/ DESTINATION include/bayesnet FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h")
|
||||||
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DESTINATION include/bayesnet CONFIGURATIONS Release)
|
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DESTINATION include/bayesnet CONFIGURATIONS Release)
|
||||||
|
|
||||||
|
# Documentation
|
||||||
|
# -------------
|
||||||
|
find_package(Doxygen REQUIRED dot)
|
||||||
|
set(DOC_DIR ${CMAKE_CURRENT_SOURCE_DIR}/docs)
|
||||||
|
set(doxyfile_in ${DOC_DIR}/Doxyfile.in)
|
||||||
|
set(doxyfile ${DOC_DIR}/Doxyfile)
|
||||||
|
configure_file(${doxyfile_in} ${doxyfile} @ONLY)
|
||||||
|
doxygen_add_docs(doxygen
|
||||||
|
WORKING_DIRECTORY ${DOC_DIR}
|
||||||
|
CONFIG_FILE ${doxyfile})
|
||||||
|
7
Makefile
7
Makefile
@@ -1,6 +1,6 @@
|
|||||||
SHELL := /bin/bash
|
SHELL := /bin/bash
|
||||||
.DEFAULT_GOAL := help
|
.DEFAULT_GOAL := help
|
||||||
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge
|
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge doc
|
||||||
|
|
||||||
f_release = build_Release
|
f_release = build_Release
|
||||||
f_debug = build_Debug
|
f_debug = build_Debug
|
||||||
@@ -145,6 +145,11 @@ updatebadge: ## Update the coverage badge in README.md
|
|||||||
@env python update_coverage.py $(f_debug)/tests
|
@env python update_coverage.py $(f_debug)/tests
|
||||||
@echo ">>> Done";
|
@echo ">>> Done";
|
||||||
|
|
||||||
|
doc: ## Generate documentation
|
||||||
|
@echo ">>> Generating documentation..."
|
||||||
|
@cmake --build $(f_release) -t doxygen
|
||||||
|
@echo ">>> Done";
|
||||||
|
|
||||||
help: ## Show help message
|
help: ## Show help message
|
||||||
@IFS=$$'\n' ; \
|
@IFS=$$'\n' ; \
|
||||||
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
||||||
|
@@ -1,6 +1,5 @@
|
|||||||
include_directories(
|
include_directories(
|
||||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||||
${BayesNet_SOURCE_DIR}/lib/Files
|
|
||||||
${BayesNet_SOURCE_DIR}/lib/folding
|
${BayesNet_SOURCE_DIR}/lib/folding
|
||||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||||
${BayesNet_SOURCE_DIR}
|
${BayesNet_SOURCE_DIR}
|
||||||
|
@@ -4,7 +4,6 @@
|
|||||||
// SPDX-License-Identifier: MIT
|
// SPDX-License-Identifier: MIT
|
||||||
// ***************************************************************
|
// ***************************************************************
|
||||||
|
|
||||||
#include <ArffFiles.h>
|
|
||||||
#include "Proposal.h"
|
#include "Proposal.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
@@ -54,8 +53,7 @@ namespace bayesnet {
|
|||||||
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
|
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
auto arff = ArffFiles();
|
auto yxv = factorize(yJoinParents);
|
||||||
auto yxv = arff.factorize(yJoinParents);
|
|
||||||
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||||
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||||
discretizers[feature]->fit(xvf, yxv);
|
discretizers[feature]->fit(xvf, yxv);
|
||||||
@@ -113,4 +111,19 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return Xtd;
|
return Xtd;
|
||||||
}
|
}
|
||||||
|
std::vector<int> Proposal::factorize(const std::vector<std::string>& labels_t)
|
||||||
|
{
|
||||||
|
std::vector<int> yy;
|
||||||
|
yy.reserve(labels_t.size());
|
||||||
|
std::map<std::string, int> labelMap;
|
||||||
|
int i = 0;
|
||||||
|
for (const std::string& label : labels_t) {
|
||||||
|
if (labelMap.find(label) == labelMap.end()) {
|
||||||
|
labelMap[label] = i++;
|
||||||
|
bool allDigits = std::all_of(label.begin(), label.end(), ::isdigit);
|
||||||
|
}
|
||||||
|
yy.push_back(labelMap[label]);
|
||||||
|
}
|
||||||
|
return yy;
|
||||||
|
}
|
||||||
}
|
}
|
@@ -27,6 +27,7 @@ namespace bayesnet {
|
|||||||
torch::Tensor y; // y discrete nx1 tensor
|
torch::Tensor y; // y discrete nx1 tensor
|
||||||
map<std::string, mdlp::CPPFImdlp*> discretizers;
|
map<std::string, mdlp::CPPFImdlp*> discretizers;
|
||||||
private:
|
private:
|
||||||
|
std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||||
torch::Tensor& pDataset; // (n+1)xm tensor
|
torch::Tensor& pDataset; // (n+1)xm tensor
|
||||||
std::vector<std::string>& pFeatures;
|
std::vector<std::string>& pFeatures;
|
||||||
std::string& pClassName;
|
std::string& pClassName;
|
||||||
|
246
bayesnet/ensembles/Boost.cc
Normal file
246
bayesnet/ensembles/Boost.cc
Normal file
@@ -0,0 +1,246 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
#include <folding.hpp>
|
||||||
|
#include "bayesnet/feature_selection/CFS.h"
|
||||||
|
#include "bayesnet/feature_selection/FCBF.h"
|
||||||
|
#include "bayesnet/feature_selection/IWSS.h"
|
||||||
|
#include "Boost.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
Boost::Boost(bool predict_voting) : Ensemble(predict_voting)
|
||||||
|
{
|
||||||
|
validHyperparameters = { "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
||||||
|
"predict_voting", "select_features", "block_update" };
|
||||||
|
}
|
||||||
|
void Boost::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
|
if (hyperparameters.contains("order")) {
|
||||||
|
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
|
||||||
|
order_algorithm = hyperparameters["order"];
|
||||||
|
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||||||
|
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
|
||||||
|
}
|
||||||
|
hyperparameters.erase("order");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("convergence")) {
|
||||||
|
convergence = hyperparameters["convergence"];
|
||||||
|
hyperparameters.erase("convergence");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("convergence_best")) {
|
||||||
|
convergence_best = hyperparameters["convergence_best"];
|
||||||
|
hyperparameters.erase("convergence_best");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("bisection")) {
|
||||||
|
bisection = hyperparameters["bisection"];
|
||||||
|
hyperparameters.erase("bisection");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("threshold")) {
|
||||||
|
threshold = hyperparameters["threshold"];
|
||||||
|
hyperparameters.erase("threshold");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("maxTolerance")) {
|
||||||
|
maxTolerance = hyperparameters["maxTolerance"];
|
||||||
|
if (maxTolerance < 1 || maxTolerance > 4)
|
||||||
|
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
|
||||||
|
hyperparameters.erase("maxTolerance");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("predict_voting")) {
|
||||||
|
predict_voting = hyperparameters["predict_voting"];
|
||||||
|
hyperparameters.erase("predict_voting");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("select_features")) {
|
||||||
|
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||||
|
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
|
||||||
|
selectFeatures = true;
|
||||||
|
select_features_algorithm = selectedAlgorithm;
|
||||||
|
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||||
|
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||||||
|
}
|
||||||
|
hyperparameters.erase("select_features");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("block_update")) {
|
||||||
|
block_update = hyperparameters["block_update"];
|
||||||
|
hyperparameters.erase("block_update");
|
||||||
|
}
|
||||||
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
|
}
|
||||||
|
void Boost::buildModel(const torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
// Models shall be built in trainModel
|
||||||
|
models.clear();
|
||||||
|
significanceModels.clear();
|
||||||
|
n_models = 0;
|
||||||
|
// Prepare the validation dataset
|
||||||
|
auto y_ = dataset.index({ -1, "..." });
|
||||||
|
if (convergence) {
|
||||||
|
// Prepare train & validation sets from train data
|
||||||
|
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||||||
|
auto [train, test] = fold.getFold(0);
|
||||||
|
auto train_t = torch::tensor(train);
|
||||||
|
auto test_t = torch::tensor(test);
|
||||||
|
// Get train and validation sets
|
||||||
|
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||||
|
y_train = dataset.index({ -1, train_t });
|
||||||
|
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||||
|
y_test = dataset.index({ -1, test_t });
|
||||||
|
dataset = X_train;
|
||||||
|
m = X_train.size(1);
|
||||||
|
auto n_classes = states.at(className).size();
|
||||||
|
// Build dataset with train data
|
||||||
|
buildDataset(y_train);
|
||||||
|
metrics = Metrics(dataset, features, className, n_classes);
|
||||||
|
} else {
|
||||||
|
// Use all data to train
|
||||||
|
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||||
|
y_train = y_;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::vector<int> Boost::featureSelection(torch::Tensor& weights_)
|
||||||
|
{
|
||||||
|
int maxFeatures = 0;
|
||||||
|
if (select_features_algorithm == SelectFeatures.CFS) {
|
||||||
|
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||||
|
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
||||||
|
if (threshold < 0 || threshold >0.5) {
|
||||||
|
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
||||||
|
}
|
||||||
|
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||||
|
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
||||||
|
if (threshold < 1e-7 || threshold > 1) {
|
||||||
|
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
||||||
|
}
|
||||||
|
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||||
|
}
|
||||||
|
featureSelector->fit();
|
||||||
|
auto featuresUsed = featureSelector->getFeatures();
|
||||||
|
delete featureSelector;
|
||||||
|
return featuresUsed;
|
||||||
|
}
|
||||||
|
std::tuple<torch::Tensor&, double, bool> Boost::update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
bool terminate = false;
|
||||||
|
double alpha_t = 0;
|
||||||
|
auto mask_wrong = ypred != ytrain;
|
||||||
|
auto mask_right = ypred == ytrain;
|
||||||
|
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
||||||
|
double epsilon_t = masked_weights.sum().item<double>();
|
||||||
|
if (epsilon_t > 0.5) {
|
||||||
|
// Inverse the weights policy (plot ln(wt))
|
||||||
|
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||||||
|
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
||||||
|
terminate = true;
|
||||||
|
} else {
|
||||||
|
double wt = (1 - epsilon_t) / epsilon_t;
|
||||||
|
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||||
|
// Step 3.2: Update weights for next classifier
|
||||||
|
// Step 3.2.1: Update weights of wrong samples
|
||||||
|
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
||||||
|
// Step 3.2.2: Update weights of right samples
|
||||||
|
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
||||||
|
// Step 3.3: Normalise the weights
|
||||||
|
double totalWeights = torch::sum(weights).item<double>();
|
||||||
|
weights = weights / totalWeights;
|
||||||
|
}
|
||||||
|
return { weights, alpha_t, terminate };
|
||||||
|
}
|
||||||
|
std::tuple<torch::Tensor&, double, bool> Boost::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
/* Update Block algorithm
|
||||||
|
k = # of models in block
|
||||||
|
n_models = # of models in ensemble to make predictions
|
||||||
|
n_models_bak = # models saved
|
||||||
|
models = vector of models to make predictions
|
||||||
|
models_bak = models not used to make predictions
|
||||||
|
significances_bak = backup of significances vector
|
||||||
|
|
||||||
|
Case list
|
||||||
|
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
||||||
|
B) k = 1, n_models = n + 1 => n_models = n + k
|
||||||
|
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
||||||
|
D) k > 1, n_models = k => n = 0, n_models = n + k
|
||||||
|
E) k > 1, n_models = k + n => n_models = n + k
|
||||||
|
|
||||||
|
A, D) n=0, k > 0, n_models == k
|
||||||
|
1. n_models_bak <- n_models
|
||||||
|
2. significances_bak <- significances
|
||||||
|
3. significances = vector(k, 1)
|
||||||
|
4. Don’t move any classifiers out of models
|
||||||
|
5. n_models <- k
|
||||||
|
6. Make prediction, compute alpha, update weights
|
||||||
|
7. Don’t restore any classifiers to models
|
||||||
|
8. significances <- significances_bak
|
||||||
|
9. Update last k significances
|
||||||
|
10. n_models <- n_models_bak
|
||||||
|
|
||||||
|
B, C, E) n > 0, k > 0, n_models == n + k
|
||||||
|
1. n_models_bak <- n_models
|
||||||
|
2. significances_bak <- significances
|
||||||
|
3. significances = vector(k, 1)
|
||||||
|
4. Move first n classifiers to models_bak
|
||||||
|
5. n_models <- k
|
||||||
|
6. Make prediction, compute alpha, update weights
|
||||||
|
7. Insert classifiers in models_bak to be the first n models
|
||||||
|
8. significances <- significances_bak
|
||||||
|
9. Update last k significances
|
||||||
|
10. n_models <- n_models_bak
|
||||||
|
*/
|
||||||
|
//
|
||||||
|
// Make predict with only the last k models
|
||||||
|
//
|
||||||
|
std::unique_ptr<Classifier> model;
|
||||||
|
std::vector<std::unique_ptr<Classifier>> models_bak;
|
||||||
|
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
||||||
|
auto significance_bak = significanceModels;
|
||||||
|
auto n_models_bak = n_models;
|
||||||
|
// 3. significances = vector(k, 1)
|
||||||
|
significanceModels = std::vector<double>(k, 1.0);
|
||||||
|
// 4. Move first n classifiers to models_bak
|
||||||
|
// backup the first n_models - k models (if n_models == k, don't backup any)
|
||||||
|
for (int i = 0; i < n_models - k; ++i) {
|
||||||
|
model = std::move(models[0]);
|
||||||
|
models.erase(models.begin());
|
||||||
|
models_bak.push_back(std::move(model));
|
||||||
|
}
|
||||||
|
assert(models.size() == k);
|
||||||
|
// 5. n_models <- k
|
||||||
|
n_models = k;
|
||||||
|
// 6. Make prediction, compute alpha, update weights
|
||||||
|
auto ypred = predict(X_train);
|
||||||
|
//
|
||||||
|
// Update weights
|
||||||
|
//
|
||||||
|
double alpha_t;
|
||||||
|
bool terminate;
|
||||||
|
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
||||||
|
//
|
||||||
|
// Restore the models if needed
|
||||||
|
//
|
||||||
|
// 7. Insert classifiers in models_bak to be the first n models
|
||||||
|
// if n_models_bak == k, don't restore any, because none of them were moved
|
||||||
|
if (k != n_models_bak) {
|
||||||
|
// Insert in the same order as they were extracted
|
||||||
|
int bak_size = models_bak.size();
|
||||||
|
for (int i = 0; i < bak_size; ++i) {
|
||||||
|
model = std::move(models_bak[bak_size - 1 - i]);
|
||||||
|
models_bak.erase(models_bak.end() - 1);
|
||||||
|
models.insert(models.begin(), std::move(model));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// 8. significances <- significances_bak
|
||||||
|
significanceModels = significance_bak;
|
||||||
|
//
|
||||||
|
// Update the significance of the last k models
|
||||||
|
//
|
||||||
|
// 9. Update last k significances
|
||||||
|
for (int i = 0; i < k; ++i) {
|
||||||
|
significanceModels[n_models_bak - k + i] = alpha_t;
|
||||||
|
}
|
||||||
|
// 10. n_models <- n_models_bak
|
||||||
|
n_models = n_models_bak;
|
||||||
|
return { weights, alpha_t, terminate };
|
||||||
|
}
|
||||||
|
}
|
52
bayesnet/ensembles/Boost.h
Normal file
52
bayesnet/ensembles/Boost.h
Normal file
@@ -0,0 +1,52 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef BOOST_H
|
||||||
|
#define BOOST_H
|
||||||
|
#include <string>
|
||||||
|
#include <tuple>
|
||||||
|
#include <vector>
|
||||||
|
#include <nlohmann/json.hpp>
|
||||||
|
#include <torch/torch.h>
|
||||||
|
#include "Ensemble.h"
|
||||||
|
#include "bayesnet/feature_selection/FeatureSelect.h"
|
||||||
|
namespace bayesnet {
|
||||||
|
const struct {
|
||||||
|
std::string CFS = "CFS";
|
||||||
|
std::string FCBF = "FCBF";
|
||||||
|
std::string IWSS = "IWSS";
|
||||||
|
}SelectFeatures;
|
||||||
|
const struct {
|
||||||
|
std::string ASC = "asc";
|
||||||
|
std::string DESC = "desc";
|
||||||
|
std::string RAND = "rand";
|
||||||
|
}Orders;
|
||||||
|
class Boost : public Ensemble {
|
||||||
|
public:
|
||||||
|
explicit Boost(bool predict_voting = false);
|
||||||
|
virtual ~Boost() = default;
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||||
|
protected:
|
||||||
|
std::vector<int> featureSelection(torch::Tensor& weights_);
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights);
|
||||||
|
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
|
||||||
|
torch::Tensor X_train, y_train, X_test, y_test;
|
||||||
|
// Hyperparameters
|
||||||
|
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
||||||
|
int maxTolerance = 3;
|
||||||
|
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
||||||
|
bool convergence = true; //if true, stop when the model does not improve
|
||||||
|
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
|
||||||
|
bool selectFeatures = false; // if true, use feature selection
|
||||||
|
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||||
|
FeatureSelect* featureSelector = nullptr;
|
||||||
|
double threshold = -1;
|
||||||
|
bool block_update = false;
|
||||||
|
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
167
bayesnet/ensembles/BoostA2DE.cc
Normal file
167
bayesnet/ensembles/BoostA2DE.cc
Normal file
@@ -0,0 +1,167 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include <set>
|
||||||
|
#include <functional>
|
||||||
|
#include <limits.h>
|
||||||
|
#include <tuple>
|
||||||
|
#include <folding.hpp>
|
||||||
|
#include "bayesnet/feature_selection/CFS.h"
|
||||||
|
#include "bayesnet/feature_selection/FCBF.h"
|
||||||
|
#include "bayesnet/feature_selection/IWSS.h"
|
||||||
|
#include "BoostA2DE.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
|
||||||
|
BoostA2DE::BoostA2DE(bool predict_voting) : Boost(predict_voting)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
std::vector<int> BoostA2DE::initializeModels()
|
||||||
|
{
|
||||||
|
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||||
|
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||||
|
if (featuresSelected.size() < 2) {
|
||||||
|
notes.push_back("No features selected in initialization");
|
||||||
|
status = ERROR;
|
||||||
|
return std::vector<int>();
|
||||||
|
}
|
||||||
|
for (int i = 0; i < featuresSelected.size() - 1; i++) {
|
||||||
|
for (int j = i + 1; j < featuresSelected.size(); j++) {
|
||||||
|
auto parents = { featuresSelected[i], featuresSelected[j] };
|
||||||
|
std::unique_ptr<Classifier> model = std::make_unique<SPnDE>(parents);
|
||||||
|
model->fit(dataset, features, className, states, weights_);
|
||||||
|
models.push_back(std::move(model));
|
||||||
|
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||||
|
n_models++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||||
|
return featuresSelected;
|
||||||
|
}
|
||||||
|
void BoostA2DE::trainModel(const torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
//
|
||||||
|
// Logging setup
|
||||||
|
//
|
||||||
|
// loguru::set_thread_name("BoostA2DE");
|
||||||
|
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||||
|
// loguru::add_file("boostA2DE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||||
|
|
||||||
|
// Algorithm based on the adaboost algorithm for classification
|
||||||
|
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||||
|
fitted = true;
|
||||||
|
double alpha_t = 0;
|
||||||
|
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||||
|
bool finished = false;
|
||||||
|
std::vector<int> featuresUsed;
|
||||||
|
if (selectFeatures) {
|
||||||
|
featuresUsed = initializeModels();
|
||||||
|
auto ypred = predict(X_train);
|
||||||
|
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||||
|
// Update significance of the models
|
||||||
|
for (int i = 0; i < n_models; ++i) {
|
||||||
|
significanceModels[i] = alpha_t;
|
||||||
|
}
|
||||||
|
if (finished) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||||
|
// Variables to control the accuracy finish condition
|
||||||
|
double priorAccuracy = 0.0;
|
||||||
|
double improvement = 1.0;
|
||||||
|
double convergence_threshold = 1e-4;
|
||||||
|
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||||
|
// Step 0: Set the finish condition
|
||||||
|
// epsilon sub t > 0.5 => inverse the weights policy
|
||||||
|
// validation error is not decreasing
|
||||||
|
// run out of features
|
||||||
|
bool ascending = order_algorithm == Orders.ASC;
|
||||||
|
std::mt19937 g{ 173 };
|
||||||
|
std::vector<std::pair<int, int>> pairSelection;
|
||||||
|
while (!finished) {
|
||||||
|
// Step 1: Build ranking with mutual information
|
||||||
|
pairSelection = metrics.SelectKPairs(weights_, featuresUsed, ascending, 0); // Get all the pairs sorted
|
||||||
|
if (order_algorithm == Orders.RAND) {
|
||||||
|
std::shuffle(pairSelection.begin(), pairSelection.end(), g);
|
||||||
|
}
|
||||||
|
int k = bisection ? pow(2, tolerance) : 1;
|
||||||
|
int counter = 0; // The model counter of the current pack
|
||||||
|
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||||
|
while (counter++ < k && pairSelection.size() > 0) {
|
||||||
|
auto feature_pair = pairSelection[0];
|
||||||
|
pairSelection.erase(pairSelection.begin());
|
||||||
|
std::unique_ptr<Classifier> model;
|
||||||
|
model = std::make_unique<SPnDE>(std::vector<int>({ feature_pair.first, feature_pair.second }));
|
||||||
|
model->fit(dataset, features, className, states, weights_);
|
||||||
|
alpha_t = 0.0;
|
||||||
|
if (!block_update) {
|
||||||
|
auto ypred = model->predict(X_train);
|
||||||
|
// Step 3.1: Compute the classifier amout of say
|
||||||
|
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||||
|
}
|
||||||
|
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||||
|
numItemsPack++;
|
||||||
|
models.push_back(std::move(model));
|
||||||
|
significanceModels.push_back(alpha_t);
|
||||||
|
n_models++;
|
||||||
|
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||||
|
}
|
||||||
|
if (block_update) {
|
||||||
|
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||||
|
}
|
||||||
|
if (convergence && !finished) {
|
||||||
|
auto y_val_predict = predict(X_test);
|
||||||
|
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||||
|
if (priorAccuracy == 0) {
|
||||||
|
priorAccuracy = accuracy;
|
||||||
|
} else {
|
||||||
|
improvement = accuracy - priorAccuracy;
|
||||||
|
}
|
||||||
|
if (improvement < convergence_threshold) {
|
||||||
|
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||||
|
tolerance++;
|
||||||
|
} else {
|
||||||
|
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||||
|
tolerance = 0; // Reset the counter if the model performs better
|
||||||
|
numItemsPack = 0;
|
||||||
|
}
|
||||||
|
if (convergence_best) {
|
||||||
|
// Keep the best accuracy until now as the prior accuracy
|
||||||
|
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||||
|
} else {
|
||||||
|
// Keep the last accuray obtained as the prior accuracy
|
||||||
|
priorAccuracy = accuracy;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||||
|
finished = finished || tolerance > maxTolerance || pairSelection.size() == 0;
|
||||||
|
}
|
||||||
|
if (tolerance > maxTolerance) {
|
||||||
|
if (numItemsPack < n_models) {
|
||||||
|
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||||
|
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||||
|
for (int i = 0; i < numItemsPack; ++i) {
|
||||||
|
significanceModels.pop_back();
|
||||||
|
models.pop_back();
|
||||||
|
n_models--;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||||
|
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (pairSelection.size() > 0) {
|
||||||
|
notes.push_back("Pairs not used in train: " + std::to_string(pairSelection.size()));
|
||||||
|
status = WARNING;
|
||||||
|
}
|
||||||
|
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||||
|
}
|
||||||
|
std::vector<std::string> BoostA2DE::graph(const std::string& title) const
|
||||||
|
{
|
||||||
|
return Ensemble::graph(title);
|
||||||
|
}
|
||||||
|
}
|
25
bayesnet/ensembles/BoostA2DE.h
Normal file
25
bayesnet/ensembles/BoostA2DE.h
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef BOOSTA2DE_H
|
||||||
|
#define BOOSTA2DE_H
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include "bayesnet/classifiers/SPnDE.h"
|
||||||
|
#include "Boost.h"
|
||||||
|
namespace bayesnet {
|
||||||
|
class BoostA2DE : public Boost {
|
||||||
|
public:
|
||||||
|
explicit BoostA2DE(bool predict_voting = false);
|
||||||
|
virtual ~BoostA2DE() = default;
|
||||||
|
std::vector<std::string> graph(const std::string& title = "BoostA2DE") const override;
|
||||||
|
protected:
|
||||||
|
void trainModel(const torch::Tensor& weights) override;
|
||||||
|
private:
|
||||||
|
std::vector<int> initializeModels();
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
@@ -4,275 +4,40 @@
|
|||||||
// SPDX-License-Identifier: MIT
|
// SPDX-License-Identifier: MIT
|
||||||
// ***************************************************************
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include <random>
|
||||||
#include <set>
|
#include <set>
|
||||||
#include <functional>
|
#include <functional>
|
||||||
#include <limits.h>
|
#include <limits.h>
|
||||||
#include <tuple>
|
#include <tuple>
|
||||||
#include <folding.hpp>
|
|
||||||
#include "bayesnet/feature_selection/CFS.h"
|
|
||||||
#include "bayesnet/feature_selection/FCBF.h"
|
|
||||||
#include "bayesnet/feature_selection/IWSS.h"
|
|
||||||
#include "BoostAODE.h"
|
#include "BoostAODE.h"
|
||||||
#include "lib/log/loguru.cpp"
|
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
|
|
||||||
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
|
BoostAODE::BoostAODE(bool predict_voting) : Boost(predict_voting)
|
||||||
{
|
{
|
||||||
validHyperparameters = {
|
|
||||||
"maxModels", "bisection", "order", "convergence", "convergence_best", "threshold",
|
|
||||||
"select_features", "maxTolerance", "predict_voting", "block_update"
|
|
||||||
};
|
|
||||||
|
|
||||||
}
|
|
||||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
|
||||||
{
|
|
||||||
// Models shall be built in trainModel
|
|
||||||
models.clear();
|
|
||||||
significanceModels.clear();
|
|
||||||
n_models = 0;
|
|
||||||
// Prepare the validation dataset
|
|
||||||
auto y_ = dataset.index({ -1, "..." });
|
|
||||||
if (convergence) {
|
|
||||||
// Prepare train & validation sets from train data
|
|
||||||
auto fold = folding::StratifiedKFold(5, y_, 271);
|
|
||||||
auto [train, test] = fold.getFold(0);
|
|
||||||
auto train_t = torch::tensor(train);
|
|
||||||
auto test_t = torch::tensor(test);
|
|
||||||
// Get train and validation sets
|
|
||||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
|
||||||
y_train = dataset.index({ -1, train_t });
|
|
||||||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
|
||||||
y_test = dataset.index({ -1, test_t });
|
|
||||||
dataset = X_train;
|
|
||||||
m = X_train.size(1);
|
|
||||||
auto n_classes = states.at(className).size();
|
|
||||||
// Build dataset with train data
|
|
||||||
buildDataset(y_train);
|
|
||||||
metrics = Metrics(dataset, features, className, n_classes);
|
|
||||||
} else {
|
|
||||||
// Use all data to train
|
|
||||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
|
||||||
y_train = y_;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
|
||||||
{
|
|
||||||
auto hyperparameters = hyperparameters_;
|
|
||||||
if (hyperparameters.contains("order")) {
|
|
||||||
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
|
|
||||||
order_algorithm = hyperparameters["order"];
|
|
||||||
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
|
||||||
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
|
|
||||||
}
|
|
||||||
hyperparameters.erase("order");
|
|
||||||
}
|
|
||||||
if (hyperparameters.contains("convergence")) {
|
|
||||||
convergence = hyperparameters["convergence"];
|
|
||||||
hyperparameters.erase("convergence");
|
|
||||||
}
|
|
||||||
if (hyperparameters.contains("convergence_best")) {
|
|
||||||
convergence_best = hyperparameters["convergence_best"];
|
|
||||||
hyperparameters.erase("convergence_best");
|
|
||||||
}
|
|
||||||
if (hyperparameters.contains("bisection")) {
|
|
||||||
bisection = hyperparameters["bisection"];
|
|
||||||
hyperparameters.erase("bisection");
|
|
||||||
}
|
|
||||||
if (hyperparameters.contains("threshold")) {
|
|
||||||
threshold = hyperparameters["threshold"];
|
|
||||||
hyperparameters.erase("threshold");
|
|
||||||
}
|
|
||||||
if (hyperparameters.contains("maxTolerance")) {
|
|
||||||
maxTolerance = hyperparameters["maxTolerance"];
|
|
||||||
if (maxTolerance < 1 || maxTolerance > 4)
|
|
||||||
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
|
|
||||||
hyperparameters.erase("maxTolerance");
|
|
||||||
}
|
|
||||||
if (hyperparameters.contains("predict_voting")) {
|
|
||||||
predict_voting = hyperparameters["predict_voting"];
|
|
||||||
hyperparameters.erase("predict_voting");
|
|
||||||
}
|
|
||||||
if (hyperparameters.contains("select_features")) {
|
|
||||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
|
||||||
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
|
|
||||||
selectFeatures = true;
|
|
||||||
select_features_algorithm = selectedAlgorithm;
|
|
||||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
|
||||||
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
|
||||||
}
|
|
||||||
hyperparameters.erase("select_features");
|
|
||||||
}
|
|
||||||
if (hyperparameters.contains("block_update")) {
|
|
||||||
block_update = hyperparameters["block_update"];
|
|
||||||
hyperparameters.erase("block_update");
|
|
||||||
}
|
|
||||||
Classifier::setHyperparameters(hyperparameters);
|
|
||||||
}
|
|
||||||
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
|
||||||
{
|
|
||||||
bool terminate = false;
|
|
||||||
double alpha_t = 0;
|
|
||||||
auto mask_wrong = ypred != ytrain;
|
|
||||||
auto mask_right = ypred == ytrain;
|
|
||||||
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
|
||||||
double epsilon_t = masked_weights.sum().item<double>();
|
|
||||||
if (epsilon_t > 0.5) {
|
|
||||||
// Inverse the weights policy (plot ln(wt))
|
|
||||||
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
|
||||||
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
|
||||||
terminate = true;
|
|
||||||
} else {
|
|
||||||
double wt = (1 - epsilon_t) / epsilon_t;
|
|
||||||
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
|
||||||
// Step 3.2: Update weights for next classifier
|
|
||||||
// Step 3.2.1: Update weights of wrong samples
|
|
||||||
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
|
||||||
// Step 3.2.2: Update weights of right samples
|
|
||||||
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
|
||||||
// Step 3.3: Normalise the weights
|
|
||||||
double totalWeights = torch::sum(weights).item<double>();
|
|
||||||
weights = weights / totalWeights;
|
|
||||||
}
|
|
||||||
return { weights, alpha_t, terminate };
|
|
||||||
}
|
|
||||||
std::tuple<torch::Tensor&, double, bool> BoostAODE::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
|
|
||||||
{
|
|
||||||
/* Update Block algorithm
|
|
||||||
k = # of models in block
|
|
||||||
n_models = # of models in ensemble to make predictions
|
|
||||||
n_models_bak = # models saved
|
|
||||||
models = vector of models to make predictions
|
|
||||||
models_bak = models not used to make predictions
|
|
||||||
significances_bak = backup of significances vector
|
|
||||||
|
|
||||||
Case list
|
|
||||||
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
|
||||||
B) k = 1, n_models = n + 1 => n_models = n + k
|
|
||||||
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
|
||||||
D) k > 1, n_models = k => n = 0, n_models = n + k
|
|
||||||
E) k > 1, n_models = k + n => n_models = n + k
|
|
||||||
|
|
||||||
A, D) n=0, k > 0, n_models == k
|
|
||||||
1. n_models_bak <- n_models
|
|
||||||
2. significances_bak <- significances
|
|
||||||
3. significances = vector(k, 1)
|
|
||||||
4. Don’t move any classifiers out of models
|
|
||||||
5. n_models <- k
|
|
||||||
6. Make prediction, compute alpha, update weights
|
|
||||||
7. Don’t restore any classifiers to models
|
|
||||||
8. significances <- significances_bak
|
|
||||||
9. Update last k significances
|
|
||||||
10. n_models <- n_models_bak
|
|
||||||
|
|
||||||
B, C, E) n > 0, k > 0, n_models == n + k
|
|
||||||
1. n_models_bak <- n_models
|
|
||||||
2. significances_bak <- significances
|
|
||||||
3. significances = vector(k, 1)
|
|
||||||
4. Move first n classifiers to models_bak
|
|
||||||
5. n_models <- k
|
|
||||||
6. Make prediction, compute alpha, update weights
|
|
||||||
7. Insert classifiers in models_bak to be the first n models
|
|
||||||
8. significances <- significances_bak
|
|
||||||
9. Update last k significances
|
|
||||||
10. n_models <- n_models_bak
|
|
||||||
*/
|
|
||||||
//
|
|
||||||
// Make predict with only the last k models
|
|
||||||
//
|
|
||||||
std::unique_ptr<Classifier> model;
|
|
||||||
std::vector<std::unique_ptr<Classifier>> models_bak;
|
|
||||||
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
|
||||||
auto significance_bak = significanceModels;
|
|
||||||
auto n_models_bak = n_models;
|
|
||||||
// 3. significances = vector(k, 1)
|
|
||||||
significanceModels = std::vector<double>(k, 1.0);
|
|
||||||
// 4. Move first n classifiers to models_bak
|
|
||||||
// backup the first n_models - k models (if n_models == k, don't backup any)
|
|
||||||
for (int i = 0; i < n_models - k; ++i) {
|
|
||||||
model = std::move(models[0]);
|
|
||||||
models.erase(models.begin());
|
|
||||||
models_bak.push_back(std::move(model));
|
|
||||||
}
|
|
||||||
assert(models.size() == k);
|
|
||||||
// 5. n_models <- k
|
|
||||||
n_models = k;
|
|
||||||
// 6. Make prediction, compute alpha, update weights
|
|
||||||
auto ypred = predict(X_train);
|
|
||||||
//
|
|
||||||
// Update weights
|
|
||||||
//
|
|
||||||
double alpha_t;
|
|
||||||
bool terminate;
|
|
||||||
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
|
||||||
//
|
|
||||||
// Restore the models if needed
|
|
||||||
//
|
|
||||||
// 7. Insert classifiers in models_bak to be the first n models
|
|
||||||
// if n_models_bak == k, don't restore any, because none of them were moved
|
|
||||||
if (k != n_models_bak) {
|
|
||||||
// Insert in the same order as they were extracted
|
|
||||||
int bak_size = models_bak.size();
|
|
||||||
for (int i = 0; i < bak_size; ++i) {
|
|
||||||
model = std::move(models_bak[bak_size - 1 - i]);
|
|
||||||
models_bak.erase(models_bak.end() - 1);
|
|
||||||
models.insert(models.begin(), std::move(model));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// 8. significances <- significances_bak
|
|
||||||
significanceModels = significance_bak;
|
|
||||||
//
|
|
||||||
// Update the significance of the last k models
|
|
||||||
//
|
|
||||||
// 9. Update last k significances
|
|
||||||
for (int i = 0; i < k; ++i) {
|
|
||||||
significanceModels[n_models_bak - k + i] = alpha_t;
|
|
||||||
}
|
|
||||||
// 10. n_models <- n_models_bak
|
|
||||||
n_models = n_models_bak;
|
|
||||||
return { weights, alpha_t, terminate };
|
|
||||||
}
|
}
|
||||||
std::vector<int> BoostAODE::initializeModels()
|
std::vector<int> BoostAODE::initializeModels()
|
||||||
{
|
{
|
||||||
std::vector<int> featuresUsed;
|
|
||||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||||
int maxFeatures = 0;
|
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||||
if (select_features_algorithm == SelectFeatures.CFS) {
|
for (const int& feature : featuresSelected) {
|
||||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
|
||||||
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
|
||||||
if (threshold < 0 || threshold >0.5) {
|
|
||||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
|
||||||
}
|
|
||||||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
|
||||||
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
|
||||||
if (threshold < 1e-7 || threshold > 1) {
|
|
||||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
|
||||||
}
|
|
||||||
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
|
||||||
}
|
|
||||||
featureSelector->fit();
|
|
||||||
auto cfsFeatures = featureSelector->getFeatures();
|
|
||||||
auto scores = featureSelector->getScores();
|
|
||||||
for (const int& feature : cfsFeatures) {
|
|
||||||
featuresUsed.push_back(feature);
|
|
||||||
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
||||||
model->fit(dataset, features, className, states, weights_);
|
model->fit(dataset, features, className, states, weights_);
|
||||||
models.push_back(std::move(model));
|
models.push_back(std::move(model));
|
||||||
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||||
n_models++;
|
n_models++;
|
||||||
}
|
}
|
||||||
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||||
delete featureSelector;
|
return featuresSelected;
|
||||||
return featuresUsed;
|
|
||||||
}
|
}
|
||||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
//
|
//
|
||||||
// Logging setup
|
// Logging setup
|
||||||
//
|
//
|
||||||
loguru::set_thread_name("BoostAODE");
|
// loguru::set_thread_name("BoostAODE");
|
||||||
loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||||
loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
// loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||||
|
|
||||||
// Algorithm based on the adaboost algorithm for classification
|
// Algorithm based on the adaboost algorithm for classification
|
||||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||||
@@ -318,7 +83,7 @@ namespace bayesnet {
|
|||||||
);
|
);
|
||||||
int k = bisection ? pow(2, tolerance) : 1;
|
int k = bisection ? pow(2, tolerance) : 1;
|
||||||
int counter = 0; // The model counter of the current pack
|
int counter = 0; // The model counter of the current pack
|
||||||
VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||||
while (counter++ < k && featureSelection.size() > 0) {
|
while (counter++ < k && featureSelection.size() > 0) {
|
||||||
auto feature = featureSelection[0];
|
auto feature = featureSelection[0];
|
||||||
featureSelection.erase(featureSelection.begin());
|
featureSelection.erase(featureSelection.begin());
|
||||||
@@ -337,7 +102,7 @@ namespace bayesnet {
|
|||||||
models.push_back(std::move(model));
|
models.push_back(std::move(model));
|
||||||
significanceModels.push_back(alpha_t);
|
significanceModels.push_back(alpha_t);
|
||||||
n_models++;
|
n_models++;
|
||||||
VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||||
}
|
}
|
||||||
if (block_update) {
|
if (block_update) {
|
||||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||||
@@ -351,10 +116,10 @@ namespace bayesnet {
|
|||||||
improvement = accuracy - priorAccuracy;
|
improvement = accuracy - priorAccuracy;
|
||||||
}
|
}
|
||||||
if (improvement < convergence_threshold) {
|
if (improvement < convergence_threshold) {
|
||||||
VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||||
tolerance++;
|
tolerance++;
|
||||||
} else {
|
} else {
|
||||||
VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||||
tolerance = 0; // Reset the counter if the model performs better
|
tolerance = 0; // Reset the counter if the model performs better
|
||||||
numItemsPack = 0;
|
numItemsPack = 0;
|
||||||
}
|
}
|
||||||
@@ -366,13 +131,13 @@ namespace bayesnet {
|
|||||||
priorAccuracy = accuracy;
|
priorAccuracy = accuracy;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||||
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||||
}
|
}
|
||||||
if (tolerance > maxTolerance) {
|
if (tolerance > maxTolerance) {
|
||||||
if (numItemsPack < n_models) {
|
if (numItemsPack < n_models) {
|
||||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||||
VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||||
for (int i = 0; i < numItemsPack; ++i) {
|
for (int i = 0; i < numItemsPack; ++i) {
|
||||||
significanceModels.pop_back();
|
significanceModels.pop_back();
|
||||||
models.pop_back();
|
models.pop_back();
|
||||||
@@ -380,7 +145,7 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||||
VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (featuresUsed.size() != features.size()) {
|
if (featuresUsed.size() != features.size()) {
|
||||||
|
@@ -6,45 +6,21 @@
|
|||||||
|
|
||||||
#ifndef BOOSTAODE_H
|
#ifndef BOOSTAODE_H
|
||||||
#define BOOSTAODE_H
|
#define BOOSTAODE_H
|
||||||
#include <map>
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
#include "bayesnet/classifiers/SPODE.h"
|
#include "bayesnet/classifiers/SPODE.h"
|
||||||
#include "bayesnet/feature_selection/FeatureSelect.h"
|
#include "Boost.h"
|
||||||
#include "Ensemble.h"
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
const struct {
|
class BoostAODE : public Boost {
|
||||||
std::string CFS = "CFS";
|
|
||||||
std::string FCBF = "FCBF";
|
|
||||||
std::string IWSS = "IWSS";
|
|
||||||
}SelectFeatures;
|
|
||||||
const struct {
|
|
||||||
std::string ASC = "asc";
|
|
||||||
std::string DESC = "desc";
|
|
||||||
std::string RAND = "rand";
|
|
||||||
}Orders;
|
|
||||||
class BoostAODE : public Ensemble {
|
|
||||||
public:
|
public:
|
||||||
explicit BoostAODE(bool predict_voting = false);
|
explicit BoostAODE(bool predict_voting = false);
|
||||||
virtual ~BoostAODE() = default;
|
virtual ~BoostAODE() = default;
|
||||||
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
|
||||||
protected:
|
protected:
|
||||||
void buildModel(const torch::Tensor& weights) override;
|
|
||||||
void trainModel(const torch::Tensor& weights) override;
|
void trainModel(const torch::Tensor& weights) override;
|
||||||
private:
|
private:
|
||||||
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
|
|
||||||
std::vector<int> initializeModels();
|
std::vector<int> initializeModels();
|
||||||
torch::Tensor X_train, y_train, X_test, y_test;
|
|
||||||
// Hyperparameters
|
|
||||||
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
|
||||||
int maxTolerance = 3;
|
|
||||||
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
|
||||||
bool convergence = true; //if true, stop when the model does not improve
|
|
||||||
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
|
|
||||||
bool selectFeatures = false; // if true, use feature selection
|
|
||||||
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
|
||||||
FeatureSelect* featureSelector = nullptr;
|
|
||||||
double threshold = -1;
|
|
||||||
bool block_update = false;
|
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@@ -30,6 +30,53 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||||
}
|
}
|
||||||
|
std::vector<std::pair<int, int>> Metrics::SelectKPairs(const torch::Tensor& weights, std::vector<int>& featuresExcluded, bool ascending, unsigned k)
|
||||||
|
{
|
||||||
|
// Return the K Best features
|
||||||
|
auto n = features.size();
|
||||||
|
// compute scores
|
||||||
|
scoresKPairs.clear();
|
||||||
|
pairsKBest.clear();
|
||||||
|
auto labels = samples.index({ -1, "..." });
|
||||||
|
for (int i = 0; i < n - 1; ++i) {
|
||||||
|
if (std::find(featuresExcluded.begin(), featuresExcluded.end(), i) != featuresExcluded.end()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
for (int j = i + 1; j < n; ++j) {
|
||||||
|
if (std::find(featuresExcluded.begin(), featuresExcluded.end(), j) != featuresExcluded.end()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
auto key = std::make_pair(i, j);
|
||||||
|
auto value = conditionalMutualInformation(samples.index({ i, "..." }), samples.index({ j, "..." }), labels, weights);
|
||||||
|
scoresKPairs.push_back({ key, value });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// sort scores
|
||||||
|
if (ascending) {
|
||||||
|
sort(scoresKPairs.begin(), scoresKPairs.end(), [](auto& a, auto& b)
|
||||||
|
{ return a.second < b.second; });
|
||||||
|
|
||||||
|
} else {
|
||||||
|
sort(scoresKPairs.begin(), scoresKPairs.end(), [](auto& a, auto& b)
|
||||||
|
{ return a.second > b.second; });
|
||||||
|
}
|
||||||
|
for (auto& [pairs, score] : scoresKPairs) {
|
||||||
|
pairsKBest.push_back(pairs);
|
||||||
|
}
|
||||||
|
if (k != 0 && k < pairsKBest.size()) {
|
||||||
|
if (ascending) {
|
||||||
|
int limit = pairsKBest.size() - k;
|
||||||
|
for (int i = 0; i < limit; i++) {
|
||||||
|
pairsKBest.erase(pairsKBest.begin());
|
||||||
|
scoresKPairs.erase(scoresKPairs.begin());
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
pairsKBest.resize(k);
|
||||||
|
scoresKPairs.resize(k);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return pairsKBest;
|
||||||
|
}
|
||||||
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||||
{
|
{
|
||||||
// Return the K Best features
|
// Return the K Best features
|
||||||
@@ -69,7 +116,10 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
return scoresKBest;
|
return scoresKBest;
|
||||||
}
|
}
|
||||||
|
std::vector<std::pair<std::pair<int, int>, double>> Metrics::getScoresKPairs() const
|
||||||
|
{
|
||||||
|
return scoresKPairs;
|
||||||
|
}
|
||||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
auto result = std::vector<double>();
|
auto result = std::vector<double>();
|
||||||
@@ -148,24 +198,20 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return entropyValue;
|
return entropyValue;
|
||||||
}
|
}
|
||||||
// H(Y|X,C) = sum_{x in X, c in C} p(x,c) H(Y|X=x,C=c)
|
// H(X|Y,C) = sum_{y in Y, c in C} p(x,c) H(X|Y=y,C=c)
|
||||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
// Ensure the tensors are of the same length
|
// Ensure the tensors are of the same length
|
||||||
assert(firstFeature.size(0) == secondFeature.size(0) && firstFeature.size(0) == labels.size(0) && firstFeature.size(0) == weights.size(0));
|
assert(firstFeature.size(0) == secondFeature.size(0) && firstFeature.size(0) == labels.size(0) && firstFeature.size(0) == weights.size(0));
|
||||||
|
|
||||||
// Convert tensors to vectors for easier processing
|
// Convert tensors to vectors for easier processing
|
||||||
auto firstFeatureData = firstFeature.accessor<int, 1>();
|
auto firstFeatureData = firstFeature.accessor<int, 1>();
|
||||||
auto secondFeatureData = secondFeature.accessor<int, 1>();
|
auto secondFeatureData = secondFeature.accessor<int, 1>();
|
||||||
auto labelsData = labels.accessor<int, 1>();
|
auto labelsData = labels.accessor<int, 1>();
|
||||||
auto weightsData = weights.accessor<double, 1>();
|
auto weightsData = weights.accessor<double, 1>();
|
||||||
|
|
||||||
int numSamples = firstFeature.size(0);
|
int numSamples = firstFeature.size(0);
|
||||||
|
|
||||||
// Maps for joint and marginal probabilities
|
// Maps for joint and marginal probabilities
|
||||||
std::map<std::tuple<int, int, int>, double> jointCount;
|
std::map<std::tuple<int, int, int>, double> jointCount;
|
||||||
std::map<std::tuple<int, int>, double> marginalCount;
|
std::map<std::tuple<int, int>, double> marginalCount;
|
||||||
|
|
||||||
// Compute joint and marginal counts
|
// Compute joint and marginal counts
|
||||||
for (int i = 0; i < numSamples; ++i) {
|
for (int i = 0; i < numSamples; ++i) {
|
||||||
auto keyJoint = std::make_tuple(firstFeatureData[i], labelsData[i], secondFeatureData[i]);
|
auto keyJoint = std::make_tuple(firstFeatureData[i], labelsData[i], secondFeatureData[i]);
|
||||||
@@ -174,34 +220,29 @@ namespace bayesnet {
|
|||||||
jointCount[keyJoint] += weightsData[i];
|
jointCount[keyJoint] += weightsData[i];
|
||||||
marginalCount[keyMarginal] += weightsData[i];
|
marginalCount[keyMarginal] += weightsData[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
// Total weight sum
|
// Total weight sum
|
||||||
double totalWeight = torch::sum(weights).item<double>();
|
double totalWeight = torch::sum(weights).item<double>();
|
||||||
if (totalWeight == 0)
|
if (totalWeight == 0)
|
||||||
return 0;
|
return 0;
|
||||||
|
|
||||||
// Compute the conditional entropy
|
// Compute the conditional entropy
|
||||||
double conditionalEntropy = 0.0;
|
double conditionalEntropy = 0.0;
|
||||||
|
|
||||||
for (const auto& [keyJoint, jointFreq] : jointCount) {
|
for (const auto& [keyJoint, jointFreq] : jointCount) {
|
||||||
auto [x, c, y] = keyJoint;
|
auto [x, c, y] = keyJoint;
|
||||||
auto keyMarginal = std::make_tuple(x, c);
|
auto keyMarginal = std::make_tuple(x, c);
|
||||||
|
//double p_xc = marginalCount[keyMarginal] / totalWeight;
|
||||||
double p_xc = marginalCount[keyMarginal] / totalWeight;
|
|
||||||
double p_y_given_xc = jointFreq / marginalCount[keyMarginal];
|
double p_y_given_xc = jointFreq / marginalCount[keyMarginal];
|
||||||
|
|
||||||
if (p_y_given_xc > 0) {
|
if (p_y_given_xc > 0) {
|
||||||
conditionalEntropy -= (jointFreq / totalWeight) * std::log(p_y_given_xc);
|
conditionalEntropy -= (jointFreq / totalWeight) * std::log(p_y_given_xc);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return conditionalEntropy;
|
return conditionalEntropy;
|
||||||
}
|
}
|
||||||
// I(X;Y) = H(Y) - H(Y|X)
|
// I(X;Y) = H(Y) - H(Y|X) ; I(X;Y) >= 0
|
||||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
|
return std::max(entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights), 0.0);
|
||||||
}
|
}
|
||||||
// I(X;Y|C) = H(Y|C) - H(Y|X,C)
|
// I(X;Y|C) = H(X|C) - H(X|Y,C) >= 0
|
||||||
double Metrics::conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
double Metrics::conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
return std::max(conditionalEntropy(firstFeature, labels, weights) - conditionalEntropy(firstFeature, secondFeature, labels, weights), 0.0);
|
return std::max(conditionalEntropy(firstFeature, labels, weights) - conditionalEntropy(firstFeature, secondFeature, labels, weights), 0.0);
|
||||||
|
@@ -16,7 +16,9 @@ namespace bayesnet {
|
|||||||
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||||
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||||
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
||||||
|
std::vector<std::pair<int, int>> SelectKPairs(const torch::Tensor& weights, std::vector<int>& featuresExcluded, bool ascending = false, unsigned k = 0);
|
||||||
std::vector<double> getScoresKBest() const;
|
std::vector<double> getScoresKBest() const;
|
||||||
|
std::vector<std::pair<std::pair<int, int>, double>> getScoresKPairs() const;
|
||||||
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||||
double conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
double conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
||||||
torch::Tensor conditionalEdge(const torch::Tensor& weights);
|
torch::Tensor conditionalEdge(const torch::Tensor& weights);
|
||||||
@@ -33,7 +35,7 @@ namespace bayesnet {
|
|||||||
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
|
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
|
||||||
{
|
{
|
||||||
std::vector<std::pair<T, T>> result;
|
std::vector<std::pair<T, T>> result;
|
||||||
for (int i = 0; i < source.size(); ++i) {
|
for (int i = 0; i < source.size() - 1; ++i) {
|
||||||
T temp = source[i];
|
T temp = source[i];
|
||||||
for (int j = i + 1; j < source.size(); ++j) {
|
for (int j = i + 1; j < source.size(); ++j) {
|
||||||
result.push_back({ temp, source[j] });
|
result.push_back({ temp, source[j] });
|
||||||
@@ -52,6 +54,8 @@ namespace bayesnet {
|
|||||||
int classNumStates = 0;
|
int classNumStates = 0;
|
||||||
std::vector<double> scoresKBest;
|
std::vector<double> scoresKBest;
|
||||||
std::vector<int> featuresKBest; // sorted indices of the features
|
std::vector<int> featuresKBest; // sorted indices of the features
|
||||||
|
std::vector<std::pair<int, int>> pairsKBest; // sorted indices of the pairs
|
||||||
|
std::vector<std::pair<std::pair<int, int>, double>> scoresKPairs;
|
||||||
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
@@ -27,4 +27,4 @@ The hyperparameters defined in the algorithm are:
|
|||||||
|
|
||||||
## Operation
|
## Operation
|
||||||
|
|
||||||
### [Algorithm](./algorithm.md)
|
### [Base Algorithm](./algorithm.md)
|
||||||
|
2911
docs/Doxyfile.in
Normal file
2911
docs/Doxyfile.in
Normal file
File diff suppressed because it is too large
Load Diff
BIN
docs/logo_small.png
Normal file
BIN
docs/logo_small.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
@@ -1,171 +0,0 @@
|
|||||||
#include "ArffFiles.h"
|
|
||||||
#include <fstream>
|
|
||||||
#include <sstream>
|
|
||||||
#include <map>
|
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
std::vector<std::string> ArffFiles::getLines() const
|
|
||||||
{
|
|
||||||
return lines;
|
|
||||||
}
|
|
||||||
|
|
||||||
unsigned long int ArffFiles::getSize() const
|
|
||||||
{
|
|
||||||
return lines.size();
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
|
|
||||||
{
|
|
||||||
return attributes;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string ArffFiles::getClassName() const
|
|
||||||
{
|
|
||||||
return className;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string ArffFiles::getClassType() const
|
|
||||||
{
|
|
||||||
return classType;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<std::vector<float>>& ArffFiles::getX()
|
|
||||||
{
|
|
||||||
return X;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<int>& ArffFiles::getY()
|
|
||||||
{
|
|
||||||
return y;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ArffFiles::loadCommon(const std::string& fileName)
|
|
||||||
{
|
|
||||||
std::ifstream file(fileName);
|
|
||||||
if (!file.is_open()) {
|
|
||||||
throw std::invalid_argument("Unable to open file");
|
|
||||||
}
|
|
||||||
std::string line;
|
|
||||||
std::string keyword;
|
|
||||||
std::string attribute;
|
|
||||||
std::string type;
|
|
||||||
std::string type_w;
|
|
||||||
// Read file
|
|
||||||
while (getline(file, line)) {
|
|
||||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
|
||||||
// Skip comments and empty lines
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
|
||||||
// Read attributes
|
|
||||||
std::stringstream ss(line);
|
|
||||||
ss >> keyword >> attribute;
|
|
||||||
type = "";
|
|
||||||
while (ss >> type_w)
|
|
||||||
type += type_w + " ";
|
|
||||||
attributes.emplace_back(trim(attribute), trim(type));
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (line[0] == '@') {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
// Read data
|
|
||||||
lines.push_back(line);
|
|
||||||
}
|
|
||||||
file.close();
|
|
||||||
if (attributes.empty())
|
|
||||||
throw std::invalid_argument("No attributes found");
|
|
||||||
}
|
|
||||||
|
|
||||||
void ArffFiles::load(const std::string& fileName, bool classLast)
|
|
||||||
{
|
|
||||||
int labelIndex;
|
|
||||||
loadCommon(fileName);
|
|
||||||
if (classLast) {
|
|
||||||
className = std::get<0>(attributes.back());
|
|
||||||
classType = std::get<1>(attributes.back());
|
|
||||||
attributes.pop_back();
|
|
||||||
labelIndex = static_cast<int>(attributes.size());
|
|
||||||
} else {
|
|
||||||
className = std::get<0>(attributes.front());
|
|
||||||
classType = std::get<1>(attributes.front());
|
|
||||||
attributes.erase(attributes.begin());
|
|
||||||
labelIndex = 0;
|
|
||||||
}
|
|
||||||
generateDataset(labelIndex);
|
|
||||||
}
|
|
||||||
void ArffFiles::load(const std::string& fileName, const std::string& name)
|
|
||||||
{
|
|
||||||
int labelIndex;
|
|
||||||
loadCommon(fileName);
|
|
||||||
bool found = false;
|
|
||||||
for (int i = 0; i < attributes.size(); ++i) {
|
|
||||||
if (attributes[i].first == name) {
|
|
||||||
className = std::get<0>(attributes[i]);
|
|
||||||
classType = std::get<1>(attributes[i]);
|
|
||||||
attributes.erase(attributes.begin() + i);
|
|
||||||
labelIndex = i;
|
|
||||||
found = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (!found) {
|
|
||||||
throw std::invalid_argument("Class name not found");
|
|
||||||
}
|
|
||||||
generateDataset(labelIndex);
|
|
||||||
}
|
|
||||||
|
|
||||||
void ArffFiles::generateDataset(int labelIndex)
|
|
||||||
{
|
|
||||||
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
|
|
||||||
auto yy = std::vector<std::string>(lines.size(), "");
|
|
||||||
auto removeLines = std::vector<int>(); // Lines with missing values
|
|
||||||
size_t numLine = 0;
|
|
||||||
for (numLine = 0; numLine < lines.size(); numLine++) {
|
|
||||||
std::stringstream ss(lines[numLine]);
|
|
||||||
std::string value;
|
|
||||||
int pos = 0;
|
|
||||||
int xIndex = 0;
|
|
||||||
while (getline(ss, value, ',')) {
|
|
||||||
if (pos++ == labelIndex) {
|
|
||||||
yy[numLine] = value;
|
|
||||||
} else {
|
|
||||||
if (value == "?") {
|
|
||||||
X[xIndex++][numLine] = -1;
|
|
||||||
removeLines.push_back(numLine);
|
|
||||||
} else
|
|
||||||
X[xIndex++][numLine] = stof(value);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
for (auto i : removeLines) {
|
|
||||||
yy.erase(yy.begin() + i);
|
|
||||||
for (auto& x : X) {
|
|
||||||
x.erase(x.begin() + i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
y = factorize(yy);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string ArffFiles::trim(const std::string& source)
|
|
||||||
{
|
|
||||||
std::string s(source);
|
|
||||||
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
|
||||||
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
|
||||||
return s;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
|
|
||||||
{
|
|
||||||
std::vector<int> yy;
|
|
||||||
yy.reserve(labels_t.size());
|
|
||||||
std::map<std::string, int> labelMap;
|
|
||||||
int i = 0;
|
|
||||||
for (const std::string& label : labels_t) {
|
|
||||||
if (labelMap.find(label) == labelMap.end()) {
|
|
||||||
labelMap[label] = i++;
|
|
||||||
}
|
|
||||||
yy.push_back(labelMap[label]);
|
|
||||||
}
|
|
||||||
return yy;
|
|
||||||
}
|
|
@@ -1,33 +0,0 @@
|
|||||||
#ifndef ARFFFILES_H
|
|
||||||
#define ARFFFILES_H
|
|
||||||
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
class ArffFiles {
|
|
||||||
public:
|
|
||||||
ArffFiles() = default;
|
|
||||||
void load(const std::string&, bool = true);
|
|
||||||
void load(const std::string&, const std::string&);
|
|
||||||
std::vector<std::string> getLines() const;
|
|
||||||
unsigned long int getSize() const;
|
|
||||||
std::string getClassName() const;
|
|
||||||
std::string getClassType() const;
|
|
||||||
static std::string trim(const std::string&);
|
|
||||||
std::vector<std::vector<float>>& getX();
|
|
||||||
std::vector<int>& getY();
|
|
||||||
std::vector<std::pair<std::string, std::string>> getAttributes() const;
|
|
||||||
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
|
||||||
protected:
|
|
||||||
std::vector<std::string> lines;
|
|
||||||
std::vector<std::pair<std::string, std::string>> attributes;
|
|
||||||
std::string className;
|
|
||||||
std::string classType;
|
|
||||||
std::vector<std::vector<float>> X;
|
|
||||||
std::vector<int> y;
|
|
||||||
int maxLines = 0;
|
|
||||||
void generateDataset(int);
|
|
||||||
void loadCommon(const std::string&);
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif
|
|
@@ -1 +0,0 @@
|
|||||||
add_library(ArffFiles ArffFiles.cc)
|
|
1
lib/catch2
Submodule
1
lib/catch2
Submodule
Submodule lib/catch2 added at 029fe3b460
@@ -14,7 +14,6 @@ include_directories(
|
|||||||
/usr/local/include
|
/usr/local/include
|
||||||
)
|
)
|
||||||
|
|
||||||
add_subdirectory(lib/Files)
|
|
||||||
add_subdirectory(lib/mdlp)
|
add_subdirectory(lib/mdlp)
|
||||||
add_executable(bayesnet_sample sample.cc)
|
add_executable(bayesnet_sample sample.cc)
|
||||||
target_link_libraries(bayesnet_sample ArffFiles mdlp "${TORCH_LIBRARIES}" "${BayesNet}")
|
target_link_libraries(bayesnet_sample mdlp "${TORCH_LIBRARIES}" "${BayesNet}")
|
@@ -1,174 +0,0 @@
|
|||||||
// ***************************************************************
|
|
||||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
||||||
// SPDX-FileType: SOURCE
|
|
||||||
// SPDX-License-Identifier: MIT
|
|
||||||
// ***************************************************************
|
|
||||||
|
|
||||||
#include "ArffFiles.h"
|
|
||||||
#include <fstream>
|
|
||||||
#include <sstream>
|
|
||||||
#include <map>
|
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
ArffFiles::ArffFiles() = default;
|
|
||||||
|
|
||||||
std::vector<std::string> ArffFiles::getLines() const
|
|
||||||
{
|
|
||||||
return lines;
|
|
||||||
}
|
|
||||||
|
|
||||||
unsigned long int ArffFiles::getSize() const
|
|
||||||
{
|
|
||||||
return lines.size();
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
|
|
||||||
{
|
|
||||||
return attributes;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string ArffFiles::getClassName() const
|
|
||||||
{
|
|
||||||
return className;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string ArffFiles::getClassType() const
|
|
||||||
{
|
|
||||||
return classType;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<std::vector<float>>& ArffFiles::getX()
|
|
||||||
{
|
|
||||||
return X;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<int>& ArffFiles::getY()
|
|
||||||
{
|
|
||||||
return y;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ArffFiles::loadCommon(std::string fileName)
|
|
||||||
{
|
|
||||||
std::ifstream file(fileName);
|
|
||||||
if (!file.is_open()) {
|
|
||||||
throw std::invalid_argument("Unable to open file");
|
|
||||||
}
|
|
||||||
std::string line;
|
|
||||||
std::string keyword;
|
|
||||||
std::string attribute;
|
|
||||||
std::string type;
|
|
||||||
std::string type_w;
|
|
||||||
while (getline(file, line)) {
|
|
||||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
|
||||||
std::stringstream ss(line);
|
|
||||||
ss >> keyword >> attribute;
|
|
||||||
type = "";
|
|
||||||
while (ss >> type_w)
|
|
||||||
type += type_w + " ";
|
|
||||||
attributes.emplace_back(trim(attribute), trim(type));
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (line[0] == '@') {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
lines.push_back(line);
|
|
||||||
}
|
|
||||||
file.close();
|
|
||||||
if (attributes.empty())
|
|
||||||
throw std::invalid_argument("No attributes found");
|
|
||||||
}
|
|
||||||
|
|
||||||
void ArffFiles::load(const std::string& fileName, bool classLast)
|
|
||||||
{
|
|
||||||
int labelIndex;
|
|
||||||
loadCommon(fileName);
|
|
||||||
if (classLast) {
|
|
||||||
className = std::get<0>(attributes.back());
|
|
||||||
classType = std::get<1>(attributes.back());
|
|
||||||
attributes.pop_back();
|
|
||||||
labelIndex = static_cast<int>(attributes.size());
|
|
||||||
} else {
|
|
||||||
className = std::get<0>(attributes.front());
|
|
||||||
classType = std::get<1>(attributes.front());
|
|
||||||
attributes.erase(attributes.begin());
|
|
||||||
labelIndex = 0;
|
|
||||||
}
|
|
||||||
generateDataset(labelIndex);
|
|
||||||
}
|
|
||||||
void ArffFiles::load(const std::string& fileName, const std::string& name)
|
|
||||||
{
|
|
||||||
int labelIndex;
|
|
||||||
loadCommon(fileName);
|
|
||||||
bool found = false;
|
|
||||||
for (int i = 0; i < attributes.size(); ++i) {
|
|
||||||
if (attributes[i].first == name) {
|
|
||||||
className = std::get<0>(attributes[i]);
|
|
||||||
classType = std::get<1>(attributes[i]);
|
|
||||||
attributes.erase(attributes.begin() + i);
|
|
||||||
labelIndex = i;
|
|
||||||
found = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (!found) {
|
|
||||||
throw std::invalid_argument("Class name not found");
|
|
||||||
}
|
|
||||||
generateDataset(labelIndex);
|
|
||||||
}
|
|
||||||
|
|
||||||
void ArffFiles::generateDataset(int labelIndex)
|
|
||||||
{
|
|
||||||
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
|
|
||||||
auto yy = std::vector<std::string>(lines.size(), "");
|
|
||||||
auto removeLines = std::vector<int>(); // Lines with missing values
|
|
||||||
for (size_t i = 0; i < lines.size(); i++) {
|
|
||||||
std::stringstream ss(lines[i]);
|
|
||||||
std::string value;
|
|
||||||
int pos = 0;
|
|
||||||
int xIndex = 0;
|
|
||||||
while (getline(ss, value, ',')) {
|
|
||||||
if (pos++ == labelIndex) {
|
|
||||||
yy[i] = value;
|
|
||||||
} else {
|
|
||||||
if (value == "?") {
|
|
||||||
X[xIndex++][i] = -1;
|
|
||||||
removeLines.push_back(i);
|
|
||||||
} else
|
|
||||||
X[xIndex++][i] = stof(value);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
for (auto i : removeLines) {
|
|
||||||
yy.erase(yy.begin() + i);
|
|
||||||
for (auto& x : X) {
|
|
||||||
x.erase(x.begin() + i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
y = factorize(yy);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string ArffFiles::trim(const std::string& source)
|
|
||||||
{
|
|
||||||
std::string s(source);
|
|
||||||
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
|
||||||
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
|
||||||
return s;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
|
|
||||||
{
|
|
||||||
std::vector<int> yy;
|
|
||||||
yy.reserve(labels_t.size());
|
|
||||||
std::map<std::string, int> labelMap;
|
|
||||||
int i = 0;
|
|
||||||
for (const std::string& label : labels_t) {
|
|
||||||
if (labelMap.find(label) == labelMap.end()) {
|
|
||||||
labelMap[label] = i++;
|
|
||||||
}
|
|
||||||
yy.push_back(labelMap[label]);
|
|
||||||
}
|
|
||||||
return yy;
|
|
||||||
}
|
|
@@ -1,38 +0,0 @@
|
|||||||
// ***************************************************************
|
|
||||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
|
||||||
// SPDX-FileType: SOURCE
|
|
||||||
// SPDX-License-Identifier: MIT
|
|
||||||
// ***************************************************************
|
|
||||||
|
|
||||||
#ifndef ARFFFILES_H
|
|
||||||
#define ARFFFILES_H
|
|
||||||
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
class ArffFiles {
|
|
||||||
private:
|
|
||||||
std::vector<std::string> lines;
|
|
||||||
std::vector<std::pair<std::string, std::string>> attributes;
|
|
||||||
std::string className;
|
|
||||||
std::string classType;
|
|
||||||
std::vector<std::vector<float>> X;
|
|
||||||
std::vector<int> y;
|
|
||||||
void generateDataset(int);
|
|
||||||
void loadCommon(std::string);
|
|
||||||
public:
|
|
||||||
ArffFiles();
|
|
||||||
void load(const std::string&, bool = true);
|
|
||||||
void load(const std::string&, const std::string&);
|
|
||||||
std::vector<std::string> getLines() const;
|
|
||||||
unsigned long int getSize() const;
|
|
||||||
std::string getClassName() const;
|
|
||||||
std::string getClassType() const;
|
|
||||||
static std::string trim(const std::string&);
|
|
||||||
std::vector<std::vector<float>>& getX();
|
|
||||||
std::vector<int>& getY();
|
|
||||||
std::vector<std::pair<std::string, std::string>> getAttributes() const;
|
|
||||||
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif
|
|
@@ -1 +0,0 @@
|
|||||||
add_library(ArffFiles ArffFiles.cc)
|
|
@@ -4,7 +4,7 @@
|
|||||||
// SPDX-License-Identifier: MIT
|
// SPDX-License-Identifier: MIT
|
||||||
// ***************************************************************
|
// ***************************************************************
|
||||||
|
|
||||||
#include <ArffFiles.h>
|
#include <ArffFiles.hpp>
|
||||||
#include <CPPFImdlp.h>
|
#include <CPPFImdlp.h>
|
||||||
#include <bayesnet/ensembles/BoostAODE.h>
|
#include <bayesnet/ensembles/BoostAODE.h>
|
||||||
|
|
||||||
|
@@ -1,6 +1,6 @@
|
|||||||
if(ENABLE_TESTING)
|
if(ENABLE_TESTING)
|
||||||
include_directories(
|
include_directories(
|
||||||
${BayesNet_SOURCE_DIR}/lib/Files
|
${BayesNet_SOURCE_DIR}/tests/lib/Files
|
||||||
${BayesNet_SOURCE_DIR}/lib/folding
|
${BayesNet_SOURCE_DIR}/lib/folding
|
||||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||||
@@ -10,17 +10,18 @@ if(ENABLE_TESTING)
|
|||||||
file(GLOB_RECURSE BayesNet_SOURCES "${BayesNet_SOURCE_DIR}/bayesnet/*.cc")
|
file(GLOB_RECURSE BayesNet_SOURCES "${BayesNet_SOURCE_DIR}/bayesnet/*.cc")
|
||||||
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc
|
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc
|
||||||
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc TestA2DE.cc
|
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc TestA2DE.cc
|
||||||
TestUtils.cc TestBayesEnsemble.cc TestModulesVersions.cc ${BayesNet_SOURCES})
|
TestUtils.cc TestBayesEnsemble.cc TestModulesVersions.cc TestBoostA2DE.cc ${BayesNet_SOURCES})
|
||||||
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp PRIVATE Catch2::Catch2WithMain)
|
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" mdlp PRIVATE Catch2::Catch2WithMain)
|
||||||
add_test(NAME BayesNetworkTest COMMAND TestBayesNet)
|
add_test(NAME BayesNetworkTest COMMAND TestBayesNet)
|
||||||
add_test(NAME Network COMMAND TestBayesNet "[Network]")
|
add_test(NAME A2DE COMMAND TestBayesNet "[A2DE]")
|
||||||
add_test(NAME Node COMMAND TestBayesNet "[Node]")
|
add_test(NAME BoostA2DE COMMAND TestBayesNet "[BoostA2DE]")
|
||||||
add_test(NAME Metrics COMMAND TestBayesNet "[Metrics]")
|
add_test(NAME BoostAODE COMMAND TestBayesNet "[BoostAODE]")
|
||||||
add_test(NAME FeatureSelection COMMAND TestBayesNet "[FeatureSelection]")
|
|
||||||
add_test(NAME Classifier COMMAND TestBayesNet "[Classifier]")
|
add_test(NAME Classifier COMMAND TestBayesNet "[Classifier]")
|
||||||
add_test(NAME Ensemble COMMAND TestBayesNet "[Ensemble]")
|
add_test(NAME Ensemble COMMAND TestBayesNet "[Ensemble]")
|
||||||
|
add_test(NAME FeatureSelection COMMAND TestBayesNet "[FeatureSelection]")
|
||||||
|
add_test(NAME Metrics COMMAND TestBayesNet "[Metrics]")
|
||||||
add_test(NAME Models COMMAND TestBayesNet "[Models]")
|
add_test(NAME Models COMMAND TestBayesNet "[Models]")
|
||||||
add_test(NAME BoostAODE COMMAND TestBayesNet "[BoostAODE]")
|
|
||||||
add_test(NAME A2DE COMMAND TestBayesNet "[A2DE]")
|
|
||||||
add_test(NAME Modules COMMAND TestBayesNet "[Modules]")
|
add_test(NAME Modules COMMAND TestBayesNet "[Modules]")
|
||||||
|
add_test(NAME Network COMMAND TestBayesNet "[Network]")
|
||||||
|
add_test(NAME Node COMMAND TestBayesNet "[Node]")
|
||||||
endif(ENABLE_TESTING)
|
endif(ENABLE_TESTING)
|
||||||
|
@@ -11,7 +11,6 @@
|
|||||||
#include "TestUtils.h"
|
#include "TestUtils.h"
|
||||||
#include "Timer.h"
|
#include "Timer.h"
|
||||||
|
|
||||||
|
|
||||||
TEST_CASE("Metrics Test", "[Metrics]")
|
TEST_CASE("Metrics Test", "[Metrics]")
|
||||||
{
|
{
|
||||||
std::string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
std::string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||||
@@ -28,8 +27,8 @@ TEST_CASE("Metrics Test", "[Metrics]")
|
|||||||
{"diabetes", 0.0345470614}
|
{"diabetes", 0.0345470614}
|
||||||
};
|
};
|
||||||
map<pair<std::string, int>, std::vector<pair<int, int>>> resultsMST = {
|
map<pair<std::string, int>, std::vector<pair<int, int>>> resultsMST = {
|
||||||
{ {"glass", 0}, { {0, 6}, {0, 5}, {0, 3}, {5, 1}, {5, 8}, {5, 4}, {6, 2}, {6, 7} } },
|
{ {"glass", 0}, { {0, 6}, {0, 5}, {0, 3}, {3, 4}, {5, 1}, {5, 8}, {6, 2}, {6, 7} } },
|
||||||
{ {"glass", 1}, { {1, 5}, {5, 0}, {5, 8}, {5, 4}, {0, 6}, {0, 3}, {6, 2}, {6, 7} } },
|
{ {"glass", 1}, { {1, 5}, {5, 0}, {5, 8}, {0, 6}, {0, 3}, {3, 4}, {6, 2}, {6, 7} } },
|
||||||
{ {"iris", 0}, { {0, 1}, {0, 2}, {1, 3} } },
|
{ {"iris", 0}, { {0, 1}, {0, 2}, {1, 3} } },
|
||||||
{ {"iris", 1}, { {1, 0}, {1, 3}, {0, 2} } },
|
{ {"iris", 1}, { {1, 0}, {1, 3}, {0, 2} } },
|
||||||
{ {"ecoli", 0}, { {0, 1}, {0, 2}, {1, 5}, {1, 3}, {5, 6}, {5, 4} } },
|
{ {"ecoli", 0}, { {0, 1}, {0, 2}, {1, 5}, {1, 3}, {5, 6}, {5, 4} } },
|
||||||
@@ -100,6 +99,25 @@ TEST_CASE("Entropy Test", "[Metrics]")
|
|||||||
REQUIRE(result == Catch::Approx(0.693147180559945).epsilon(raw.epsilon));
|
REQUIRE(result == Catch::Approx(0.693147180559945).epsilon(raw.epsilon));
|
||||||
}
|
}
|
||||||
TEST_CASE("Conditional Entropy", "[Metrics]")
|
TEST_CASE("Conditional Entropy", "[Metrics]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||||
|
auto expected = std::map<std::pair<int, int>, double>{
|
||||||
|
{ { 0, 1 }, 1.32674 },
|
||||||
|
{ { 0, 2 }, 0.236253 },
|
||||||
|
{ { 0, 3 }, 0.1202 },
|
||||||
|
{ { 1, 2 }, 0.252551 },
|
||||||
|
{ { 1, 3 }, 0.10515 },
|
||||||
|
{ { 2, 3 }, 0.108323 },
|
||||||
|
};
|
||||||
|
for (int i = 0; i < raw.features.size() - 1; ++i) {
|
||||||
|
for (int j = i + 1; j < raw.features.size(); ++j) {
|
||||||
|
double result = metrics.conditionalEntropy(raw.dataset.index({ i, "..." }), raw.dataset.index({ j, "..." }), raw.yt, raw.weights);
|
||||||
|
REQUIRE(result == Catch::Approx(expected.at({ i, j })).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
TEST_CASE("Conditional Mutual Information", "[Metrics]")
|
||||||
{
|
{
|
||||||
auto raw = RawDatasets("iris", true);
|
auto raw = RawDatasets("iris", true);
|
||||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||||
@@ -117,4 +135,133 @@ TEST_CASE("Conditional Entropy", "[Metrics]")
|
|||||||
REQUIRE(result == Catch::Approx(expected.at({ i, j })).epsilon(raw.epsilon));
|
REQUIRE(result == Catch::Approx(expected.at({ i, j })).epsilon(raw.epsilon));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
TEST_CASE("Select K Pairs descending", "[Metrics]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||||
|
std::vector<int> empty;
|
||||||
|
auto results = metrics.SelectKPairs(raw.weights, empty, false);
|
||||||
|
auto expected = std::vector<std::pair<std::pair<int, int>, double>>{
|
||||||
|
{ { 1, 3 }, 1.31852 },
|
||||||
|
{ { 1, 2 }, 1.17112 },
|
||||||
|
{ { 0, 3 }, 0.403749 },
|
||||||
|
{ { 0, 2 }, 0.287696 },
|
||||||
|
{ { 2, 3 }, 0.210068 },
|
||||||
|
{ { 0, 1 }, 0.0 },
|
||||||
|
};
|
||||||
|
auto scores = metrics.getScoresKPairs();
|
||||||
|
for (int i = 0; i < results.size(); ++i) {
|
||||||
|
auto result = results[i];
|
||||||
|
auto expect = expected[i];
|
||||||
|
auto score = scores[i];
|
||||||
|
REQUIRE(result.first == expect.first.first);
|
||||||
|
REQUIRE(result.second == expect.first.second);
|
||||||
|
REQUIRE(score.first.first == expect.first.first);
|
||||||
|
REQUIRE(score.first.second == expect.first.second);
|
||||||
|
REQUIRE(score.second == Catch::Approx(expect.second).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
|
REQUIRE(results.size() == 6);
|
||||||
|
REQUIRE(scores.size() == 6);
|
||||||
|
}
|
||||||
|
TEST_CASE("Select K Pairs ascending", "[Metrics]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||||
|
std::vector<int> empty;
|
||||||
|
auto results = metrics.SelectKPairs(raw.weights, empty, true);
|
||||||
|
auto expected = std::vector<std::pair<std::pair<int, int>, double>>{
|
||||||
|
{ { 0, 1 }, 0.0 },
|
||||||
|
{ { 2, 3 }, 0.210068 },
|
||||||
|
{ { 0, 2 }, 0.287696 },
|
||||||
|
{ { 0, 3 }, 0.403749 },
|
||||||
|
{ { 1, 2 }, 1.17112 },
|
||||||
|
{ { 1, 3 }, 1.31852 },
|
||||||
|
};
|
||||||
|
auto scores = metrics.getScoresKPairs();
|
||||||
|
for (int i = 0; i < results.size(); ++i) {
|
||||||
|
auto result = results[i];
|
||||||
|
auto expect = expected[i];
|
||||||
|
auto score = scores[i];
|
||||||
|
REQUIRE(result.first == expect.first.first);
|
||||||
|
REQUIRE(result.second == expect.first.second);
|
||||||
|
REQUIRE(score.first.first == expect.first.first);
|
||||||
|
REQUIRE(score.first.second == expect.first.second);
|
||||||
|
REQUIRE(score.second == Catch::Approx(expect.second).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
|
REQUIRE(results.size() == 6);
|
||||||
|
REQUIRE(scores.size() == 6);
|
||||||
|
}
|
||||||
|
TEST_CASE("Select K Pairs with features excluded", "[Metrics]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||||
|
std::vector<int> excluded = { 0, 3 };
|
||||||
|
auto results = metrics.SelectKPairs(raw.weights, excluded, true);
|
||||||
|
auto expected = std::vector<std::pair<std::pair<int, int>, double>>{
|
||||||
|
{ { 1, 2 }, 1.17112 },
|
||||||
|
};
|
||||||
|
auto scores = metrics.getScoresKPairs();
|
||||||
|
for (int i = 0; i < results.size(); ++i) {
|
||||||
|
auto result = results[i];
|
||||||
|
auto expect = expected[i];
|
||||||
|
auto score = scores[i];
|
||||||
|
REQUIRE(result.first == expect.first.first);
|
||||||
|
REQUIRE(result.second == expect.first.second);
|
||||||
|
REQUIRE(score.first.first == expect.first.first);
|
||||||
|
REQUIRE(score.first.second == expect.first.second);
|
||||||
|
REQUIRE(score.second == Catch::Approx(expect.second).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
|
REQUIRE(results.size() == 1);
|
||||||
|
REQUIRE(scores.size() == 1);
|
||||||
|
}
|
||||||
|
TEST_CASE("Select K Pairs with number of pairs descending", "[Metrics]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||||
|
std::vector<int> empty;
|
||||||
|
auto results = metrics.SelectKPairs(raw.weights, empty, false, 3);
|
||||||
|
auto expected = std::vector<std::pair<std::pair<int, int>, double>>{
|
||||||
|
{ { 1, 3 }, 1.31852 },
|
||||||
|
{ { 1, 2 }, 1.17112 },
|
||||||
|
{ { 0, 3 }, 0.403749 }
|
||||||
|
};
|
||||||
|
auto scores = metrics.getScoresKPairs();
|
||||||
|
REQUIRE(results.size() == 3);
|
||||||
|
REQUIRE(scores.size() == 3);
|
||||||
|
for (int i = 0; i < results.size(); ++i) {
|
||||||
|
auto result = results[i];
|
||||||
|
auto expect = expected[i];
|
||||||
|
auto score = scores[i];
|
||||||
|
REQUIRE(result.first == expect.first.first);
|
||||||
|
REQUIRE(result.second == expect.first.second);
|
||||||
|
REQUIRE(score.first.first == expect.first.first);
|
||||||
|
REQUIRE(score.first.second == expect.first.second);
|
||||||
|
REQUIRE(score.second == Catch::Approx(expect.second).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
TEST_CASE("Select K Pairs with number of pairs ascending", "[Metrics]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||||
|
std::vector<int> empty;
|
||||||
|
auto results = metrics.SelectKPairs(raw.weights, empty, true, 3);
|
||||||
|
auto expected = std::vector<std::pair<std::pair<int, int>, double>>{
|
||||||
|
{ { 0, 3 }, 0.403749 },
|
||||||
|
{ { 1, 2 }, 1.17112 },
|
||||||
|
{ { 1, 3 }, 1.31852 }
|
||||||
|
};
|
||||||
|
auto scores = metrics.getScoresKPairs();
|
||||||
|
REQUIRE(results.size() == 3);
|
||||||
|
REQUIRE(scores.size() == 3);
|
||||||
|
for (int i = 0; i < results.size(); ++i) {
|
||||||
|
auto result = results[i];
|
||||||
|
auto expect = expected[i];
|
||||||
|
auto score = scores[i];
|
||||||
|
REQUIRE(result.first == expect.first.first);
|
||||||
|
REQUIRE(result.second == expect.first.second);
|
||||||
|
REQUIRE(score.first.first == expect.first.first);
|
||||||
|
REQUIRE(score.first.second == expect.first.second);
|
||||||
|
REQUIRE(score.second == Catch::Approx(expect.second).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
}
|
}
|
@@ -56,14 +56,14 @@ TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
|||||||
auto raw = RawDatasets(file_name, discretize);
|
auto raw = RawDatasets(file_name, discretize);
|
||||||
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states);
|
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states);
|
||||||
auto score = clf->score(raw.Xt, raw.yt);
|
auto score = clf->score(raw.Xt, raw.yt);
|
||||||
INFO("Classifier: " + name + " File: " + file_name);
|
INFO("Classifier: " << name << " File: " << file_name);
|
||||||
REQUIRE(score == Catch::Approx(scores[{file_name, name}]).epsilon(raw.epsilon));
|
REQUIRE(score == Catch::Approx(scores[{file_name, name}]).epsilon(raw.epsilon));
|
||||||
REQUIRE(clf->getStatus() == bayesnet::NORMAL);
|
REQUIRE(clf->getStatus() == bayesnet::NORMAL);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
SECTION("Library check version")
|
SECTION("Library check version")
|
||||||
{
|
{
|
||||||
INFO("Checking version of " + name + " classifier");
|
INFO("Checking version of " << name << " classifier");
|
||||||
REQUIRE(clf->getVersion() == ACTUAL_VERSION);
|
REQUIRE(clf->getVersion() == ACTUAL_VERSION);
|
||||||
}
|
}
|
||||||
delete clf;
|
delete clf;
|
||||||
|
215
tests/TestBoostA2DE.cc
Normal file
215
tests/TestBoostA2DE.cc
Normal file
@@ -0,0 +1,215 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include <type_traits>
|
||||||
|
#include <catch2/catch_test_macros.hpp>
|
||||||
|
#include <catch2/catch_approx.hpp>
|
||||||
|
#include <catch2/generators/catch_generators.hpp>
|
||||||
|
#include "bayesnet/utils/BayesMetrics.h"
|
||||||
|
#include "bayesnet/ensembles/BoostA2DE.h"
|
||||||
|
#include "TestUtils.h"
|
||||||
|
|
||||||
|
|
||||||
|
TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("diabetes", true);
|
||||||
|
auto clf = bayesnet::BoostA2DE();
|
||||||
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||||
|
REQUIRE(clf.getNumberOfNodes() == 342);
|
||||||
|
REQUIRE(clf.getNumberOfEdges() == 684);
|
||||||
|
REQUIRE(clf.getNotes().size() == 3);
|
||||||
|
REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
|
||||||
|
REQUIRE(clf.getNotes()[1] == "Pairs not used in train: 20");
|
||||||
|
REQUIRE(clf.getNotes()[2] == "Number of models: 38");
|
||||||
|
auto score = clf.score(raw.Xv, raw.yv);
|
||||||
|
REQUIRE(score == Catch::Approx(0.919271).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
|
// TEST_CASE("Feature_select IWSS", "[BoostAODE]")
|
||||||
|
// {
|
||||||
|
// auto raw = RawDatasets("glass", true);
|
||||||
|
// auto clf = bayesnet::BoostAODE();
|
||||||
|
// clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
|
||||||
|
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||||
|
// REQUIRE(clf.getNumberOfNodes() == 90);
|
||||||
|
// REQUIRE(clf.getNumberOfEdges() == 153);
|
||||||
|
// REQUIRE(clf.getNotes().size() == 2);
|
||||||
|
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with IWSS");
|
||||||
|
// REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||||
|
// }
|
||||||
|
// TEST_CASE("Feature_select FCBF", "[BoostAODE]")
|
||||||
|
// {
|
||||||
|
// auto raw = RawDatasets("glass", true);
|
||||||
|
// auto clf = bayesnet::BoostAODE();
|
||||||
|
// clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
|
||||||
|
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||||
|
// REQUIRE(clf.getNumberOfNodes() == 90);
|
||||||
|
// REQUIRE(clf.getNumberOfEdges() == 153);
|
||||||
|
// REQUIRE(clf.getNotes().size() == 2);
|
||||||
|
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with FCBF");
|
||||||
|
// REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||||
|
// }
|
||||||
|
// TEST_CASE("Test used features in train note and score", "[BoostAODE]")
|
||||||
|
// {
|
||||||
|
// auto raw = RawDatasets("diabetes", true);
|
||||||
|
// auto clf = bayesnet::BoostAODE(true);
|
||||||
|
// clf.setHyperparameters({
|
||||||
|
// {"order", "asc"},
|
||||||
|
// {"convergence", true},
|
||||||
|
// {"select_features","CFS"},
|
||||||
|
// });
|
||||||
|
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||||
|
// REQUIRE(clf.getNumberOfNodes() == 72);
|
||||||
|
// REQUIRE(clf.getNumberOfEdges() == 120);
|
||||||
|
// REQUIRE(clf.getNotes().size() == 2);
|
||||||
|
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
|
||||||
|
// REQUIRE(clf.getNotes()[1] == "Number of models: 8");
|
||||||
|
// auto score = clf.score(raw.Xv, raw.yv);
|
||||||
|
// auto scoret = clf.score(raw.Xt, raw.yt);
|
||||||
|
// REQUIRE(score == Catch::Approx(0.809895813).epsilon(raw.epsilon));
|
||||||
|
// REQUIRE(scoret == Catch::Approx(0.809895813).epsilon(raw.epsilon));
|
||||||
|
// }
|
||||||
|
// TEST_CASE("Voting vs proba", "[BoostAODE]")
|
||||||
|
// {
|
||||||
|
// auto raw = RawDatasets("iris", true);
|
||||||
|
// auto clf = bayesnet::BoostAODE(false);
|
||||||
|
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||||
|
// auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||||
|
// auto pred_proba = clf.predict_proba(raw.Xv);
|
||||||
|
// clf.setHyperparameters({
|
||||||
|
// {"predict_voting",true},
|
||||||
|
// });
|
||||||
|
// auto score_voting = clf.score(raw.Xv, raw.yv);
|
||||||
|
// auto pred_voting = clf.predict_proba(raw.Xv);
|
||||||
|
// REQUIRE(score_proba == Catch::Approx(0.97333).epsilon(raw.epsilon));
|
||||||
|
// REQUIRE(score_voting == Catch::Approx(0.98).epsilon(raw.epsilon));
|
||||||
|
// REQUIRE(pred_voting[83][2] == Catch::Approx(1.0).epsilon(raw.epsilon));
|
||||||
|
// REQUIRE(pred_proba[83][2] == Catch::Approx(0.86121525).epsilon(raw.epsilon));
|
||||||
|
// REQUIRE(clf.dump_cpt() == "");
|
||||||
|
// REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||||
|
// }
|
||||||
|
// TEST_CASE("Order asc, desc & random", "[BoostAODE]")
|
||||||
|
// {
|
||||||
|
// auto raw = RawDatasets("glass", true);
|
||||||
|
// std::map<std::string, double> scores{
|
||||||
|
// {"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
|
||||||
|
// };
|
||||||
|
// for (const std::string& order : { "asc", "desc", "rand" }) {
|
||||||
|
// auto clf = bayesnet::BoostAODE();
|
||||||
|
// clf.setHyperparameters({
|
||||||
|
// {"order", order},
|
||||||
|
// {"bisection", false},
|
||||||
|
// {"maxTolerance", 1},
|
||||||
|
// {"convergence", false},
|
||||||
|
// });
|
||||||
|
// clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||||
|
// auto score = clf.score(raw.Xv, raw.yv);
|
||||||
|
// auto scoret = clf.score(raw.Xt, raw.yt);
|
||||||
|
// INFO("BoostAODE order: " + order);
|
||||||
|
// REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||||
|
// REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// TEST_CASE("Oddities", "[BoostAODE]")
|
||||||
|
// {
|
||||||
|
// auto clf = bayesnet::BoostAODE();
|
||||||
|
// auto raw = RawDatasets("iris", true);
|
||||||
|
// auto bad_hyper = nlohmann::json{
|
||||||
|
// { { "order", "duck" } },
|
||||||
|
// { { "select_features", "duck" } },
|
||||||
|
// { { "maxTolerance", 0 } },
|
||||||
|
// { { "maxTolerance", 5 } },
|
||||||
|
// };
|
||||||
|
// for (const auto& hyper : bad_hyper.items()) {
|
||||||
|
// INFO("BoostAODE hyper: " + hyper.value().dump());
|
||||||
|
// REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||||
|
// }
|
||||||
|
// REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
|
||||||
|
// auto bad_hyper_fit = nlohmann::json{
|
||||||
|
// { { "select_features","IWSS" }, { "threshold", -0.01 } },
|
||||||
|
// { { "select_features","IWSS" }, { "threshold", 0.51 } },
|
||||||
|
// { { "select_features","FCBF" }, { "threshold", 1e-8 } },
|
||||||
|
// { { "select_features","FCBF" }, { "threshold", 1.01 } },
|
||||||
|
// };
|
||||||
|
// for (const auto& hyper : bad_hyper_fit.items()) {
|
||||||
|
// INFO("BoostAODE hyper: " + hyper.value().dump());
|
||||||
|
// clf.setHyperparameters(hyper.value());
|
||||||
|
// REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states), std::invalid_argument);
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
// TEST_CASE("Bisection Best", "[BoostAODE]")
|
||||||
|
// {
|
||||||
|
// auto clf = bayesnet::BoostAODE();
|
||||||
|
// auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
|
||||||
|
// clf.setHyperparameters({
|
||||||
|
// {"bisection", true},
|
||||||
|
// {"maxTolerance", 3},
|
||||||
|
// {"convergence", true},
|
||||||
|
// {"block_update", false},
|
||||||
|
// {"convergence_best", false},
|
||||||
|
// });
|
||||||
|
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||||
|
// REQUIRE(clf.getNumberOfNodes() == 210);
|
||||||
|
// REQUIRE(clf.getNumberOfEdges() == 378);
|
||||||
|
// REQUIRE(clf.getNotes().size() == 1);
|
||||||
|
// REQUIRE(clf.getNotes().at(0) == "Number of models: 14");
|
||||||
|
// auto score = clf.score(raw.X_test, raw.y_test);
|
||||||
|
// auto scoret = clf.score(raw.X_test, raw.y_test);
|
||||||
|
// REQUIRE(score == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
|
||||||
|
// REQUIRE(scoret == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
|
||||||
|
// }
|
||||||
|
// TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
|
||||||
|
// {
|
||||||
|
// auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
|
||||||
|
// auto clf = bayesnet::BoostAODE(true);
|
||||||
|
// auto hyperparameters = nlohmann::json{
|
||||||
|
// {"bisection", true},
|
||||||
|
// {"maxTolerance", 3},
|
||||||
|
// {"convergence", true},
|
||||||
|
// {"convergence_best", true},
|
||||||
|
// };
|
||||||
|
// clf.setHyperparameters(hyperparameters);
|
||||||
|
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||||
|
// auto score_best = clf.score(raw.X_test, raw.y_test);
|
||||||
|
// REQUIRE(score_best == Catch::Approx(0.980000019f).epsilon(raw.epsilon));
|
||||||
|
// // Now we will set the hyperparameter to use the last accuracy
|
||||||
|
// hyperparameters["convergence_best"] = false;
|
||||||
|
// clf.setHyperparameters(hyperparameters);
|
||||||
|
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||||
|
// auto score_last = clf.score(raw.X_test, raw.y_test);
|
||||||
|
// REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
|
||||||
|
// }
|
||||||
|
|
||||||
|
// TEST_CASE("Block Update", "[BoostAODE]")
|
||||||
|
// {
|
||||||
|
// auto clf = bayesnet::BoostAODE();
|
||||||
|
// auto raw = RawDatasets("mfeat-factors", true, 500);
|
||||||
|
// clf.setHyperparameters({
|
||||||
|
// {"bisection", true},
|
||||||
|
// {"block_update", true},
|
||||||
|
// {"maxTolerance", 3},
|
||||||
|
// {"convergence", true},
|
||||||
|
// });
|
||||||
|
// clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states);
|
||||||
|
// REQUIRE(clf.getNumberOfNodes() == 868);
|
||||||
|
// REQUIRE(clf.getNumberOfEdges() == 1724);
|
||||||
|
// REQUIRE(clf.getNotes().size() == 3);
|
||||||
|
// REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
|
||||||
|
// REQUIRE(clf.getNotes()[1] == "Used features in train: 19 of 216");
|
||||||
|
// REQUIRE(clf.getNotes()[2] == "Number of models: 4");
|
||||||
|
// auto score = clf.score(raw.X_test, raw.y_test);
|
||||||
|
// auto scoret = clf.score(raw.X_test, raw.y_test);
|
||||||
|
// REQUIRE(score == Catch::Approx(0.99f).epsilon(raw.epsilon));
|
||||||
|
// REQUIRE(scoret == Catch::Approx(0.99f).epsilon(raw.epsilon));
|
||||||
|
// //
|
||||||
|
// // std::cout << "Number of nodes " << clf.getNumberOfNodes() << std::endl;
|
||||||
|
// // std::cout << "Number of edges " << clf.getNumberOfEdges() << std::endl;
|
||||||
|
// // std::cout << "Notes size " << clf.getNotes().size() << std::endl;
|
||||||
|
// // for (auto note : clf.getNotes()) {
|
||||||
|
// // std::cout << note << std::endl;
|
||||||
|
// // }
|
||||||
|
// // std::cout << "Score " << score << std::endl;
|
||||||
|
// }
|
@@ -8,6 +8,7 @@
|
|||||||
#include <catch2/catch_test_macros.hpp>
|
#include <catch2/catch_test_macros.hpp>
|
||||||
#include <catch2/catch_approx.hpp>
|
#include <catch2/catch_approx.hpp>
|
||||||
#include <catch2/generators/catch_generators.hpp>
|
#include <catch2/generators/catch_generators.hpp>
|
||||||
|
#include <catch2/matchers/catch_matchers.hpp>
|
||||||
#include "bayesnet/ensembles/BoostAODE.h"
|
#include "bayesnet/ensembles/BoostAODE.h"
|
||||||
#include "TestUtils.h"
|
#include "TestUtils.h"
|
||||||
|
|
||||||
@@ -104,7 +105,7 @@ TEST_CASE("Order asc, desc & random", "[BoostAODE]")
|
|||||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||||
auto score = clf.score(raw.Xv, raw.yv);
|
auto score = clf.score(raw.Xv, raw.yv);
|
||||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||||
INFO("BoostAODE order: " + order);
|
INFO("BoostAODE order: " << order);
|
||||||
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||||
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||||
}
|
}
|
||||||
@@ -120,7 +121,7 @@ TEST_CASE("Oddities", "[BoostAODE]")
|
|||||||
{ { "maxTolerance", 5 } },
|
{ { "maxTolerance", 5 } },
|
||||||
};
|
};
|
||||||
for (const auto& hyper : bad_hyper.items()) {
|
for (const auto& hyper : bad_hyper.items()) {
|
||||||
INFO("BoostAODE hyper: " + hyper.value().dump());
|
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||||
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||||
}
|
}
|
||||||
REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
|
REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
|
||||||
@@ -131,7 +132,7 @@ TEST_CASE("Oddities", "[BoostAODE]")
|
|||||||
{ { "select_features","FCBF" }, { "threshold", 1.01 } },
|
{ { "select_features","FCBF" }, { "threshold", 1.01 } },
|
||||||
};
|
};
|
||||||
for (const auto& hyper : bad_hyper_fit.items()) {
|
for (const auto& hyper : bad_hyper_fit.items()) {
|
||||||
INFO("BoostAODE hyper: " + hyper.value().dump());
|
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||||
clf.setHyperparameters(hyper.value());
|
clf.setHyperparameters(hyper.value());
|
||||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states), std::invalid_argument);
|
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states), std::invalid_argument);
|
||||||
}
|
}
|
||||||
|
@@ -18,7 +18,8 @@
|
|||||||
std::map<std::string, std::string> modules = {
|
std::map<std::string, std::string> modules = {
|
||||||
{ "mdlp", "1.1.2" },
|
{ "mdlp", "1.1.2" },
|
||||||
{ "Folding", "1.1.0" },
|
{ "Folding", "1.1.0" },
|
||||||
{ "json", "3.11" }
|
{ "json", "3.11" },
|
||||||
|
{ "ArffFiles", "1.0.0" }
|
||||||
};
|
};
|
||||||
|
|
||||||
TEST_CASE("MDLP", "[Modules]")
|
TEST_CASE("MDLP", "[Modules]")
|
||||||
@@ -35,3 +36,8 @@ TEST_CASE("NLOHMANN_JSON", "[Modules]")
|
|||||||
{
|
{
|
||||||
REQUIRE(JSON_VERSION == modules["json"]);
|
REQUIRE(JSON_VERSION == modules["json"]);
|
||||||
}
|
}
|
||||||
|
TEST_CASE("ArffFiles", "[Modules]")
|
||||||
|
{
|
||||||
|
auto handler = ArffFiles();
|
||||||
|
REQUIRE(handler.version() == modules["ArffFiles"]);
|
||||||
|
}
|
||||||
|
@@ -11,7 +11,7 @@
|
|||||||
#include <vector>
|
#include <vector>
|
||||||
#include <map>
|
#include <map>
|
||||||
#include <tuple>
|
#include <tuple>
|
||||||
#include <ArffFiles.h>
|
#include <ArffFiles.hpp>
|
||||||
#include <CPPFImdlp.h>
|
#include <CPPFImdlp.h>
|
||||||
#include <folding.hpp>
|
#include <folding.hpp>
|
||||||
|
|
||||||
|
1
tests/lib/Files
Submodule
1
tests/lib/Files
Submodule
Submodule tests/lib/Files added at 40ac38011a
Reference in New Issue
Block a user