First implemented aproximation
This commit is contained in:
267
bayesnet/ensembles/WA2DE.cc
Normal file
267
bayesnet/ensembles/WA2DE.cc
Normal file
@@ -0,0 +1,267 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
#include "WA2DE.h"
|
||||||
|
namespace bayesnet {
|
||||||
|
WA2DE::WA2DE(bool predict_voting)
|
||||||
|
: num_classes_(0), num_attributes_(0), total_count_(0.0), weighted_a2de_(false), smoothing_factor_(1.0)
|
||||||
|
{
|
||||||
|
validHyperparameters = { "predict_voting" };
|
||||||
|
std::cout << "WA2DE classifier created.\n";
|
||||||
|
}
|
||||||
|
|
||||||
|
void bayesnet::WA2DE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
|
if (hyperparameters.contains("predict_voting")) {
|
||||||
|
predict_voting = hyperparameters["predict_voting"];
|
||||||
|
hyperparameters.erase("predict_voting");
|
||||||
|
}
|
||||||
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void WA2DE::buildModel(const torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
class_counts_[c] += 1e-4; // Laplace smoothing
|
||||||
|
}
|
||||||
|
for (int a = 0; a < num_attributes_; ++a) {
|
||||||
|
for (int v = 0; v < attribute_cardinalities_[a]; ++v) {
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
freq_attr_class_[a][v][c] =
|
||||||
|
(freq_attr_class_[a][v][c] + 1.0) / (class_counts_[c] + attribute_cardinalities_[a]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int sp = 0; sp < num_attributes_; ++sp) {
|
||||||
|
for (int spv = 0; spv < attribute_cardinalities_[sp]; ++spv) {
|
||||||
|
for (int ch = 0; ch < num_attributes_; ++ch) {
|
||||||
|
if (sp != ch) {
|
||||||
|
for (int chv = 0; chv < attribute_cardinalities_[ch]; ++chv) {
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
freq_pair_class_[sp][spv][ch][chv][c] =
|
||||||
|
(freq_pair_class_[sp][spv][ch][chv][c] + 1.0) /
|
||||||
|
(class_counts_[c] + attribute_cardinalities_[sp] * attribute_cardinalities_[ch]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << "Model probabilities computed.\n";
|
||||||
|
}
|
||||||
|
void WA2DE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
auto data = dataset.clone();
|
||||||
|
auto labels = data[-1];
|
||||||
|
// Remove class row from data
|
||||||
|
data = data.index({ at::indexing::Slice(0, -1) });
|
||||||
|
std::cout << "Training A2DE model...\n";
|
||||||
|
std::cout << "Data: " << data.sizes() << std::endl;
|
||||||
|
std::cout << "Labels: " << labels.sizes() << std::endl;
|
||||||
|
std::cout << std::string(80, '-') << std::endl;
|
||||||
|
if (data.dim() != 2 || labels.dim() != 1) {
|
||||||
|
throw std::invalid_argument("Invalid input dimensions.");
|
||||||
|
}
|
||||||
|
num_attributes_ = data.size(0);
|
||||||
|
num_classes_ = labels.max().item<int>() + 1;
|
||||||
|
total_count_ = data.size(1);
|
||||||
|
std::cout << "Number of attributes: " << num_attributes_ << std::endl;
|
||||||
|
std::cout << "Number of classes: " << num_classes_ << std::endl;
|
||||||
|
std::cout << "Total count: " << total_count_ << std::endl;
|
||||||
|
|
||||||
|
// Compute cardinalities
|
||||||
|
attribute_cardinalities_.clear();
|
||||||
|
for (int i = 0; i < num_attributes_; ++i) {
|
||||||
|
attribute_cardinalities_.push_back(data[i].max().item<int>() + 1);
|
||||||
|
}
|
||||||
|
std::cout << "Attribute cardinalities: ";
|
||||||
|
for (int i = 0; i < num_attributes_; ++i) {
|
||||||
|
std::cout << attribute_cardinalities_[i] << " ";
|
||||||
|
}
|
||||||
|
std::cout << std::endl;
|
||||||
|
// output the map of states
|
||||||
|
std::cout << "States: ";
|
||||||
|
for (int i = 0; i < states.size() - 1; i++) {
|
||||||
|
std::cout << features[i] << " " << states[features[i]].size() << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Resize storage
|
||||||
|
class_counts_.resize(num_classes_, 0.0);
|
||||||
|
freq_attr_class_.resize(num_attributes_);
|
||||||
|
freq_pair_class_.resize(num_attributes_);
|
||||||
|
|
||||||
|
for (int i = 0; i < num_attributes_; ++i) {
|
||||||
|
freq_attr_class_[i].resize(attribute_cardinalities_[i], std::vector<double>(num_classes_, 0.0));
|
||||||
|
freq_pair_class_[i].resize(attribute_cardinalities_[i]); // Ensure first level exists
|
||||||
|
for (int j = 0; j < attribute_cardinalities_[i]; ++j) {
|
||||||
|
freq_pair_class_[i][j].resize(num_attributes_); // Ensure second level exists
|
||||||
|
for (int k = 0; k < num_attributes_; ++k) {
|
||||||
|
if (i != k) {
|
||||||
|
freq_pair_class_[i][j][k].resize(attribute_cardinalities_[k]); // Ensure third level exists
|
||||||
|
for (int l = 0; l < attribute_cardinalities_[k]; ++l) {
|
||||||
|
freq_pair_class_[i][j][k][l].resize(num_classes_, 0.0); // Finally, initialize with 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Count frequencies
|
||||||
|
auto data_cpu = data.to(torch::kCPU);
|
||||||
|
auto labels_cpu = labels.to(torch::kCPU);
|
||||||
|
int32_t* data_ptr = data_cpu.data_ptr<int32_t>();
|
||||||
|
int32_t* labels_ptr = labels_cpu.data_ptr<int32_t>();
|
||||||
|
|
||||||
|
for (int i = 0; i < total_count_; ++i) {
|
||||||
|
int class_label = labels_ptr[i];
|
||||||
|
class_counts_[class_label] += 1.0;
|
||||||
|
|
||||||
|
std::vector<int> attr_values(num_attributes_);
|
||||||
|
for (int a = 0; a < num_attributes_; ++a) {
|
||||||
|
attr_values[a] = toIntValue(a, data_ptr[i * num_attributes_ + a]);
|
||||||
|
freq_attr_class_[a][attr_values[a]][class_label] += 1.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pairwise counts
|
||||||
|
for (int sp = 0; sp < num_attributes_; ++sp) {
|
||||||
|
for (int ch = 0; ch < num_attributes_; ++ch) {
|
||||||
|
if (sp != ch) {
|
||||||
|
freq_pair_class_[sp][attr_values[sp]][ch][attr_values[ch]][class_label] += 1.0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << "Verifying Frequency Counts:\n";
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
std::cout << "Class " << c << " Count: " << class_counts_[c] << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int a = 0; a < num_attributes_; ++a) {
|
||||||
|
for (int v = 0; v < attribute_cardinalities_[a]; ++v) {
|
||||||
|
std::cout << "P(A[" << a << "]=" << v << "|C): ";
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
std::cout << freq_attr_class_[a][v][c] << " ";
|
||||||
|
}
|
||||||
|
std::cout << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
torch::Tensor WA2DE::computeProbabilities(const torch::Tensor& data) const
|
||||||
|
{
|
||||||
|
int M = data.size(1);
|
||||||
|
auto output = torch::zeros({ M, num_classes_ }, torch::kF64);
|
||||||
|
|
||||||
|
auto data_cpu = data.to(torch::kCPU);
|
||||||
|
int32_t* data_ptr = data_cpu.data_ptr<int32_t>();
|
||||||
|
|
||||||
|
for (int i = 0; i < M; ++i) {
|
||||||
|
std::vector<int> attr_values(num_attributes_);
|
||||||
|
for (int a = 0; a < num_attributes_; ++a) {
|
||||||
|
attr_values[a] = toIntValue(a, data_ptr[i * num_attributes_ + a]);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<double> log_prob(num_classes_, 0.0);
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
log_prob[c] = std::log((class_counts_[c] + smoothing_factor_) / (total_count_ + num_classes_ * smoothing_factor_));
|
||||||
|
|
||||||
|
double sum_log = 0.0;
|
||||||
|
for (int sp = 0; sp < num_attributes_; ++sp) {
|
||||||
|
double sp_log = log_prob[c];
|
||||||
|
for (int ch = 0; ch < num_attributes_; ++ch) {
|
||||||
|
if (sp == ch) continue;
|
||||||
|
double num = freq_pair_class_[sp][attr_values[sp]][ch][attr_values[ch]][c] + smoothing_factor_;
|
||||||
|
double denom = class_counts_[c] + attribute_cardinalities_[sp] * attribute_cardinalities_[ch] * smoothing_factor_;
|
||||||
|
sp_log += std::log(num / denom);
|
||||||
|
}
|
||||||
|
sum_log += std::exp(sp_log);
|
||||||
|
}
|
||||||
|
log_prob[c] = std::log(sum_log / num_attributes_);
|
||||||
|
}
|
||||||
|
|
||||||
|
double max_log = *std::max_element(log_prob.begin(), log_prob.end());
|
||||||
|
double sum_exp = 0.0;
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
sum_exp += std::exp(log_prob[c] - max_log);
|
||||||
|
}
|
||||||
|
double log_sum_exp = max_log + std::log(sum_exp);
|
||||||
|
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
output[i][c] = std::exp(log_prob[c] - log_sum_exp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return output.to(torch::kF32);
|
||||||
|
}
|
||||||
|
int WA2DE::toIntValue(int attributeIndex, float value) const
|
||||||
|
{
|
||||||
|
int v = static_cast<int>(value);
|
||||||
|
return std::max(0, std::min(v, attribute_cardinalities_[attributeIndex] - 1));
|
||||||
|
}
|
||||||
|
torch::Tensor WA2DE::AODEConditionalProb(const torch::Tensor& data)
|
||||||
|
{
|
||||||
|
int M = data.size(1); // Number of test samples
|
||||||
|
torch::Tensor output = torch::zeros({ M, num_classes_ }, torch::kF32);
|
||||||
|
|
||||||
|
auto data_cpu = data.to(torch::kCPU);
|
||||||
|
int32_t* data_ptr = data_cpu.data_ptr<int32_t>();
|
||||||
|
|
||||||
|
for (int i = 0; i < M; ++i) {
|
||||||
|
std::vector<int> attr_values(num_attributes_);
|
||||||
|
for (int a = 0; a < num_attributes_; ++a) {
|
||||||
|
attr_values[a] = toIntValue(a, data_ptr[i * num_attributes_ + a]);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<double> log_prob(num_classes_, 0.0);
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
log_prob[c] = std::log(class_counts_[c] / total_count_);
|
||||||
|
|
||||||
|
double sum_log = 0.0;
|
||||||
|
for (int sp = 0; sp < num_attributes_; ++sp) {
|
||||||
|
double sp_log = log_prob[c];
|
||||||
|
for (int ch = 0; ch < num_attributes_; ++ch) {
|
||||||
|
if (sp == ch) continue;
|
||||||
|
double prob = freq_pair_class_[sp][attr_values[sp]][ch][attr_values[ch]][c];
|
||||||
|
sp_log += std::log(prob);
|
||||||
|
}
|
||||||
|
sum_log += std::exp(sp_log);
|
||||||
|
}
|
||||||
|
log_prob[c] = std::log(sum_log / num_attributes_);
|
||||||
|
}
|
||||||
|
|
||||||
|
double max_log = *std::max_element(log_prob.begin(), log_prob.end());
|
||||||
|
double sum_exp = 0.0;
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
sum_exp += std::exp(log_prob[c] - max_log);
|
||||||
|
}
|
||||||
|
double log_sum_exp = max_log + std::log(sum_exp);
|
||||||
|
|
||||||
|
for (int c = 0; c < num_classes_; ++c) {
|
||||||
|
output[i][c] = std::exp(log_prob[c] - log_sum_exp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return output;
|
||||||
|
}
|
||||||
|
|
||||||
|
double WA2DE::score(const torch::Tensor& X, const torch::Tensor& y)
|
||||||
|
{
|
||||||
|
torch::Tensor preds = AODEConditionalProb(X);
|
||||||
|
torch::Tensor pred_labels = preds.argmax(1);
|
||||||
|
|
||||||
|
auto correct = pred_labels.eq(y).sum().item<int>();
|
||||||
|
auto total = y.size(0);
|
||||||
|
|
||||||
|
return static_cast<double>(correct) / total;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> WA2DE::graph(const std::string& title) const
|
||||||
|
{
|
||||||
|
return { title, "Graph visualization not implemented." };
|
||||||
|
}
|
||||||
|
}
|
53
bayesnet/ensembles/WA2DE.h
Normal file
53
bayesnet/ensembles/WA2DE.h
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
#ifndef WA2DE_H
|
||||||
|
#define WA2DE_H
|
||||||
|
#include "Ensemble.h"
|
||||||
|
#include <torch/torch.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <map>
|
||||||
|
#include <nlohmann/json.hpp>
|
||||||
|
namespace bayesnet {
|
||||||
|
/**
|
||||||
|
* Geoffrey I. Webb's A2DE (Averaged 2-Dependence Estimators) classifier
|
||||||
|
* Implements the A2DE algorithm as an ensemble of SPODE models.
|
||||||
|
*/
|
||||||
|
class WA2DE : public Ensemble {
|
||||||
|
public:
|
||||||
|
explicit WA2DE(bool predict_voting = false);
|
||||||
|
virtual ~WA2DE() {};
|
||||||
|
|
||||||
|
// Override method to set hyperparameters
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||||
|
|
||||||
|
// Graph visualization function
|
||||||
|
std::vector<std::string> graph(const std::string& title = "A2DE") const override;
|
||||||
|
torch::Tensor computeProbabilities(const torch::Tensor& data) const;
|
||||||
|
double score(const torch::Tensor& X, const torch::Tensor& y);
|
||||||
|
protected:
|
||||||
|
// Model-building function
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
int num_classes_; // Number of classes
|
||||||
|
int num_attributes_; // Number of attributes
|
||||||
|
std::vector<int> attribute_cardinalities_; // Cardinalities of attributes
|
||||||
|
|
||||||
|
// Frequency counts (similar to Java implementation)
|
||||||
|
std::vector<double> class_counts_; // Class frequency
|
||||||
|
std::vector<std::vector<std::vector<double>>> freq_attr_class_; // P(A | C)
|
||||||
|
std::vector<std::vector<std::vector<std::vector<std::vector<double>>>>> freq_pair_class_; // P(A_i, A_j | C)
|
||||||
|
|
||||||
|
double total_count_; // Total instance count
|
||||||
|
|
||||||
|
bool weighted_a2de_; // Whether to use weighted A2DE
|
||||||
|
double smoothing_factor_; // Smoothing parameter (default: Laplace)
|
||||||
|
torch::Tensor AODEConditionalProb(const torch::Tensor& data);
|
||||||
|
void trainModel(const torch::Tensor& data, const Smoothing_t smoothing);
|
||||||
|
int toIntValue(int attributeIndex, float value) const;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
@@ -9,11 +9,12 @@ if(ENABLE_TESTING)
|
|||||||
)
|
)
|
||||||
file(GLOB_RECURSE BayesNet_SOURCES "${BayesNet_SOURCE_DIR}/bayesnet/*.cc")
|
file(GLOB_RECURSE BayesNet_SOURCES "${BayesNet_SOURCE_DIR}/bayesnet/*.cc")
|
||||||
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc
|
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc
|
||||||
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc TestA2DE.cc
|
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc TestA2DE.cc TestWA2DE.cc
|
||||||
TestUtils.cc TestBayesEnsemble.cc TestModulesVersions.cc TestBoostA2DE.cc TestMST.cc ${BayesNet_SOURCES})
|
TestUtils.cc TestBayesEnsemble.cc TestModulesVersions.cc TestBoostA2DE.cc TestMST.cc ${BayesNet_SOURCES})
|
||||||
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" fimdlp PRIVATE Catch2::Catch2WithMain)
|
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" fimdlp PRIVATE Catch2::Catch2WithMain)
|
||||||
add_test(NAME BayesNetworkTest COMMAND TestBayesNet)
|
add_test(NAME BayesNetworkTest COMMAND TestBayesNet)
|
||||||
add_test(NAME A2DE COMMAND TestBayesNet "[A2DE]")
|
add_test(NAME A2DE COMMAND TestBayesNet "[A2DE]")
|
||||||
|
add_test(NAME WA2DE COMMAND TestBayesNet "[WA2DE]")
|
||||||
add_test(NAME BoostA2DE COMMAND TestBayesNet "[BoostA2DE]")
|
add_test(NAME BoostA2DE COMMAND TestBayesNet "[BoostA2DE]")
|
||||||
add_test(NAME BoostAODE COMMAND TestBayesNet "[BoostAODE]")
|
add_test(NAME BoostAODE COMMAND TestBayesNet "[BoostAODE]")
|
||||||
add_test(NAME Classifier COMMAND TestBayesNet "[Classifier]")
|
add_test(NAME Classifier COMMAND TestBayesNet "[Classifier]")
|
||||||
|
31
tests/TestWA2DE.cc
Normal file
31
tests/TestWA2DE.cc
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include <type_traits>
|
||||||
|
#include <catch2/catch_test_macros.hpp>
|
||||||
|
#include <catch2/catch_approx.hpp>
|
||||||
|
#include <catch2/generators/catch_generators.hpp>
|
||||||
|
#include "bayesnet/ensembles/WA2DE.h"
|
||||||
|
#include "TestUtils.h"
|
||||||
|
|
||||||
|
|
||||||
|
TEST_CASE("Fit and Score", "[WA2DE]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
auto clf = bayesnet::WA2DE();
|
||||||
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
|
REQUIRE(clf.score(raw.Xt, raw.yt) == Catch::Approx(0.831776).epsilon(raw.epsilon));
|
||||||
|
}
|
||||||
|
TEST_CASE("Test graph", "[WA2DE]")
|
||||||
|
{
|
||||||
|
auto raw = RawDatasets("iris", true);
|
||||||
|
auto clf = bayesnet::WA2DE();
|
||||||
|
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||||
|
auto graph = clf.graph("BayesNet WA2DE");
|
||||||
|
REQUIRE(graph.size() == 2);
|
||||||
|
REQUIRE(graph[0] == "BayesNet WA2DE");
|
||||||
|
REQUIRE(graph[1] == "Graph visualization not implemented.");
|
||||||
|
}
|
Reference in New Issue
Block a user